EHZ & FACHHOCHSCHULE ZENTRALSCHWEIZ

T

HTA 2 HOCHSCHULE FUR TECHNIK+ARCHITEKTUR LUZERN
Abteilung Informatik

Java
Thread Skalierung

STD

Software Test Document

HTA LUZERN T: 041-349-33-11 Diplomarbeit 2006
Technikumstrasse 21 F: 041-349-39-60 Aregger Marcel
CH—6048 Horw W: www.hta.fhz.ch

Meier Rainer

Diplomarbeit Seite 2

Anderungskontrolle

Version Datum Ausfiihrende Stelle Bemerkungen/Art der Anderung
1.1 2006-10-16 Rainer Meier Initial Release

1.2 2006-11-10 Marcel Aregger Testcases

1.3 2006-11-14 Marcel Aregger Resultate Testcases

Prifung und Freigabe

Vorname/Name Dokumentversion Status Datum Visum
Rainer Meier 1.3 Final 2006-11-20
Marcel Aregger 1.3 Final 2006-11-20

2006-11-21

Diplomarbeit Seite 3

1. Management Summary

Der Startpunkt des vorliegenden Testdokuments bilden die 8 Zielsetzungen im SDD [2] in Bezug auf
den geplanten Testumfang in den Ebenen Hardware, Betriebssystem und Java Virtual Machine.

Die effektive Testplattform in Zusammenhang mit der eingesetzten Hardware, bildet eine Fujitsu Sie-
mens Workstation vom Typ Celsius V810 der Firma Pilatus. Dieses SMP-System beinhaltet 2 AMD
Opteron 246-Prozessoren mit einer Taktrate von 2GHz. Aufgesetzt auf diese Hardware bilden Win-
dows XP Professional 32 Bit und eine Sun Java HotSpot Client Runtime in der Version 1.5.0_09-b03
die wesentliche Bestandteile der Software Plattform. JOMP-Tests wurden mit einer JOMP-
Implementierung in der Version 1.0 Beta durchgefiihrt. Da einzelne Testcases eine Single-CPU-
Architektur erfordern, wurde die oben beschriebene Multi-CPU-Plattform bei Bedarf mit dem Bootflag
numprocs=1 (c:\boot.ini) softwareseitig in eine Single-CPU-Plattform umgewandelt.

Das Testverfahren sichert mit fixen und variablen Rahmenbedingungen die Reproduzierbarkeit und
Vergleichbarkeit der Testresultate. Fur jeden Testcase sind der Ausschnitt aus der Mandelbrotmenge
und die Anzahl Iterationen in der Berechnung dieses Ausschnitts konstante Grossen. Parameter wie-
beispielsweise die Anzahl Worker Threads oder die Basisprioritat eines Threads werden dem entspre-
chenden Testcase angepasst. Die Durchfiihrung der Testreihe orientiert sich ebenfalls an spezifische
Verhaltensregeln. So wird jede Messung in unveranderter Konfiguration 5-mal wiederholt wobei die
Mittelwerte den eigentlichen Messwert bilden. Unrealistische Messwerte oder Programmfehler wah-
rend der Messung fiihren zur Wiederholung der ganzen Testreihe.

Insgesamt 10 Testcases bzw. deren Resultate bilden die Grundlage fur die Analyse und Interpretation
des Systemverhaltens. Sie sind aus den Zielsetzungen {T?} im SDD abgeleitet und kénnen wie folgt
zugeordnet werden:

Testcase # Zielsetzung Hardware, Betriebssystem und JVM

1 {T1} Feststellung Grad der Skalierung zw. Single- und Multi-Prozessor-Architektur
2 {T2} Nachweis Abbildung Java-Thread auf Win32-Thread

3,4 {T3} Nachweis Abbildung Java-Thread-Prioritat auf Win32-Thread-Prioritat

5,6 {T4} Analyse Systemverhalten bei Anderung Win32-Thread-Prioritét

7 {T5} Analyse Systemverhalten bei Festlegung einer Prozess-Affinitat

8 {T6} Analyse der Skalierung einer multithreaded Java-Applikation

9 {T7} Analyse Einfluss der Thread-Synchronisation auf die Skalierung

10 {T8} Analyse Anwendbarkeit und Effektivitat von JOMP

10 Performance Indikatoren wie beispielsweise Berechnungszeit, Kernel Thread Prioritdt oder die
Affinitdt bilden die Messgrdssen der Testcases. Sie werden mit 3 Tools gemessen und protokolliert.
Die Konsolenausgabe der Mandelbrot-Anwendung, der CodeAnalyst von AMD und der ProcessExplo-
rer von Sysinternals bilden die Tooling-Plattform.

Alle Tetscases konnten wie geplant abgearbeitet werden und lieferten aussagekraftige Resultate fur
die nachfolgende Analyse und Interpretation. Sie kdnnen in die drei Bereiche Prioritat, Affinitdt und
Skalierung gegliedert werden.

Prioritat

Im Bereich der Thread-Prioritaten konnte eine lineare Abbildung von Java-Thread- auf Kernel-Thread-
Prioritaten nachgewiesen werden. Da jeweils 2 Java-Prioritaten auf eine Kernel-Prioritat abgebildet
werden, resultieren pro Process Priority Class faktisch 5 nutzbare Prioritatsstufen in Java. Das ,exten-
ded mapping®, wo zusatzlich die Win32 Process Priority Class mitberlicksichtigt wurde, hat gezeigt,
dass im Bereich der Basisprioritaten Uberlappungen entstehen. Die Kombination verschiedener Java-
Thread-Prioritaten und Process Priority Classes ergeben als Resultat die gleiche Basisprioritat. Fur

2006-11-21

Diplomarbeit Seite 4

die Festlegung der Java Thread Prioritat ist somit auch die Prioritdt des Prozesskontextes im Kernel
zu beachten.

Affinitat

Fir eine multithreaded Java-Anwendung auf Windows XP resultiert eine gleichférmige Verteilung der
Threads auf die verfiigbaren CPUs des Systems sofern keine andere ,Last* um CPU-Zeit konkurriert.
Uber die Windows API kénnen Affinitaten auf Level Thread und Prozess definiert werden. In der vor-
liegenden Versuchsreihe konnte mit dem ProcessExplorer (([PROCEXP]) auf Prozessebene eine Affi-
nitat gesetzt werden. Die Zuweisung wurde auf alle Threads dieses Prozesses weitervererbt womit die
Kernel-Threads der Java-Anwendung auf eine CPU konzentriert wurden. Versuche unter Einwirkung
von konkurrierenden Prozessen haben weiter gezeigt, dass mit dem Setzen einer Affinitat der jeweili-
ge Prozessor nicht exklusiv zugeteilt wird.

Skalierung

Ein grundlegender Versuch bestatigte die 1:1-Abbildung eines Java-Threads auf einen Win32-Thread
im Kernel. Somit laufen unter Windows XP die Threads einer Java-Anwendung als Kernel-Threads in
einem Prozess-Kontext wo sie durch den Scheduler auf verfigbare CPUs verteilt werden kdnnen.

Die Skalierung einer Anwendung mit variabler Thread-Anzahl ohne Synchronisation zeigt zwischen
der Single- und Multi-Prozessor-Architektur deutliche Unterschiede im Verlauf. Wahrend die 1 CPU-
Architektur fir 1 bis 512 Threads annahernd konstante Berechnungs- und CPU-Zeiten aufweist, wird
auf der 2 CPU-Architektur die Berechnungszeit halbiert. Durch die Verteilung der Threads wird auf der
Multi-Prozessor-Umgebung ein Skalierungsfaktor von nahezu 2 erreicht. Gemeinsam haben die Sin-
gle- und Multi-Prozessor-Architektur, dass der zunehmende Verwaltungsaufwand fir 1 bis 512
Threads zu keiner nennenswerten Zunahme der CPU-Zeit fuhrt (ohne Synchronisation).

Das verwendete Synchronisationsverfahren ist fur die Skalierung in der Single CPU-Umgebung ent-
scheidend. Mit der Methoden-Synchronisation (grobes Locking) bricht ab >2 Threads die Skalierung
um bis zu 50% ein. Wird mit Objekt- oder CAS synchronisiert ergeben sich annahernd konstante Be-
rechnungs- und CPU-Zeiten.

1.80 / —

/l —8—Berechnungszeit (1 CPU)
1.30

—a— CPU-Zeit (2 CPU)

: —=—CPU-Zeit (1 CPU)
0.80
\/‘/"—‘_‘ —a— Berechnungszeit (2 CPU)

1 2 8 32 128 512

0.30

Abbildung 1 Methoden-Synchronisation 1 CPU / 2CPU-Architektur

Im 2 CPU-Umfeld fuhren verschiedene Synchronisationsverfahren zu einem ahnlichen Verlauf in Be-
zug auf die bendtigte Berechnungs- und CPU-Zeit. Mit 2 Threads wird ein Skalierungsfaktor von an-
nahernd 2 erreicht. Zwischen 3 bis 512 Threads ergibt sich dann abhangig von der gewahlten Syn-
chronisierungsvariante eine Zunahme der Berechnungs- und CPU-Zeit die zwischen 4% und 20%
liegt. Ein 2 CPU-System wird also durch die Verwendung einer Methoden-Synchronisation weit weni-
ger ausgebremst als ein 1 CPU-System.

2006-11-21

Diplomarbeit Seite 5

2. Inhaltsverzeichnis

1. MaNAgEMENT SUMIMAIY ...iiiiiiiiiiiiiee e ettt e e e e e ea e e e e et eet e s s e e e e eestaa i r e e e e e eeasba s e e eaeeeasbaaanseaeeeessnes 3
2. INNAITSVEIZEICINIS ..ot e e se e s e e e be e e sre e e snnee e 5
3. DOKUMENTINTOIMALIONEN ...t sre e e e e as 8
3.1. Referenzierte DOKUMENTEooi it e e ser e e s s 8
3.2. Definitionen und ADKUIZUNGEN..........oiiiiiiiii ittt e ettt e e st e e e ane e e e e snneeee s 8
TG T N 31 S 9
o e Y= AU o Lo OO T PP PU PP PPPPRRPPPPP 10
4.1, ZWeCK des DOKUMENTS........oiiiiiiiii ittt e e rbb et e e st e e e e rbeeee e 10
oI =TS ST of 0] o1 PP PTPPPPPPPPP 11
O =T O e F= 1 o] 0 O PP PP PP PPPPP 12
6.1. Hardware-DoKUMENTatioNcooiiiiiiii e 12
6.2. Software-DoKUMENTAtIONc.coiiiiiii s 13
7 TSIV TANTEN .ttt b e s b e e sb e sb et e e e sre e nn e e nnnean 15
7.1. RahmenbediNGUNGEN.ooi it e e et e e et e e s nbe e e e ennbe e e e enees 15
R O P G o= T= T o PO PPPPPRNS 15
7.1.2. Variable GOSSEINcoiiiiiii ettt ettt e e e bt e e e e bt e e e e e bttt e e e anbe e e e e anbeeeeeabeeeeean 16
7.2. DUrchflhrung der TESIIEINEcoueiiiii e 16
7.3. ANfOrderungen TESICASESuuii ittt e e e e 17

G T I ST (o] =L PP O PP PRPPI 18
8.1, TESICASE HAIAWAIE.........eiiiiieieii et e e e s e e e 18

< Tt O =T (o= 1= S O PP PO OTUPPPOPPP 18
8.2. Testcases BetriebSSYStEM e e 19
8.2.1. TESICASE 2.ttt s 19
8.2.2. TESICASE 3 ... ittt s 19
8.2.3. TESICASE 4 ... et s 20
I S =T (or= LI USSP 21
I T =T (o= T USRI 22
I ST =T (o= T S USRI 23
8.3. TESICASES JVM ...t 24
8.3.1. TESICASE 8.t s 24
8.3.2. TESICASE T ... ittt n 25
8.3.3. TESICASE 10eieiiieiii ettt e et et ns 26

9. MeSSeN UNd ProtOKOIIEIENcoiiiieiie et e et e e s eeeees 27
9.1. Performance INAIKAtOrEN.c...oi i 27
9.2. Profiling UNd TESHOOIScceeiieiieeie et e e e e e e e e e e e e e st nreeeeaeeaeannns 28
9.2.1. UDErSICNE AEI TOOIScviiiiieiiieieteiceie ettt ettt s et s e se s e e senas 28
9.2.2. AUSGADE TESHOOIS. ... e 29

2006-11-21

Diplomarbeit Seite 6

10. ErgebNiSSE 0er TESTCASESuviiiieiiiiiie ittt e ittt ettt ettt e sttt e s e b e e s et e e e e sbbe e e e e anbe e e e s anbbeeeeeneres 31
10,1, TESICASE T ..ottt e et e e e e b e e e e b et e e e et e e e e e e e e 31
10.1.1. BEreChNUNGSZEIL. ...ttt e et e e e e e e e e e e e e e e e e e aanns 31
(0T I O e U =Y | SRR 32
TR R T 1= o 1= YO PP PPRRROt 32
10.2. TESICASE 2 ...ttt et a e e bt e et e e bt et h et e e r et nanes 33
10.2.1. Thread MaPPING ...coeeeiiieciieiee e e e e e e e e e e e e e st e e e e aaeesessanrsaeeeaeessassnstsseeeeaeeaeaanns 33
(K (o 1= o011 PP 33
O R oS3 (7= T PSSP 34
KO I 4 o 1§V 1Y =T o]] o SRR 34
T0.3.2. ErgEDINISSEeieiiiiiiiie ittt ettt e bbb e e 34
T0.4. TESICASE 4 ...ttt b e e e e b et e e b b et e e e e e e e e e 35
(O B oy (o 414V 1Y/ F= T o]] T PRSP PRRRRR 35
LR = (o 1T o] T PO PP UPRR 36
T0.5. TESICASE B ...ttt e et e e e e et e e e e e e 37
10.5.1. BErEChNUNGSZEIL.......cci ittt e e e e e e e e ae e e e e e e e e st aaeeeeaeeeeanes 37
T0.5.2. CPU-ZEIt......e ettt et b e b e ea ettt et et nae e nne e 38
ORI T = o 1T o] a1 TT= YO PPPRROt 38
O G oS3 (7= T T PP RP 39
10.6.1. Berechnungszeit (variable Win32-Prioritat)...........ccccoiiiiiiii e 39
10.6.2. Berechnungszeit (variable Laststufe)...........cciiiiiii e 40
(0T TR O U =Y R 41
O G = (o T=T o011~ PO PRP 41
(O R TS (o7 LT OO 42
O O = o 1= o] T PP PPRPRP 43
10.8. TESICASE 8 ...ttt e et et e et e e e 45
10.8.1. Skalierung 1 CPU ohne Synchronisationccccceiiiiie i 45
10.8.2. Skalierung 2 CPU ohne Synchronisation............cccccooieiiiiiiiii e 46
O IRe TRC T = o 1T o] 1= TT= YO PP PPRRROt 46
10.9. TESICASE O ...ttt a et e ettt 48
10.9.1. Skalierung 1 CPU - Methodensynchronisationccccoiiiiiiiiiiineni e 48
10.9.2. Skalierung 1 CPU - Objektsynchronisationcccoouiiiiiiiiiiinie e 49
10.9.3. Skalierung 1 CPU — CAS-SynchronisSation ..o 50
O = (o T=T o1 E1~ S PP PRP 51
10.9.5. Skalierung 2 CPU - Methodensynchronisation ..o 52
10.9.6. Skalierung 2 CPU - Objektsynchronisationcccoecuiiiiiiiiie e 53
10.9.7. Skalierung 2 CPU - CAS-SynchroniSationcccceiiiiiriiiiiiie e 54
OIS IR T = (o 1T o] T LT PPRPRP 55
10.10. TESICASE 10 ..ottt ettt h e bt b e e e rab e e bt e ae e e s n e e eanes 57
10.10.1. Skalierung 2 CPU - JOMP-TRIAASccciiiitiiii e ettt ee e e e e 57

2006-11-21

Seite 7

Diplomarbeit
T0.10.2. EFQEDNISSE ...coiiiiiiiieiite ettt et 58
R] [0 13- T ST U PUPRPRPTT 59
YT & L= T o] oY T ET=T TR PPPPPUPRRP 60
12.1. TabelleNVErZEICANIS e e e e e e e e e e 60
12.2. AbDIlAUNGSVEIZEICANISviiiiiiee et e e e e e e e e e e st e e e e e e e e senrnreees 61
L T o To (=3 I T {1 o LS OSSPSR 61
P23 | o o = TSRS 61

2006-11-21

Diplomarbeit Seite 8

3. Dokumentinformationen

3.1. Referenzierte Dokumente

Tabelle 1 Referenzierte Dokumente

Referenz Beschreibung

[1] Basisanalyse

[2] SDD, Software Design Document

[3] Systeminformationen ,System-Information.nfo*

[4] JavaDev JumpStart, Java Entwicklungsumgebung
[5] Conclusion, Schlussfolgerung Projektergebnisse

3.2. Definitionen und Abklrzungen

Tabelle 2 Abklirzungen

Abkirzung Beschreibung

API Application Programming Interface

CPU Central Processing Unit

DEP Date Execution Prevention (siehe auch NX)
HAT HyperTransport

JVM Java Virtual Machine

NX No eXecute

SDD Software Design Document

STD Software Test Document

2006-11-21

Diplomarbeit

Seite 9

3.3. Links

Tabelle 3 Links

Referenz Beschreibung

[BOOTFLAG] Windows XP boot parameters: http://support.microsoft.com/kb/833721

[SUNJAVA] Sun Java Home: http://java.sun.com/

[ECLIPSE] Eclipse IDE: http://www.eclipse.org/

[APACHEANT] Apache ANT, Java Builder: http://ant.apache.org/

[JOMP] EPCC, OpenMP-like directives for Java:
http://www.epcc.ed.ac.uk/research/jomp/

[CODEANALYST] AMD CodeAnalyst: http://developer.amd.com/cawin.jsp

[PROCEXP] Sysinternals Process Explorer:

http://www.microsoft.com/technet/sysinternals/utilities/ProcessExplorer.mspx

2006-11-21

http://support.microsoft.com/kb/833721
http://java.sun.com/
http://www.eclipse.org/
http://ant.apache.org/
http://www.epcc.ed.ac.uk/research/jomp/
http://developer.amd.com/cawin.jsp
http://www.microsoft.com/technet/sysinternals/utilities/ProcessExplorer.mspx

Diplomarbeit Seite 10

4. Einleitung

4.1. Zweck des Dokuments

Das Software Test Document STD beinhaltet alle notwendigen Elemente flr die konkrete Umsetzung
des geplanten Testumfanges im SDD ([2]). Es definiert dabei die effektiv eingesetzten Hardware- und
Softwarekomponenten und beschreibt mit dem Testverfahren die Rahmenbedingungen und Verhal-
tensregeln fur die Durchfiihrung einer transparenten Testreihe.

Das eigentliche Testing wird in Form von Testcases beschrieben und erstreckt sich im Sinne der laye-
rorientierten Betrachtung iber die Layer Hardware, Betriebssystem und JVM. Das Systemverhalten in
den einzelnen Testcases wird Uber vorab definierte Performance Indikatoren (Messgrossen) gemes-
sen. Testcases und deren Performance Indikatoren sind ebenfalls Teil des STDs.

Die Messung und Protokollierung der oben genannten Indikatoren muss ber spezifische Instrumente
(Tools) erfolgen, die in diesem Dokument festgelegt werden. Sie ermdglichen reproduzierbare Ergeb-
nisse, die nachfolgen verifiziert werden kénnen.

Ergebnisse aus den Testcases werden in komprimierter Form in diesem Dokument dargestellt. Die
Interpretation des Systemverhaltens ist aber Teil des Conclusion ([5]).

2006-11-21

Diplomarbeit Seite 11

5. Test-Scope

Der geplante Testumfang im Software Design Document SDD (Kapitel 6) bietet einen ersten Uberblick
Uber jene Aspekte, die im Zusammenhang mit der Skalierung einer Applikation analysiert und getestet
werden mussen. Fir diese Aspekte, die in Form von Zielsetzungen und zugehdrigen Betrachtungsbe-
reichen beschrieben wurden, werden im vorliegenden Software Test Document STD entsprechende
Testverfahren und Testcases abgeleitet. Der Testumfang im SDD mit den insgesamt 8 Hauptzielset-
zungen {T1}...{T8} (siehe Tabelle 4) ist in diesem Zusammenhang als Guideline zu betrachten.

Tabelle 4 Geplanter Test-Umfang geméass SDD ([2])

Zielsetzung Kategorie

{T1} Feststellung Grad der Skalierung zwischen Single- und Multi-Prozessor- Muss

Architektur
{T2} Nachweis Abbildung Java-Thread auf Win32-Thread Muss
{T3} Nachweis Abbildung Java-Thread-Prioritat auf Win32-Thread-Prioritat Kann
{T4} Analyse Systemverhalten bei Anderung Win32-Thread-Prioritét Kann
{T5} Analyse Systemverhalten bei Festlegung einer Prozess-Affinitat Kann
{T6} Analyse der Skalierung einer multithreaded Java-Applikation Muss
{T7} Analyse Einfluss der Thread-Synchronisation auf die Skalierung Kann
{T8} Analyse Anwendbarkeit und Effektivitat von JOMP Muss

2006-11-21

Diplomarbeit Seite 12

6. Test-Plattform

Da uns die Schule keine geeignete Testplattform (Multi-Core/Multi/CPU, Windows XP) zur Verfligung
stellen konnte haben wir diese selber beschafft. Unser Dank geht hier an die Pilatus Flugzeugwerke
AG in Stans die uns freundlicherweise die Hardware fir die Dauer der Diplomarbeit zur Verfligung
gestellt hat.

Die verwendete Hard- und Software wird nachfolgend méglichst detailliert erfasst. Zusatzlich wird ein
Microsoft System Information 7 Dokument (siehe [3]) abgegeben. Dieses enthalt alle wichtigen Eckda-
ten des Systems um die Reproduzierbarkeit zu gewahrleisten.

6.1. Hardware-Dokumentation

Alle Tests wurden auf einer Fujitsu Siemens Celsius
V810 durchgefuhrt. Die folgende Tabelle beinhaltet die
wichtigsten Eckdaten des verwendeten Systems:

Abbildung 2 Hardware Testplattform

Tabelle 5 Hardware-Eckdaten

Bezeichnung Konfiguration

Hersteller Fujitsu Siemens

Modell Celsius V810

Anzahl Prozessoren 2

Prozessor Typ AMD Opteron 246 (Sledgehammer Core), 0.13u SOI, Version 2.0, Genera-
tion 15, Model 5, Stepping 8, Single-Core, NX-Technology, Socket 940

Cache L1: 64kB Instruction Cache, 64kB Data-Cache
L2: 1MB

Taktrate 2GHz

HT-Speed 800MHz

Speicher 4GB DDR333 (166MHz) non-ECC, 184 Pin

Chipset AMD 8131

Festplatte(n) 2x 80GB RAID-0 Array (160GB Total), 1 Primare NTFS Partition

DVD 1x HL-DT-SR RW/DVD GCC-4480B

Netzwerk Broadcom NetXtreme Gigabit Ethernet

Grafik nVidia GeForce Quadro FX 1100, 128MB, Driver Version 6.14.10.7756

2006-11-21

Diplomarbeit Seite 13

6.2. Software-Dokumentation

Fir die Tests wurden absichtlich keine Windows-Dienste deaktiviert, Registry-Optimierungen oder
ahnliches vorgenommen. Beim Betriebssystem handelt es sich somit um ein standardmassig instal-
liertes System. Dies sollte somit weitgehend der Ublichen Konfiguration einer Workstation entsprechen
womit auch die Ergebnisse auf ahnlichen Maschinen und im Praxiseinsatz vergleichbar sind.

Die relevante, zusatzlich installierte Software ist in folgender Tabelle festgehalten:

Tabelle 6 Software-Umgebung

Bezeichnung Beschreibung

Windows XP Pro- Als Betriebssystem kommt Windows XP Professional in der 32 Bit Version mit
fessional 32 Bit ServicePack 2 zum Einsatz.

Java VM Wir verwenden fir alle Tests die Sun Java HotSpot Client Runtime in der Versi-
onbuild 1.5.0 _09-b03.

Weitere Informationen unter [SUNJAVA].

Eclipse Zur Entwicklung wird Eclipse in der Version 3.2.1 verwendet. Zur Unterstiitzung
verwenden wir einige Plugins wie den Visual Editor fur die Erzeugung der GUI-
Klassen.

Weitere Informationen unter [ECLIPSE].

Apache-ANT Der Build-Support wird mit Hilfe von Apache-ANT realisiert. Dies gewahrleistet
die Plattformunabhangigkeit und erlaubt die Kompilierung auch ohne Eclipse.
Weitere Informationen unter [APACHEANT].

Java-Dev Sowohl die Sun Java VM als auch Eclipse incl. Plugins und weitere Hilfspro-

JumpStart gramme wie Apache ANT sind Teil dieses Paketes. Das Installationsprogramm

wird zusammen mit dieser Arbeit abgegeben und erlaubt die Installation der
gesamten Java-Umgebung innerhalb weniger Minuten.

Siehe auch [4].

JOMP Fur die JOMP Implementierung wird JOMP in der Version 1.0 Beta verwendet;
die zu diesem Zeitpunkt aktuellste Version.

Siehe auch [PROCEXP].

2006-11-21

Diplomarbeit

Seite 14

Die folgende Tabelle beinhaltet eine Auflistung der durchgefihrten Konfigurationsanpassungen:

Tabelle 7 Software Konfigurationsanpassung

Bezeichnung

Beschreibung

/PAE Kernel Parameter

/numprocs=1

Der /PAE Parameter (Physical Address Translation) wird haufig wegen
der Speicherunterstiitzung Giber 4GB verwendet. Dies ist flir unsere Tests
zwar nicht relevant aber aktiviert auch die Hardware-DEP (Date Executi-
on Prevention) Unterstitzung. Da unser Opteron basierendes System
das NX Bit (gleichzusetzen mit der Microsoft-Bezeichnung DEP) unter-
stiitzt haben wir es auch aktiviert. Der Parameter wird in c:\boot.ini einge-
tragen. Siehe auch [BOOTFLAG].

Fur unsere Single-CPU Messungen haben wir den zusatzlichen Parame-
ter /numprocs=1 verwendet. Dieser teilt dem Kernel die maximale An-
zahl zu verwendender Prozessoren mit. Dies erlaubt uns die Verwen-
dung desselben Systems flr Single- und Multiprozessor Tests. Der Pa-
rameter wird in c:\boot.ini eingetragen und nur Singleprozessor Tests
verwendet. Siehe auch [BOOTFLAG].

Wie bereits erwahnt liegt der Arbeit eine Ausgabe von Microsoft System Information 7 bei (siehe [3]).
Das Programm kann Uber ,Start = Ausfiihren =» msinfo32“ gestartet werden. Um die Lesbarkeit zu
garantieren haben wir ausserdem noch einen Textbasierenden Export beigelegt.

2006-11-21

Diplomarbeit Seite 15

7. Testverfahren

Das Testverfahren legt die Rahmenbedingen und Verhaltensregeln der geplanten Testreihe fest. Wei-
ter werden in diesem Kapitel die formellen Anforderungen an die Testcases beschrieben. Die nachfol-
genden Themenbereiche dienen dazu, die Testreihe effizient zu gestalten und die Nachvollziehbarkeit
der Resultate sicherzustellen.

7.1. Rahmenbedingungen

Rahmenbedingungen sind als grundlegende Voraussetzung flr die Durchfiihrung eines Tests zu be-
trachtet. Sie kdnnen aus der Aufgabenstellungen abgeleitet werden (beispielsweise beim Betriebssys-
tem: Windows XP) oder ergeben sich aus dem jeweiligen Testcase (beispielsweise ein Tool fur variab-
le CPU-Belastung; Windows Calculator). Die Rahmenbedingungen koénnen differenziert werden in
Bedingungen, die global fir alle Testcases gelten und jene, die spezifisch fur einzelne Testcases an-
zuwenden sind.

7.1.1. Fixe Grossen

Fixe Rahmenbedingungen gelten fir alle Testcases gleichermassen und werden darum in den
Testcases nicht explizit aufgefuhrt:

Ausschnitt Mandelbrotmenge

Um die Resultate der Benchmarks vergleichbar zu machen, wird fur jeden Testcase und Berech-
nungsdurchlauf der gleiche Ausschnitt aus der Mandelbrot-Menge berechnet. Dazu missen die exak-
ten Koordinaten dieses Ausschnitts persistent gespeichert werden kénnen. Eine Bookmark-Datei mit
der Definition des entsprechenden Bereiches wird unter dem Namen benchmark-location.xml
mitgeliefert.

Anzahl lterationen

Mit der Anzahl lterationen kann der Berechnungsaufwand der Mandelbrot-Menge beliebig gesteuert
werden. Gemass Requirement {R1.3} (SDD, Kapitel 7.1) soll die Laufzeit (Berechnungszeit) des Pro-
gramms zwischen 30 Sekunden und 5 Minuten betragen. Fir die Durchfiihrung der Testreihe soll eine
geeignete ,lterationstiefe® ermittelt und generell angewendet werden. Eine Bookmark-Datei mit der
Definition der entsprechenden lIterationstiefe wird unter dem Namen benchmark-location.xml
mitgeliefert.

Bildgrésse

Der Berechnungsaufwand hangt naturlich auch von der Anzahl der berechneten Bildpunkte ab. Um
diese konstant zu halten wird das Hauptfenster in der Initialgrésse von 1024x768 Pixel belassen. Dies
resultiert in einer darstellbaren Bildgrosse von 1016x718 Pixel oder umgerechnet 729'488 Bildpunkte.

2006-11-21

Diplomarbeit Seite 16

7.1.2. Variable Gossen

Variable Rahmenbedingungen sind fir den jeweiligen Testcase spezifisch festzulegen und somit in
der Beschreibung dieses Testcases aufzufiihren.
Anzahl CPU

Fir plattformibergreifende Testcases (1 CPU / 2 CPU) ist die Anzahl verfugbarer CPUs festzulegen.
Sind diesbezliglich keine Einschrankungen erwahnt, werden Tests auf der 2 CPU-Architektur ausge-
fuhrt.

Anzahl Worker Threads

Die Pixel der Mandelbrot-Menge werden von 1...n Worker Threads berechnet. Da diese Worker auf
Kernel-Threads abgebildet und somit verteilt werden kénnen, ist deren Anzahl im voraus festzulegen.
Die Menge der Threads, die an der Berechnung teilnehmen, ist fur einen Testcase konstant oder ent-
sprechend der Testreihe anzupassen.

Prioritét eines Prozess/Threads

Die Basisprioritat eines Threads beeinflusst das Schedulingverhalten des Kernel und somit die Lauf-
zeit des Programms. Die festgelegte Basisprioritat der Threads eines Prozesses ist fir einen Testcase
konstant oder entsprechend der Testreihe anzupassen.

Synchronisation/Locking

Der Verwaltungsaufwand im Zusammenhang mit der Synchronisation von Threads kann die Berech-
nungs- und CPU-Zeit direkt beeinflussen. Die Anwendung von Synchronisation bzw. Synchronisati-
ons-Mechanismus ist fir einen entsprechenden Testcase auszuweisen.

7.2. Durchfihrung der Testreihe
Der Ablauf einer Testreihe ist auf Level Testcase festgelegt und beinhaltet folgende grundsatzlichen
Verhaltensregeln:

o Eine spezifische Messung wird mit der unveranderten Konfiguration 5 mal durchgefihrt.

e Sind Abweichungen der Teilresultate vernachlassigbar, kann die Durchlaufzahl auf mind. 3
reduziert werden.

e Die Teilresultate der Messungen werden in Excel erfasst.

e Das Mittel der Teilresultate bildet den eigentlichen Messwert.

e Ergibt eine Messung ein unrealistisches Teilresultat, wird der ganze Durchgang wiederholt.
e Tritt wahrend einer Messung ein Programmfehler auf, wird der ganze Durchgang wiederholt.
e Tritt der Programmfehler erneut auf, wird dieser Test tibersprungen.

e Offene Tests werden nach der Korrektur des Programms nachgeholt.

e Auswirkungen der Programmanderung auf bereits durchgefiihrte Tests sind zu analysieren.
¢ Nach jedem Testcase werden die Applikation neu gestartet (Mandelbrot, Systools).

e Single-CPU Tests werden mit gesetztem Kernel-Flag /numproc=1 in c:\boot.ini getestet.

2006-11-21

Diplomarbeit Seite 17

7.3. Anforderungen Testcases

Um die Tests effektiv und effizient durchfiihren zu kénnen, missen die Testcases bestimmte formelle
Bedingungen erflllen. Als minimale Anforderung mussen folgende Punkte flr jeden Testcase be-
schrieben werden:

e ID und zugehorige Zielsetzung aus dem SDD ({T?})
e Erwartete(s) Resultat(e)

e (Variable) Rahmenbedingen

e Performance Indikatoren (Messgréssen)

e Spezifische Ablaufschritte

2006-11-21

Diplomarbeit

Seite 18

8. Testcases

Die nachfolgenden Testcases realisieren den geplanten Testumfang aus dem SDD ([2]). Sie be-
schreiben flr die Layer Hardware, Betriebssystem und JVM alle Testszenarien die durchgefiihrt wer-
den mussen um die formulierten Zielsetzungen umzusetzen. Die Ergebnisse aus diesen Testcases
sind im Kapitel 10; Ergebnisse der Testcases einsehbar.

8.1. Testcase Hardware

8.1.1. Testcase 1

Testcase fur Zielsetzung {T1} aus geplantem Test-Umfang SDD ([2])

Testcase 1

Betrachtungsbereich: Hardware

Zielsetzung

Feststellung Grad der Skalierung zwischen Single- und Multi-Prozessor-
Architektur

Erwartetes Resultat

Faktor Uber potenzielle (vertikale) Skalierung zwischen Single- und Multi-
Prozessor-Architektur einer Java-Anwendung ohne Bertcksichtigung von
Einflissen wie bspw. Synchronisation und Prioritaten

Rahmenbedingungen

Vergleichbare Testplattform mit Single- und Multi-Prozessor

Single-Threaded Testklasse erweiterbar auf Multi-Threaded

Messbare Berechnungszeit und Ressourcenbedarf

Performance-Indikatoren

Verfligbare CPU

Aktive Threads

Berechnungszeit

CPU-Zeit

Kontextwechsel

Ablaufschritte

Anwendung; Testklasse auf 1 CPU-Architektur

Anwendung; Anzahl Worker-Threads (1 | 2) festlegen

Protokollieren Performance-Indikatoren

Anwendung; Testklasse auf 2 CPU-Architektur

Anwendung; Anzahl Worker-Threads (1 | 2) festlegen

Protokollieren Performance-Indikatoren

2006-11-21

Diplomarbeit

Seite 19

8.2. Testcases Betriebssystem

8.2.1. Testcase 2

Testcase fiir Zielsetzung {T2} aus geplantem Test-Umfang SDD ([2])

Testcase 2

Betrachtungsbereich: Betriebssystem

Zielsetzung

Nachweis Abbildung Java-Thread auf Win32-Thread

Erwartetes Resultat

Beweis flr 1:1-Abbildung von Java-Thread auf Win32-Thread.

Identifikation Deamon-Threads (Anzahl) fiir spezifische Java-Anwendung

Identifikation zugehoérigen Prozesskontext auf Level Betriebssystem

Rahmenbedingungen

Betriebssystem Windows XP

VM mit Native-Thread-Unterstitzung

Java-Anwendung mit variabler Thread-Anzahl

Performance-Indikatoren

Java-Threads

Kernel-Threads

Prozesskontext Kernel-Threads

Ablaufschritte

Device; Processexplorer starten

Anwendung; Mandelbrot starten

Anwendung; Threadanzahl (n) in Konfigmen festlegen

Systemtool; Resultierende Threadanzahl in Processexplorer ermitteln

Testablauf mit Threadanzahl (!= n) wiederholen

Anzahl Deamon-Threads bestimmen

8.2.2. Testcase 3

Testcase fir Zielsetzung {T3} aus geplantem Test-Umfang SDD ([2])

Testcase 3

Betrachtungsbereich: Betriebssystem

Zielsetzung

Nachweis Abbildung Java-Thread-Prioritdt auf Win32-Thread-Prioritat mit
unveranderter Default Process Priority-Class

Erwartetes Resultat

Mapping Tabelle die Java-Thread Prioritat (1...5...10) auf die Kernel-Thread-
Prioritat abbildet (Basisprioritat) unter Verwendung von Default-Einstellung
fur Process Priority-Class

Rahmenbedingungen

Betriebssystem Windows XP

Java-Anwendung mit veranderbarer Thread-Prioritat (Konfigmeni)

Performance-Indikatoren

Java Thread Prioritat

2006-11-21

Diplomarbeit

Seite 20

Kernel Thread Prioritat

Ablaufschritte

Systemtool; Processexplorer starten

Anwendung; Mandelbrot starten

Anwendung; Java Thread Prioritat(n) in Konfigmenu festlegen

Systemtool; Resultierende Kernel Thread Prioritat in Processexplorer ermit-
teln

Test mit ; Java Thread Prioritat (= n) wiederholen

Prioritat-Mapping durchfihren, Java Thread Prioritat (n=1...5...10)

8.2.3. Testcase 4

Testcase fur Zielsetzung {T3} aus geplantem Test-Umfang SDD ([2])

Testcase 4

Betrachtungsbereich: Betriebssystem

Zielsetzung

Nachweis Abbildung Java-Thread-Prioritdt auf Win32-Thread-Prioritat mit
variabler Process Priority-Class

Erwartetes Resultat

Mapping Tabelle die Java-Thread Prioritat (1...5...10) auf die Kernel-Thread-
Prioritat abbildet (Basisprioritat) unter Verwendung mdglicher Einstellungen
fur die Process Priority-Class

Rahmenbedingungen

Betriebssystem Windows XP

Java-Anwendung mit veranderbarer Thread-Prioritat (Konfigmeni)

Systemtool mit dem Process Priority Class eigestellt werden kann

Performance-Indikatoren

Java Thread Prioritat

Kernel Thread Prioritat

Ablaufschritte

Systemtool; Processexplorer starten

Anwendung; Mandelbrot starten

Anwendung; Java Thread Prioritat (n= 1...5...10) in Konfigmenu festlegen

Systemtool; Process Priority Class festlegen

Systemtool; Resultierende Kernel Thread Prioritat in Processexplorer ermit-
teln

Test mit Java Thread Prioritat (n= 1...5...10) und allen Process Priority Clas-
ses wiederholen

Prioritat-Mapping durchfihren Java Thread Prioritat, Process Priority Class,
Kernel Thread Prioritat

2006-11-21

Diplomarbeit

Seite 21

8.2.4. Testcase 5

Testcase fiir Zielsetzung {T4} aus geplantem Test-Umfang SDD ([2])

Testcase 5

Betrachtungsbereich: Betriebssystem

Zielsetzung

Analyse Systemverhalten (Skalierung) bei Anderung der Process Priority
Class und unterschiedlicher Last

Erwartetes Resultat

Faktor der Skalierung auf Multi-CPU-Maschine fir Anwendungen mit gleicher
Kernel Thread Prioritdt bei unterschiedlicher Process Priority Classes unter
Berilcksichtigung variabler Laststufen

Rahmenbedingungen

Betriebssystem Windows XP

Prioritat-Mapping Java Thread Prioritat, Process Priority Class und Kernel
Thread Prioritat

Java-Anwendung mit veranderbarer Thread-Prioritat (Konfigmeni)

Systemtool mit dem Process Priority Class eigestellt werden kann

Tool fir variable CPU-Belastung (Windows Calculator, 999999!)

Performance-Indikatoren

Kernel Thread Prioritat

Process Priority Class

Berechnungszeit

CPU-Zeit

Ablaufschritte

Systemtool; Processexplorer starten

Anwendung; Mandelbrot starten

Anwendung; Java Thread Prioritat (m) in Konfigmeni so festlegen dass mit
spezifischer Process Priority Class (n) die gewlinschte Kernel Thread Priori-
tat (p) resultiert

Systemtool; Process Priority Class (n) mit Systemtool so festlegen dass mit
spezifischer Java Thread Prioritat (m) die gewlnschte Kernel Thread Prioritat
(p) resultiert

Calculator; CPU-Belastung festlegen (keine | mittel | stark)

Anwendung; Mandelbrotberechnung starten

Protokollieren Performance-Indikatoren

Test mit unveranderter Einstellung der Prioritaten (m, n, p) aber veranderter
Lastsituation wiederholen

Test mit gleicher Kernel Thread Prioritat (p) aber unterschiedlicher Process
Priority Class (n’) wiederholen

Test mit unveranderter Einstellung der Prioritaten (m’, n’, p) aber veranderter
Lastsituation wiederholen

2006-11-21

Diplomarbeit

Seite 22

8.2.5. Testcase 6

Testcase fiir Zielsetzung {T4} aus geplantem Test-Umfang SDD ([2])

Testcase 6

Betrachtungsbereich: Betriebssystem

Zielsetzung

Analyse Systemverhalten (Skalierung) bei Anderung Win32-Thread-Priorit&t
und unterschiedlicher Last

Erwartetes Resultat

Faktor der Skalierung auf Multi-CPU-Maschine fur Anwendungen mit unter-
schiedlicher Kernel Thread Prioritdt und Process Priority Classes unter Be-
ricksichtigung variabler Laststufen

Rahmenbedingungen

Betriebssystem Windows XP

Prioritat-Mapping Java Thread Prioritat, Process Priority Class und Kernel
Thread Prioritat

Java-Anwendung mit veranderbarer Thread-Prioritat (Konfigmeni)

Systemtool mit dem Process Priority Class eigestellt werden kann

Tool fir variable CPU-Belastung (Windows Calculator, 999999!)

Performance-Indikatoren

Kernel Thread Prioritat

Process Priority Class

Berechnungszeit

CPU-Zeit

Ablaufschritte

Systemtool; Processexplorer starten

Anwendung; Mandelbrot starten

Anwendung; Java Thread Prioritat (m) in Konfigmeni so festlegen dass mit
spezifischer Process Priority Class (n) die gewlinschte Kernel Thread Priori-
tat (p) resultiert

Systemtool; Process Priority Class (n) mit Systemtool so festlegen dass mit
spezifischer Java Thread Prioritat (m) die gewlnschte Kernel Thread Prioritat
(p) resultiert

Calculator; CPU-Belastung festlegen (keine | mittel | stark)

Anwendung; Mandelbrotberechnung starten

Protokollieren Performance-Indikatoren

Test mit unveranderter Einstellung der Prioritaten (m, n, p) aber veranderter
Lastsituation wiederholen

Test mit ungleicher Kernel Thread Prioritat (p’) und unterschiedlicher Process
Priority Class (n’) wiederholen

Test mit unveranderter Einstellung der Prioritaten (m’, n’, p’) aber veranderter
Lastsituation wiederholen

2006-11-21

Diplomarbeit

Seite 23

8.2.6. Testcase 7

Testcase fiir Zielsetzung {T5} aus geplantem Test-Umfang SDD ([2])

Testcase 7

Betrachtungsbereich: Betriebssystem

Zielsetzung

Analyse Systemverhalten bei Festlegung einer Prozess-Affinitat

Erwartetes Resultat

Nachweis Prozess-Affinitat wird auf Kernel Threads dieses Prozesses vererbt

Nachweis Auslastung kann mit Affinitat auf 1 Prozessor konzentriert werden

Nachweis Uber Systemtool / Affinitdt kann kein ,ldeal Processor gesetzt
werden

Nachweis Threads eines Prozesses mit Affinitat auf eine CPU konkurrieren
auf dieser CPU mit Threads ohne explizite Affinitat

Rahmenbedingungen

Betriebssystem Windows XP

Systemtool mit dem Affinitat gesetzt werden kann

2 CPU-Maschine

Tool fir variable CPU-Belastung (Windows Calculator, 999999!)

Performance-Indikatoren

Kernel Thread Prioritat

Affinitat

Berechnungszeit

Ablaufschritte

Systemtool; Processexplorer starten

Anwendung; Mandelbrot starten

Anwendung; Mandelbrotberechnung starten ohne Prozess-Affinitat

Protokollieren Performance-Indikatoren

Systemtool; Anwendungs-Prozess selektieren und Affinitat setzen (CPU 1)

Anwendung; Mandelbrotberechnung starten mit Prozess-Affinitat (CPU 1)

Protokollieren Performance-Indikatoren

Calculator; CPU-Belastung festlegen, ohne Calc-Prozess Affinitat

Anwendung; Mandelbrotberechnung starten mit Prozess-Affinitat (CPU 1)

Protokollieren Performance-Indikatoren

Calculator; CPU-Belastung festlegen, mit Calc-Prozess Affinitat (CPU 0)

Anwendung; Mandelbrotberechnung starten mit Prozess-Affinitat (CPU 1)

Protokollieren Performance-Indikatoren

2006-11-21

Diplomarbeit

Seite 24

8.3. Testcases JVM

8.3.1. Testcase 8

Testcase fiir Zielsetzung {T6} aus geplantem Test-Umfang SDD ([2])

Testcase 8

Betrachtungsbereich: JVM

Zielsetzung

Analyse der Skalierung einer multithreaded Java-Applikation

Erwartetes Resultat

Faktoren flr Skalierung zwischen Single- und Multi-Prozessor-Architektur
einer Java-Anwendung mit 1...n Threads. Die Analyse erfolgt unter Beriick-
sichtigung variabler Java Thread Anzahl und ohne Bericksichtigung der
Thread Synchronisation

Charakteristischer Verlauf der Performance-Indikatoren auf Single- und Multi-
Prozessor-Architektur mit 1...n Threads und variablen Thread Prioritaten

Rahmenbedingungen

Vergleichbare Testplattform mit Single- und Multi-Prozessor

Single-Threaded Testklasse erweiterbar auf Multi-Threaded

Java-Anwendung mit veranderbarer Thread-Prioritat (Konfigmenu)

Messbare Berechnungszeit und Ressourcenbedarf

Performance-Indikatoren

Verfligbare CPU

Aktive Threads

Java Thread Prioritat

Berechnungszeit

CPU-Zeit

Ablaufschritte

Anwendung; Testklasse auf 1 CPU-Architektur

Systemtool; Processexplorer starten

Anwendung; Anzahl Worker-Threads (1) festlegen

Anwendung; Mandelbrot starten

Anwendung; Java Thread Prioritat(1) in Konfigmenu festlegen

Anwendung; Mandelbrotberechnung starten

Protokollieren Performance-Indikatoren

Testablauf wiederholen fir (2...n) Threads und Java Thread Prio (2...5...10)

Anwendung; Testklasse auf 2 CPU-Architektur

Testablauf analog 1 CPU-Architektur

2006-11-21

Diplomarbeit

Seite 25

8.3.2. Testcase 9

Testcase fiir Zielsetzung {T7} aus geplantem Test-Umfang SDD ([2])

Testcase 9

Betrachtungsbereich: JVM

Zielsetzung

Analyse Einfluss der Thread-Synchronisation auf die Skalierung

Erwartetes Resultat

Faktoren flr Skalierung zwischen Single- und Multi-Prozessor-Architektur
einer Java-Anwendung mit 1...n Threads. Die Analyse erfolgt unter Beriick-
sichtigung variabler Java Thread Anzahl und Thread Synchronisation

Charakteristischer Verlauf der Performance-Indikatoren auf Single- und Multi-
Prozessor-Architektur mit 1...n Threads, variablen Thread Prioritaten und
Synchronisation

Rahmenbedingungen

Vergleichbare Testplattform mit Single- und Multi-Prozessor

Single-Threaded Testklasse erweiterbar auf Multi-Threaded

Java-Anwendung mit veranderbarer Thread-Prioritat (Konfigmeni)

Java-Anwendung mit Synchronisation (mittlerer/grosser lock contention)

Messbare Berechnungszeit und Ressourcenbedarf

Performance-Indikatoren

Verfligbare CPU

Aktive Threads

Java Thread Prioritat

Berechnungszeit

CPU-Zeit

Ablaufschritte

Anwendung; Testklasse auf 1 CPU-Architektur

Systemtool; Processexplorer starten

Anwendung; Anzahl Worker-Threads (1) festlegen

Anwendung; Mandelbrot starten

Anwendung; Java Thread Prioritat(1) in Konfigmenu festlegen

Anwendung; Mandelbrotberechnung starten

Protokollieren Performance-Indikatoren

Testablauf wiederholen fiir (2...n) Threads und Java Thread Prio (2...5...10)

Anwendung; Testklasse auf 2 CPU-Architektur

Testablauf analog 1 CPU-Architektur

2006-11-21

Diplomarbeit

Seite 26

8.3.3. Testcase 10

Testcase fiir Zielsetzung {T8} aus geplantem Test-Umfang SDD ([2])

Testcase 10

Betrachtungsbereich: JVM

Zielsetzung

Parallelisierung durch JOMP

Erwartetes Resultat

Automatische Threadbildung durch JOMP-Direktiven in Abhangigkeit der
Konfiguration (setNumThreads())

Rahmenbedingungen

Testklasse mit for-Schleife die in JOMP-Direktiven gekapselt werden kann

JOMP-Precompiler

Performance-Indikatoren

Verfligbare CPU

Java-Threads (JOMP)

Berechnungszeit

CPU-Zeit

Ablaufschritte

Anwendung; Testklasse auf 2 CPU-Architektur

Pre-Compiler; Testklasse(n) kompilieren

Anwendung; JOMP konfigurieren (Anzahl Threads festlegen)

Anwendung; JOMP Testlauf starten

Protokollieren Performance-Indikatoren

Testablauf mit veranderter Konfiguration (Thread Anzahl) widerholen

2006-11-21

Diplomarbeit Seite 27

9. Messen und Protokollieren

Die Skalierung bzw. das Systemverhalten soll auf Basis von Performance Indikatoren analysiert und
dokumentiert werden. Jeder Testcase definiert ,seine” spezifischen Indikatoren die in Tabelle 1 zu-
sammengefasst sind. Fur diese relevanten Faktoren werden unter 9.2; Profiling und Testtools ent-
sprechende Instrumente definiert mit denen die Messung und Protokollierung durchgefihrt werden
kann.

9.1. Performance Indikatoren

Tabelle 8 Relevante Performance Indikatoren

Performance-Indikator Beschreibung

Verfligbare CPU Anzahl CPU (Cores) die Rechenzeit zu Verfigung stellen
Java-Thread Anzahl instanzierter Worker-Threads die Berechnung durchfiihren
Kernel-Thread Anzahl erzeugter Kernel-Threads aus Java-Threads

Java Thread Prioritat Aktuelle Prioritat des Worker-Threads

Kernel Thread Prioritat Aktuelle Prioritat des Kernel-Level-Threads (Basisprioritat)
Process Priority Class Prioritat des Win32-Prozesses

Kontextwechsel Totale Anzahl Kontextwechsel alle Threads

Affinitat Explizite Zuordnung eines Prozesses auf eine CPU
Berechnungszeit Zeitpunkt vom Start bis zum Ende einer Berechnung (Gesamtbild)
CPU-Zeit Aufkumulierte CPU-Zeit des Java Prozesses

Die Laufzeit (Prozesslebensdauer) der Java-Anwendung ist von der eigentlichen Berechnungszeit
abzugrenzen. Sie beinhaltet neben der/den Berechnungszeit(en) auch die Zeit flir das Setup der An-
wendung (Erzeugung und Konfiguration der Threads) und ist darum fiir Performance-Messungen irre-
levant.

Tabelle 9 Nicht relevante Performance Indikatoren

Performance-Indikator Beschreibung
Laufzeit Zeitpunkt vom Start bis zum Ende einer Anwendung (Prozesslebens-
dauer)

2006-11-21

Diplomarbeit

Seite 28

9.2. Profiling und Testtools

9.2.1. Ubersicht der Tools

Tabelle 10 Profiling- und Testtools

Performance-Indikator

Profiling

Protokollierung

Berechnungszeit

Java-Thread

Java Thread Prioritat

Affinitat

Affinitat

CPU-Zeit

Kernel Thread Prioritat

Kernel-Thread

Kontextwechsel

Process Priority Class

Verfugbare CPU

Code (Mandelbrot-Anwendung)

Code (Mandelbrot-Anwendung)

Code (Mandelbrot-Anwendung)

CodeAnalyst (AMD)

ProcessExplorer (Sysinternals)

ProcessExplorer (Sysinternals)

ProcessExplorer (Sysinternals)

ProcessExplorer (Sysinternals)

ProcessExplorer (Sysinternals)

ProcessExplorer (Sysinternals)

ProcessExplorer (Sysinternals)

Automatisch

System.out.printinQ)

Automatisch
System.out.printin(Q)

Automatisch
System._out._printin()

Manuell

Profile; Thread Profile
Manuell

Performance Graph
Manuell

Process view; CPU-Time
Manuell

Thread view; Base Priority
Manuell

Process view; Threads
Manuell

Thread view; Context Switches
Manuell

Process view; Priority

Manuell

Performance Graph

2006-11-21

Diplomarbeit

Seite 29

9.2.2. Ausgabe Testtools

Ausgabe Mandelbrot-Anwendung

Von der Mandelbrot-Anwendung werden wie folgt Daten auf die Konsole geschrieben:

Calculating.- ..
X: 1 to 1016
Y: 177 to 353

Thread Thread-1 done
Thread Thread-4 done
Thread Thread-2 done
Thread Thread-3 done

(Priority 5)
(Priority 5)
(Priority 5)
(Priority 5)

Run time: 4930ms

Number of pixels rendered: 718312

Listing 1 Ausgabe der Anwendung

Ausgabe Code Analyst

Urspringlich sollte der ,Intel Thread Profiler 3.0 for Windows* ([2]) dazu benutzt werden, das Schedu-
lingverhalten im Mehrprozessor-Umfeld zu analysieren. Da dieses viel versprechende Tool aber keine
Unterstltzung fur die AMD Opteron-Architektur bietet, haben wir ein anderes Tool verwendet.

Mit dem ,CodeAnalyst for Windows* von AMD ([CODEANALYST]) steht mit der Version 2.69 (beta)

eine kostenlose Alternative zu Verfigung.

Advanced Micro Devices - CodeAnalyst [C:\WDiplomarbeiti\profilingy] - [Session 2 - Sessio... |=/(2/E3

EN File Profle Tool “windows Tool Bars Help =& <]
B EE:© 00 HomaMods [w] | Thiead profie S| M
Current e.vent-l?ased D.lDfI|E e
Current simulation profile
JTS caw Thread Chart Mon-Local Current time-base profile i
TBF Sessions [Overview w | Thrd Inwestigate L2 cache access
EBF Sessions B Investigate branching
=M Sessions Investigate data access Ere
S Thresd Sessi... 1772 core 0 Ir'!ves.tigat.e instl.uction access -~
. core 1 Pipeline simulation
Session . 1
Session 1 1012 core 0 Thread prafile
SSEan core 1 | Time-baszed prafile -
Session 2 care 0
3820 core 1
s =0 I J] |
cool | JT [TNITITIT IT] I
p—
0.05 204 5
User Achivity K.ernel dctivity | Thread Creation
| Thread T ermination | Mon-Local Memom Access
Sampling Session |dle.

Abbildung 3 CodeAnalyst for Windows (AMD)

Ausgabe ProcessExplorer

Mit dem ProcessExplorer von Sysinternals steht wie erwartet ein sehr funktionales Tool zu Verfiigung,
mit dem ,all-in-one”“ eine Vielzahl von Performance Indikatoren gemessen werden kénnen.

2006-11-21

Diplomarbeit

Seite 30

2/ Process Explorer - Sysinternals: www.sysinternals.com [MAREGGER\Marcel Aregg... B@E

File Options “iew Process Find Handle Users Help

BB =2EEEE #h @ 15
Frocess FID CPU | Description Priority CPU Time Threads ~
winamp. exe 2788 097 ‘winamp a 0:01:38.301 13
wfINWwORD EXE 3548 Microzoft word for Windows 2 0:02:08. 752 8
= = eclipse.exe 3200 g 0:00:00.510 1
= [Miavaw exe 3836 388 Java[Tk] 2 Platform Standard Edition binary a 0:00:57.853 22
E |avawm. exe 4064 Jawa[Th) 2 Platform Standard E dition binary g 0:02:00.182 17
¥ procesp.exe 4040 Sysinternals Process Explorer 13 0:00:09.383 2
[@5naglt32 exe 1243 Snaglt Screen Capture for Windows 8 0:00:01.432 1
= ﬁsnff\ce Bxe 2168 OpenOffice.org 2.0 8 0:00:00 040 1
soffice.bin 2432 OpenOffice.org 2.0 a 0:00:01.231 5
@ firefon ene 3780 Firefox a :00:07.821 7 ™
Type Mame

CPU Usage: 8.71% Commit Charge: 55.33% Processes: 64 Threads: 526

Abbildung 4 ProcessExplorer (Sysinternals)

2006-11-21

Diplomarbeit Seite 31

10. Ergebnisse der Testcases

10.1. Testcase 1

Testcase 1 Betrachtungsbereich: Hardware
Zielsetzung Feststellung Grad der Skalierung zwischen Single- und Multi-Prozessor-
Architektur

10.1.1. Berechnungszeit

Tabelle 11 Grad der Skalierung — 1CPU/2CPU (Berechnungszeit)

1 Thread 2 Thread
Berechnungszeit - 1CPU 69.41 69.77
Berechnungszeit - 2 CPU 68.10 35.72
Kontextwechsel - 1CPU 3555 3915
Kontextwechsel - 2CPU 13299 11014
Faktor Skalierung (zw. 1CPU/2CPU) 1.02 1.95

Grad der Skalierung - 1CPU/2CPU
Berechnungszeit
2.00 + 1.95 + 2.00
1.50 + + 1.50
1.00 0.98 .00 1.00 1.00
1.00 + .02 + 1.00
0.51

0.50 + 027 0.36 + 0.50
0.00 - - 0.00

1 Thread 2 Thread
= Berechnungszeit 1 CPU (normalisiert) — Berechnungszeit 2 CPU (normalisiert)
== Kontextwechsel - 1CPU (normalisiert) mmmm Kontextwechsel - 2CPU (normalisiert)
== Faktor Skalierung (zw. 1CPU/2CPU)

Abbildung 5 Grad der Skalierung — 1CPU/2CPU (Berechnungszeit)

2006-11-21

Diplomarbeit Seite 32

10.1.2. CPU-Zeit

Tabelle 12 Grad der Skalierung 1CPU/2CPU (CPU-Zeit)

1 Thread 2 Threads
CPU-Zeit - 1 CPU 1:09 1:09
CPU-Zeit - 2 CPU 1:12 1:11
Kontextwechsel - 1 CPU 3555 3915
Kontextwechsel - 2 CPU 13299 11014
Faktor Skalierung (zw. 1CPU/2CPU) 0.96 0.97

Grad der Skalierung - 1CPU/2CPU
CPU-Zeit
1.40 + + 1.40
1.20 + +1.20
1.00 1.00 097 1.00 1.00
1.00 1 0.96 0.97 1 1.00
0.80 + + 0.80
0.60 + + 0.60
0.40 | 0.36 1 0.40
0.20 + + 0.20
0.00 - 1 0.00
1 Thread 2 Thread

m=m CPU-Zeit 1 CPU (normalisiert) — CPU-Zeit 2 CPU (normalisiert)

== Kontextwechsel - 1CPU (normalisiert) mmm Kontextwechsel - 2CPU (normalisiert)

== Faktor Skalierung (zw. 1CPU/2CPU)

Abbildung 6 Grad der Skalierung 1CPU/2CPU (CPU-Zeit)

10.1.3. Ergebnisse

Fir den Grad der Skalierung zwischen Single- und Multi-Prozessor-Architektur (Testcase 1) kénnen
aus den Messresultaten und dem zugehdrigen Graph (Abbildung 6) folgende Eigenschaften abgeleitet
werden:

e Berechnungszeit mit 1 Thread ist gleich bleibend
e Berechnungszeit mit 2 Thread auf 2 CPU wird halbiert (Skalierungsfaktor 1.95)
e Sprunghafter Anstieg fir die Anzahl Kontextwechsel auf zwei CPU (1/2 Threads)

2006-11-21

Diplomarbeit

Seite 33

10.2. Testcase 2

Testcase 2

Betrachtungsbereich: Betriebssystem

Zielsetzung

Nachweis Abbildung Java-Thread auf Win32-Thread

10.2.1. Thread Mapping

Tabelle 13 Thread Mapping

Java Threads| # Kernel Threads # Deamon Threads PID Process
0 13 13 2572

1 14 13 2572

3 16 13 2572

16 29 13 2572

32 45 13 2572

(Grenzwert) 7146 7159 13 2572

10.2.2. Ergebnisse

Mit der flexiblen Mandelbrot-Anwendung und dem Processexplorer konnte die Erzeugung von Worker-
und Deamon-Threads im Kern einfach verfolgt werden. Fir die Beziehung zwischen Java- und Kernel-
Threads unter Windows XP gelten folgende Eigenschaften:

e 1:1 Abbildung zwischen Java- und Kernel-Threads

e Mit variabler Anzahl Worker-Threads werden 13 Deamon Threads erzeugt

e Fur die bestehende Plattform resultiert ein Grenzwert von 7146 Threads

e Zur Laufzeit erzeugte Threads werden ebenfalls auf Kernel-Threads abgebildet

2006-11-21

Diplomarbeit Seite 34

10.3. Testcase 3

Testcase 3 Betrachtungsbereich: Betriebssystem

Zielsetzung Nachweis Abbildung Java-Thread-Prioritdt auf Win32-Thread-Prioritat mit

unveranderter Default Process Priority-Class

10.3.1. Priority-Mapping

Tabelle 14 Priority Mapping Java-/Win32 Thread (klein)

Java Thread Prioritat 1 2 3 4 5 6 7 8

10

Win32-Thread-Prioritat 6 6 7 7 8 8 9 9

10

10

Process Priority Class = 8 (Normal)

Priority Mapping Java-/Win32-Thread
Process-Priority-Class = 8 (Normal)

8

e

Win32-Thread Prioritéat

1 2 3 4 5 6 7 8 9 10

Java-Thread Prioritat
—a— Win32-Thread-Prioritat

Abbildung 7 Priority Mapping Java-/Win32 Thread (klein)

10.3.2. Ergebnisse

Die Java-Thread-Prioritat wird von der JVM auf eine entsprechende Kernel-Prioritdt gemappt. Fur

dieses Mapping gelten folgende Regeln:
e Java Prioritaten werden linear auf Basisprioritaten abgebildet
e Mehrere Java Prioritdten werden auf die selbe Basisprioritat abgebildet

e Faktisch stehen nur 5 Java Prioritaten zu Verfiigung

2006-11-21

Diplomarbeit

Seite 35

10.4. Testcase 4

Testcase 4

Betrachtungsbereich: Betriebssystem

Zielsetzung

Analyse Systemverhalten bei Anderung Win32-Thread-Prioritat mit variabler

Default Process Priority-Class

10.4.1. Priority-Mapping

Tabelle 15 Priority Mapping Java-/Win32 Thread (gross)

Java Thread Prioritat
Process Priority Class

1 2 3 4 5
IDLE_PRIORITY_CLASS 2 2 3 3 4
BELOW_NORMAL_PRIORITY_CLASS 4 4 5 5 6
NORMAL_PRIORITY_CLASS 6- 7 7 8
ABOVE_NORMAL_PRIORITY_CLASS 8 8 9 9 10
HIGH_PRIORITY_CLASS 11 11 12 12 13
REALTIME_PRIORITY_CLASS 22 22 23 23 24

Java Thread Prioritat
Process Priority Class

6 7 8 9 10
IDLE_PRIORITY_CLASS 4 5 5 6 6
BELOW_NORMAL_PRIORITY_CLASS 6 7 7 8 8
NORMAL_PRIORITY_CLASS 8 9 9!1
ABOVE_NORMAL_PRIORITY_CLASS 10 11 11 12 12
HIGH_PRIORITY_CLASS 13 14 14 15 15
REALTIME_PRIORITY_CLASS 24 25 25 26 26

2006-11-21

Diplomarbeit

Seite 36

Win32-Thread Prioritat

30 30

g—4—W*
25 25
25 26
24 24 %

20 22 22

10 W/‘_./._: 10
W 6

—a—BELOW_NORMAL_PRIORITY_CLASS
—=—NORMAL_PRIORITY_CLASS
—a— HIGH_PRIORITY_CLASS

Priority Mapping Java-/Win32-Thread
Process-Priority-Class variabel

23 23 20

Java-Thread Prioritat

—m— IDLE_PRIORITY_CLASS
—m—ABOVE_NORMAL_PRIORITY_CLASS
—m—REALTIME_PRIORITY_CLASS

Abbildung 8 Priority Mapping Java-/Win32 Thread (gross)

10.4.2. Ergebnisse

Das Java-Priority-Mapping kann ausgedehnt werden, wenn zusatzlich die Kernel Process-Priority-
Class berlcksichtigt wird. Die Matrix und der zugehdrige Graph (Abbildung 8) zeigen folgende charak-
teristische Eigenschaften:

Java Prioritaten werden linear auf Basisprioritaten abgebildet

Mehrere Java Prioritaten werden auf die selbe Basisprioritat abgebildet

Faktisch stehen nur 5 Java Prioritdten pro Process Priority Class zu Verfliigung
Uberproportionaler Sprung fiir die HIGH_PRIORITY_CALSS (A=3)

Uberproportionaler Sprung fir die REAL_TIME_PRIORITY_CLASS (A=11)
Uberlappungen Basisprioritaten bei unterschiedlichen Process Priority Classes
Standard Basisprioritat ist 8 (Standard Java Prioritat = 5, NORMAL_PRIORITY_CLASS)

(Bemerkung; nur Admin kann mit REAL_TIME_PRIORITY_CLASS Basis-Prioritaten tber 15
erzeugen)

2006-11-21

Diplomarbeit

Seite 37

10.5. Testcase 5

Testcase 5 Betrachtungsbereich: Betriebssystem

Zielsetzung Analyse Systemverhalten (Skalierung) bei Anderung der Pro
Class und unterschiedlicher Last

cess Priority

10.5.1. Berechnungszeit

Tabelle 16 Skalierung mit variabler Process Priority Class (Berechnungszeit)

Process Priority Class

Win32-Thread-Prio=8 NORMAL_PRIORITY_CLASS ABOVE_NORMAL_PRIORITY_CLASS

Laststufe null 35.7358 37.7074
Laststufe klein 42.0374 46.7240
Laststufe gross 47.0906 49.8650
Elzli(":(/)gross)Skalierung (Last 0.89 0.94

Skalierung - mit variabler Process Priority Class
Berechnungszeit

Win32-Thread-Prio = 8 Win32-Thread-Prio = 8
Java Thread Prioritat = 5 Java Thread Prioritat = 2
1.00 1.00
1.00 - _ 0.94 1+ 1.00

0.50 -+ 0.50
0.00 - - 0.00
NORMAL_PRIORITY ABOVE_NORMAL_PRIORITY
_CLASS _CLASS
—= Laststufe null (hormalisiert) = Laststufe klein (normalisiert)
— Laststufe gross (normalisiert) == Faktor Skalierung (Last klein/gross)

Abbildung 9 Skalierung mit variabler Process Priority Class (Berechnungszeit)

2006-11-21

Diplomarbeit Seite 38
10.5.2. CPU-Zeit
Tabelle 17 Skalierung mit variabler Process Priority Class (CPU-Zeit)
Process Priority Class
Win32-Thread-Prio=8 NORMAL_PRIORITY_CLASS ABOVE_NORMAL_PRIORITY_CLASS
Laststufe null 1:10 1:12
Laststufe klein 1:09 1:13
Laststufe gross 1:09 1:12
Fall<tor Skalierung (Last 1.00 1.01
klein/gross)
Skalierung - mit variabler Process Priority Class
CPU-Zeit
Win32-Thread-Prio = 8 Win32-Thread-Prio = 8
Java Thread Prioritat = 5 Java Thread Prioritat = 2
100 100 008 21 o099

1.00 + -+ 1.00

0.50 | + 0.50

0.00 - - 0.00

NORMAL_PRIORITY ABOVE_NORMAL_PRIORITY
_CLASS _CLASS
@ Laststufe null (normalisiert) mm Laststufe klein (normalisiert)
= Laststufe gross (normalisiert) == Faktor Skalierung (Last klein/gross)

Abbildung 10 Skalierung mit variabler Process Priority Class (CPU-Zeit)

10.5.3. Ergebnisse

Der Einfluss einer variablen Process Priority Class auf das Schedulingverhalten des Kernels bei

gleichbleibender Basisprioritat kann wie folgt umschrieben werden:

e Fur gleiche Basisprioritat resultiert die gleiche Berechnungsdauer

¢ Die resultierende Berechnungsdauer ist unabhangig von der Process Priority Class

e Das Windows Scheduling wird nur durch die Basisprioritat beeinflusst
e Die konsumierte CPU-Zeit bleibt konstant

2006-11-21

Diplomarbeit Seite 39

10.6. Testcase 6

Testcase 6 Betrachtungsbereich: Betriebssystem

Zielsetzung Analyse Systemverhalten bei Anderung Win32-Thread-Prioritat und unter-
schiedlicher Last

10.6.1. Berechnungszeit (variable Win32-Prioritat)

Tabelle 18 Skalierung mit variabler Win32-Prioritat (Berechnungszeit)

Win32-Thread-Prioritat

Basisprioritat 6 Basisprioritat 10
Laststufe null 37.51 34.85
Laststufe klein 72.29 34.71
Laststufe gross 100.00 34.99
Faktor Skalierung (Last klein/gross) 0.72 0.99

Skalierung - mit variabler Win32-Prioritat
Berechnungszeit
120.00 1.50
920.42 (nicht massstablich)
80.00 | 0.99 -+ 1.00
40.00 - 34.85 3471 34.99 L 0.50
0.00 - - 0.00
Basisprioritat 6 Basisprioritat 10
mmm Laststufe null = Laststufe klein
= Laststufe gross == Faktor Skalierung (Last klein/gross)

Abbildung 11 Skalierung mit variabler Win32-Prioritat (Berechnungszeit)

2006-11-21

Diplomarbeit

Seite 40

10.6.2. Berechnungszeit (variable Laststufe)

Tabelle 19 Skalierung mit variabler Laststufe (Berechnungszeit)

Berechnungszeit (variable Basisprioritat und Laststufe)

Laststufe Laststufe Laststufe

null klein gross
Basisprioritat 6 37.51 72.29 100.00
Basisprioritat 8 35.74 42.04 47.09
Basisprioritat 10 34.85 34.71 34.99

Skalierung - variabler Win32-Prioritat, variabler Laststufe
Berechnungszeit
120.00
(nicht massstablich) 920.42
90.00 -
60.00 -
30.00 -
0.00 -
Laststufe null Laststufe klein Laststufe gross
m Basisprioritat 6 @ Basisprioritat 8 O Basisprioritat 10

Abbildung 12 Skalierung mit variabler Laststufe (Berechnungszeit)

2006-11-21

Diplomarbeit Seite 41

10.6.3. CPU-Zeit

Tabelle 20 Skalierung mit variabler Win32-Prioritat (CPU-Zeit)

Win32-Thread-Prioritat

Basisprioritat 6 Basisprioritat 10
Laststufe null 1:12 1:08
Laststufe klein 1:14 1:08
Laststufe gross 1:09 1:08
Faktor Skalierung (Last klein/gross) 1.08 1.00

CPU-Zeit
1.50 1.50
1.08
0.98 B— 1.00 1.00 1.00
1.00 + IO + 1.00
0.50 + + 0.50
0.00 - - 0.00
Basisprioritat 6 Basisprioritat 10
mmm L aststufe null (normalisiert) = Laststufe klein (normalisiert)
=1 Laststufe gross (normalisiert) == Faktor Skalierung (Last klein/gross)

Skalierung - mit variabler Win32-Prioritéat

Abbildung 13 Skalierung mit variabler Win32-Prioritat (CPU-Zeit)

10.6.4. Ergebnisse

Der Einfluss einer variablen Basisprioritdt (Win32-Thread-Prioritat) auf das Schedulingverhalten des
Kernels kann abhangig von 3 verschiedenen Laststufen wie folgt umschrieben werden:

Fir Laststufe ,null” resultiert die gleiche Berechnungszeit, die Basisprioritat ist nicht relevant

Fir Laststufe ,gering” ergibt sich mit tieferer Prioritat in Bezug auf die Last eine Verdoppelung
der Berechnungszeit

Fir Laststufe ,gross” ergibt sich mit tieferer Prioritat in Bezug auf die Last einen sprunghaften
Anstieg der Berechnungszeit

Fir alle Laststufe ergeben sich mit héherer Prioritat in Bezug auf die Last gleichbleibende Be-
rechnungszeiten

2006-11-21

Diplomarbeit Seite 42

10.7. Testcase 7

Testcase 7 Betrachtungsbereich: Betriebssystem

Zielsetzung Analyse Systemverhalten bei Festlegung einer Prozess-Affinitat
Tabelle 21 Java Anwendung ohne Affinitat
Testcase # Java Threads Basisprioritat |Affinitdt |Last Basisprioritat Affinitat
Rahmenbedingung 2 8 ohne NEIN keine ohne

Berechnungszeit 35.5900

CFU Uzage CPU Uzage Hiztom

Abbildung 14 Java Anwendung ohne Affinitéat

Tabelle 22 Java Anwendung - Affinitat auf CPU 1

Testcase # Java Threads Basisprioritat |Affinitdt |Last Basisprioritat Affinitat

Rahmenbedingung 2 8 CPU 1 NEIN keine ohne

Berechnungszeit 69.8000

CFU Uzage CFU Uzage Hiztory

Abbildung 15 Java Anwendung - Affinitat auf CPU 1

2006-11-21

Diplomarbeit Seite 43

Tabelle 23 Calc ohne Affinitat; Java Anwendung - Affinitat auf CPU 1

Testcase # Java Threads Basisprioritat |Affinitdt [Last Basisprioritat |Affinitat

Rahmenbedingung 2 8 CPU 1 JA 8 ohne

Berechnungszeit 101.3900

CFU Uzage CPU Uszage Hiztorny

5l

il
LA |H||| A

A
N

llI||'il
I| I||| |H|

ﬁ'

f

I
i |, I|!|'| \l |
!

Abbildung 16 Calc ohne Affinitat; Java Anwendung - Affinitat auf CPU 1

Tabelle 24 Calc - Affinitat CPU 0; Java Anwendung - Affinitat auf CPU1

Testcase # Java Threads Basisprioritat Affinitat |Last Basisprioritat Affinitat

Rahmenbedingung 2 8 CPU 1 JA 8 CPUO

Berechnungszeit 70.2000

CPU Uzage CPU Uszage Hiztony
C FII'I 100

— k —-

Abbildung 17 Calc - Affinitat CPU 0; Java Anwendung - Affinitat auf CPU1

10.7.1. Ergebnisse

Das Verhalten des Kernels bei expliziter Zuweisung eines Prozessors (Affinitat) konnte mit Hilfe eines
Systools analysiert werden und Iasst sich wie folgt charakterisieren:

¢ Ohne Affinitdt und Last resultiert eine gleichformige Verteilung auf alle verfligbaren CPUs

2006-11-21

Diplomarbeit Seite 44

e Vererbung der Prozess Affinitat auf die Threads dieses Prozesses
e Durch die Prozesses-Affinitat werden andere Prozessoren fir diesen Prozess ,ausgeblendet”
e Ein Prozessor wird durch die Affinitdts(Maske) nicht exklusiv zugeteilt

¢ Die manuelle ,Trennung“ von Anwendungen (Prozessen) ist Uber die Affinitat moglich

2006-11-21

Diplomarbeit Seite 45
10.8. Testcase 8
Testcase 8 Betrachtungsbereich: JVM
Zielsetzung Analyse der Skalierung einer multithreaded Java-Applikation
10.8.1. Skalierung 1 CPU ohne Synchronisation
Tabelle 25 Skalierung 1 CPU ohne Synchronisation
1CPU Anzahl Threads
JThreadprioritat = 5,
1 2 8 32 128 512
Basisprioritat = 8
Berechnungszeit 69.6344 70.3050 70.6148 69.4788 69.7438 69.5392
CPU-Zeit 1:09 1:10 1:10 1:09 1:09 1:09
Faktor Skalierung 1.00 0.99 0.99 1.00 1.00 1.00
Skalierung - 1 CPU mit 1...n Threads (ohne Synchronisation)
Basisprioritat = 8
1.05 1.05
1.00
0.95 0.95
1 2 128 512
—&— Berechnungszeit (normalisiert) —m— Faktor Skalierung —m— CPU-Zeit (normalisiert)

Abbildung 18 Skalierung 1 CPU ohne Synchronisation

2006-11-21

Diplomarbeit Seite 46
10.8.2. Skalierung 2 CPU ohne Synchronisation
Tabelle 26 Skalierung 2 CPU ohne Synchronisation
2 CPU Anzahl Threads
JThreadprioritat = 5,
1 2 8 32 128 512
Basisprioritat = 8
Berechnungszeit 68.2768 35.5212 35.5932 35.0078 35.3916 36.1504
CPU-Zeit 1:09 1:09 1:10 1:09 1:10 1:12
Faktor Skalierung 1.00 1.92 1.92 1.95 1.93 1.89
Skalierung - 2 CPU mit 1...n Threads (ohne Synchronisation)
Basisprioritat = 8
2.00 2.00
- - — g8
1.92 1.92 1.95 1.93
1.50 1.50
1.00 / 0.97 0.97 0.98 0.97 0.98 1.00
1.00
0.50 - —a— 0.50
0.52 0.52 0.51 0.52 0.53
0.00 0.00
1 2 8 32 128 512
—m— Berechnungszeit (normalisiert) —m— Faktor Skalierung —m— CPU-Zeit (normalisiert)

Abbildung 19 Skalierung 2 CPU ohne Synchronisation

10.8.3. Ergebnisse

Die Skalierung einer Anwendung mit variabler Anzahl Threads ohne Synchronisation zeigt zwischen
der Single- und Multi-Prozessor-Architektur deutliche Unterschiede im Verlauf:

e Auf der 1 CPU-Architektur fir 1 bis 512 Threads anndhernd konstante Berechnungs- und
CPU-Zeiten (Schwankung BZ: ~1.6%, Schwankung CPU-Zeit: ~1.4%)

2006-11-21

Diplomarbeit Seite 47

e Auf der 2 CPU-Architektur ab 2 Threads durch Verteilung der Threads eine Halbierung der
Berechnungszeit

e CPU-Zeit bleibt auch bei der 2 CPU-Architektur annadhernd konstant (Schwankung CPU-Zeit:
~2.7%)

e Auf der 2 CPU-Architektur wird ab 2 Threads durch Verteilung der Threads ein Skalierungs-
faktor von nahezu 2 erreicht

e Der zunehmende Verwaltungsaufwand fir 1 bis 512 Threads fiihrt bei der 1 CPU und 2 CPU-
Architektur nicht zu einer nennenswerten Zunahme der CPU-Zeit

2006-11-21

Diplomarbeit

Seite 48

10.9. Testcase 9

Testcase 9 Betrachtungsbereich: JVM

Zielsetzung

Analyse Einfluss der Thread-Synchronisation auf die Skalierung

10.9.1. Skalierung 1 CPU - Methodensynchronisation

Tabelle 27 Skalierung 1 CPU mit Methodensynchronisation

1 CPU
Anzahl Threads
Methodensynchronisation
JThreadprioritat = 5,
1 2 8 32 128 512
Basisprioritat = 8
Berechnungszeit 69.3373 69.9843 114.2270 129.0133] 127.3140 124.4367
CPU-Zeit 1:10 1:10 1:53 2:07 2:06 2:03
Faktor Skalierung 1.00 0.99 0.61 0.54 0.54 0.56
Skalierung - 1 CPU mit 1...n Threads (mit Synchronisation)
Methodensynchronisation
2.00 2.00
-_
179
1.84
1.50 - -+ 1.50
1.00 - -+ 1.00
| —— —1ll 0.56 |
0.50 0.54 0.54 0.50
0.00 0.00
1 2 8 32 128 512
—B— Berechnungszeit (normalisiert) —m— CPU-Zeit (normalisiert) —&— Faktor Skalierung

Abbildung 20 Skalierung 1 CPU mit Methodensynchronisation

2006-11-21

Diplomarbeit Seite 49

10.9.2. Skalierung 1 CPU - Objektsynchronisation

Tabelle 28 Skalierung 1 CPU mit Objektsynchronisation

1 CPU

Objektsynchronisation

Anzahl Threads

JThreadprioritat = 5,
1 2 8 32 128 512
Basisprioritat = 8
Berechnungszeit 69.6983 69.6860 70.7043 69.8513 69.2120 70.2033
CPU-Zeit 1:10 1:10 1:11 1:10 1:09 1:10
Faktor Skalierung 1.00 1.00 0.99 1.00 1.01 0.99
Skalierung - 1 CPU mit 1...n Threads (mit Synchronisation)
Objektsynchronisation
1.05 1.05
1.00 1.00 1,01
1.00 1.00
0.99
0.95 0.95
1 2 8 32 128 512
—m— CPU-Zeit (normalisiert) —a— Berechnungszeit (normalisiert) —m— Faktor Skalierung

Abbildung 21 Skalierung 1 CPU mit Objektsynchronisation

2006-11-21

Diplomarbeit

Seite 50

10.9.3. Skalierung 1 CPU — CAS-Synchronisation

Tabelle 29 Skalierung 1 CPU mit CAS-Synchronisation

1CPU

CAS-Synchronisation

Anzahl Threads

JThreadprioritat = 5,
1 2 8 32 128 512
Basisprioritat = 8
Berechnungszeit 69.0243 69.5647 70.8340 69.7330 69.6180 69.6500
CPU-Zeit 1:09 1:10 1:11 1:10 1:10 1:10
Faktor Skalierung 1.00 0.99 0.97 0.99 0.99 0.99
Skalierung - 1 CPU mit 1...n Threads (mit Synchronisation)
CAS
1.05 1.05
1.00
1.00 1.00
— 0.99
il
]
0.97
0.95 ‘ ‘ ‘ ‘ 0.95
1 2 8 32 128 512
—&— Berechnungszeit (normalisiert) —m— CPU-Zeit (normalisiert) —m— Faktor Skalierung

Abbildung 22 Skalierung 1 CPU mit CAS-Synchronisation

2006-11-21

Diplomarbeit Seite 51

10.9.4. Ergebnisse

Die Skalierung einer Anwendung mit variabler Anzahl Threads zeigt auf einer 1 CPU-Architektur unter
Berucksichtigung verschiedener Synchronisations-Methoden deutliche Unterschiede im Verlauf:

Methodensynchronisation
e Bis 2 Threads resultiert ein konstanter Verlauf von Berechnungs- und CPU-Zeit
e Verwendung > 2 Threads fuhrt zu massiven Anstieg von Berechnungs- und CPU-Zeit

e Einbruch der Skalierung bei > 2 Threads um bis zu 50%

Objektsynchronisation
e Fur Objektsynchronisation mit 1 bis 512 Threads annahernd konstante Berechnungs- und
CPU-Zeit (Schwankung BZ: ~2.1%, Schwankung CPU-Zeit: ~2.8%)
CAS-Synchronisation

e Fir CAS-Synchronisation mit 1 bis 512 Threads anndhernd konstante Berechnungs- und
CPU-Zeit (Schwankung BZ: ~2.6%, Schwankung CPU-Zeit: ~2.8%)

2006-11-21

Diplomarbeit

Seite 52

10.9.5. Skalierung 2 CPU - Methodensynchronisation

Tabelle 30 Skalierung 2 CPU mit Methodensynchronisation

2 CPU

Methodensynchronisation

Anzahl Threads

JThreadprioritat = 5,
1 2 8 32 128 512
Basisprioritat = 8
Berechnungszeit 69.3133 35.2490 38.5930| 40.5993 42.1927] 42.3203
CPU-Zeit 1:10 1:10 1:16 1:20 1:23 1:23
Faktor Skalierung 1.00 1.97 1.80 1.71 1.64 1.64
Skalierung - 2 CPU mit 1...n Threads (mit Synchronisation)
Methodensynchronisation
2.50 2.50
1.97
2.00 2.00
1.64
1.50 - -+ 1.50
m 1.20
1.00 1.00
M 0.61
0.50 - -+ 0.50
0.51
0.00 0.00
1 8 32 128 512
—m—Berechnungszeit (normalisiert) —m— CPU-Zeit (normalisiert) = —m— Faktor Skalierung

Abbildung 23 Skalierung 2 CPU mit Methodensynchronisation

2006-11-21

Diplomarbeit Seite 53
10.9.6. Skalierung 2 CPU - Objektsynchronisation
Tabelle 31 Skalierung 2 CPU mit Objektsynchronisation
2 CPU
Anzahl Threads
Objektsynchronisation
JThreadprioritat = 5,
1 2 8 32 128 512
Basisprioritat = 8
Berechnungszeit 68.8343 35.8957 39.1343 40.4560 41.3240 42.1283
CPU-Zeit 1:13 1:11 1:17 1:20 1:21 1:23
Faktor Skalierung 1.00 1.92 1.76 1.70 1.67 1.63
Skalierung - 2 CPU mit 1...n Threads (mit Synchronisation)
Objektsynchronisation
2.50 2.50
2.00 2.00
—— g 163
1.50 - : + 1.50
1.00 1.00
— B— —l— —ill 0.61
0.50 0.57 0.60 + 0.50
0.52 :
0.00 0.00
1 8 32 128
—l— Berechnungszeit (normalisiert) —m— CPU-Zeit (normalisiert) —B— Faktor Skalierung

Abbildung 24 Skalierung 2 CPU mit Objektsynchronisation

2006-11-21

Diplomarbeit Seite 54
10.9.7. Skalierung 2 CPU - CAS-Synchronisation
Tabelle 32 Skalierung 2 CPU mit CAS-Synchronisation
2 CPU
Anzahl Threads
CAS-Synchronisation
JThreadprioritat = 5,
1 2 8 32 128 512
Basisprioritat = 8
Berechnungszeit 68.6270 35.9630 35.8297 35.1910 35.5630 37.0027
CPU-Zeit 1:10 1:10 1:11 1:10 1:11 1:14
Faktor Skalierung 1.00 1.91 1.92 1.95 1.93 1.85
Skalierung - 2 CPU mit 1...n Threads (mit Synchronisation)
CAS
2.50 2.50
2.00 - —- 2.00
191 1.92 1.95 1.93 1.85
1.50 1.50
1.00 -] m 105 | 1.00
1.00 1.01
0.50 = m——WO05 | g5
0.52 0.52 0.51 0.52
0.00 0.00
1 2 8 32 128 512
—— Berechnungszeit (normalisiert) —m— CPU-Zeit (normalisiert) —— Faktor Skalierung

Abbildung 25 Skalierung 2 CPU mit CAS-Synchronisation

2006-11-21

Diplomarbeit Seite 55

10.9.8. Ergebnisse

Die Skalierung einer Anwendung mit variabler Anzahl Threads zeigt auf einer 2 CPU-Architektur unter
Berucksichtigung verschiedener Synchronisations-Methoden Ahnlichkeiten im Verlauf:

Methodensynchronisation

Bis 2 Threads resultiert eine lineare Skalierung (Halbierung der Berechnungs-Zeit)
Zwischen 3 bis 512 Threads ergibt sich eine 20%-Zunahme der BERECHNUNGS-Zeit
Zwischen 3 bis 512 Threads ergibt sich eine 20% Zunahme der CPU-Zeit

Maximaler Skalierungs-Faktor bei 2 Threads betragt annahernd 2, sinkt bis 512 Threads auf
ca.1.6

Objektsynchronisation

Far Objektsynchronisation &hnlicher Verlauf im Vergleich zur Methoden Synchronisation
Zwischen 3 bis 512 Threads ergibt sich eine 17%-Zunahme der Berechnungs-Zeit
Zwischen 3 bis 512 Threads ergibt sich eine 18% Zunahme der CPU-Zeit

Maximaler Skalierungs-Faktor bei 2 Threads betragt annahernd 2, sinkt bis 512 Threads auf
ca.1.6

CAS-Synchronisation

Fir CAS-Synchronisation flacherer Verlauf im Vergleich zur Methoden- und Objekt-
Synchronisation

Zwischen 3 bis 512 Threads ergibt sich eine 4%-Zunahme der Berechnungs-Zeit
Zwischen 3 bis 512 Threads ergibt sich eine 5% Zunahme der CPU-Zeit

Maximaler Skalierungs-Faktor bei 2 Threads betragt 1.9, sinkt bis 512 Threads nur unwesent-
lich

2006-11-21

Diplomarbeit

Seite 56

Direkter Vergleich 1 CPU und 2CPU mit Methodensynchronisation

Skalierung - 1 CPU/2 CPU mit 1...n Threads (mit Synchronisation)
Methodensynchronisation
1.80 AM, 1.80
/ ' 180 176
]
1.62
1.30 1.30
1.20
1.00 1.00 114 1.19
1.01 1.09
1.oko 1.00
0.80 0.80
A — - A 061
i 0.59 0.61
0.51
0.30 0.30
1 2 8 32 128 512
—B— Berechnungszeit (1 CPU) —aA— Berechnungszeit (2 CPU)
—m— CPU-Zeit (1 CPU) —A— CPU-Zeit (2 CPU)

Abbildung 26 Skalierung 1 CPU/2 CPU mit Methodensynchronisation

Ergebnisse direkter Vergleich

ein 1 CPU-System

tiver Threads und der resultierenden ,lock-contention” steht

Ein 2 CPU-System wird durch grobkérnige Synchronisation deutlich weniger ausgebremst als

Jede Synchronisation benétigt Rechenzeit, die im direkten Zusammenhang mit der Anzahl ak-

2006-11-21

Diplomarbeit Seite 57
10.10. Testcase 10
Testcase 10 Betrachtungsbereich: JVM
Zielsetzung Parallelisierung durch JOMP
10.10.1. Skalierung 2 CPU - JOMP-Threads
Tabelle 33 Skalierung JOMP-Threads
2 CPU
- Anzahl JOMP-Threads
ohne Synchronisation
Basisprioritat = 8 1 2 8 32 128 512
Berechnungszeit 68.2590 36.0777 35.4657 35.2003 35.3213 35.7390
CPU-Zeit 1:10 1:14 1:11 1:13 1:15 1:15
Faktor Skalierung 1.00 1.89 1.92 1.94 1.93 1.91
Skalierung - 2 CPU mit 1...n JOMP Threads
(ohne Synchronisation)
— —— —i— — 1.91
1.80 - 1.92 1.94 1.93 1180
: 1.89 '
1.30 1.30
1.06 1.04 1.07
1.00 - 1:’2 - - ™ 1.08
100 N\
0.80 - + 0.80
—i i i —ill 0.52
0.53 0.52 0.52 0.52
0.30 0.30
1 2 8 32 128 512
—m— Berechnungszeit (normalisiert) —m— CPU-Zeit (normalisiert) —m— Faktor Skalierung

Abbildung 27 Skalierung JOMP-Threads

2006-11-21

Diplomarbeit Seite 58

10.10.2. Ergebnisse

Die Skalierung einer JOMP-Anwendung mit variabler Anzahl Threads zeigt auf einer 2 CPU-
Architektur unter Berucksichtigung der Methoden-Synchronisation folgende charakteristische Merkma-
le:

e Ab 2 Threads wird auf der 2 CPU-Architektur durch Verteilung der Threads eine Halbierung
der Berechnungszeit erreicht

e CPU-Zeit bleibt auch bei JOMP-Threads annahernd konstant (Schwankung CPU-Zeit: ~1%)

e (Hinweis; Grafik zeigt leichten Anstieg der CPU-Zeit da Threads nach der Berechnung im Bu-
sy-Waiting verbleiben und somit CPU-Zeit verbrauchen)

e Skalierungsfaktor ist vergleichbar mit einer Java-Thread-Implementierung ohne Synchronisa-
tion (10.8.2 Skalierung 2 CPU ohne Synchronisation)

2006-11-21

Diplomarbeit Seite 59

11. Glossar
Tabelle 34 Glossar

Begriff Beschreibung

Affinitat Bezeichnet die Zuordnung eines Prozesses/Threads zu physikalischen Recheneinhei-
ten. Durch die Definition einer Affinitaitsmaske kann gesteuert werden auf welchen
Recheneinheiten die Anwendung ausgeflihrt werden kann.

API API (Application Programming Interface) defniert eine Schnittstelle zwischen verschie-
denen Software Systemen. Eine API definiert typischerweise eine Reihe von Metho-
den, Parametern, Datentypen und Datenfeldern.

CAS Compare and Swap bzw. Compare and Set bezeichnet eine atomare (meist hardware-
unterstitzte) Operation in der ein gespeicherter Wert mit dem vermuteten Wert vergli-
chen wird. Stimmt dieser Uberein, so wird ein neuer Wert gesetzt. Ansonsten wird
nichts getan. CAS Funktionen erlauben Lock-freie Algorithmen.

CPU Abkulrzung fir Central Processing Unit. Wird synonym fiir die deutsche Bezeichnung
Hauptrpozessor bzw. Prozessor verwendet.

DEP Data Execution Prevention; Eine Technologie, die es erlaubt Speicherbereiche als
nicht ausfihrbar zu markieren. Damit verlieren Overflow-Basierende Sicherheitsliicken
(die grosse Masse) an Bedeutung. AMD bezeichnet die Hardware-Unterstitzung als
NX (No eXecute) Bit.

Java Eine von Sun Microsystems forcierte Programmtechnologie. Java-Programme werden
nicht wie klassische C/C++ Programme in Plattformabhangige Binaries kompiliert son-
dern in den so genannten Bytecode. Dieser wird dann von der Java Virtual Machine
interpretiert und zur Laufzeit optimiert. Java-Programme kénnen somit auf jeder Platt-
form ausgefihrt werden, fiir die eine Java Virtual Machine existiert.

JVM Die Java Virtual Machine ist ein Interpreter fir Java Bytecode. Die JVM ist dabei das
Bindeglied zwischen Betriebssystem und den plattformunabhangigen Java Anwen-
dungen.

Synchroni- Allgemeine Bezeichnung fiir die Uberwachung von konkurrierenden Zugriffen.

isierung

Thread Ein leichtgewichtiger Prozess. Ein Thread teilt den Adressraum mit dem Prozess zu

dem er gehort. Dadurch werden einerseits die Kommunikation und andererseits der
Kontextwechsel beschleunigt.

2006-11-21

Diplomarbeit Seite 60

12. Verzeichnisse

12.1. Tabellenverzeichnis

Tabelle 1 Referenzierte DOKUMENTE..........ooouiiiiiii e e e 8
Tabelle 2 ADKUIZUNGEN. ... ettt ettt ettt e e e a et e e e eat et e e e ambe e e e e enbaeeeesabeeeeeanbeeeaeanns 8
LI o 1=] | LT B N S O PP TP UP PR 9
Tabelle 4 Geplanter Test-Umfang gemass SDD ([2]) .-.veeeeiureeeeiiiiiiieiiiiee et 11
Tabelle 5 Hardware-ECKAaten ... e 12
Tabelle 6 SOftWare-UmMgeEDUNG..........ciiiiiiiiiiii et e e st e e e s e e e e nsaeeesnneeeas 13
Tabelle 7 Software KonfigurationSanpasSUNG.........c.cocuiiiiiiiiiieiiiiiee e e sieeee e e e st eesseeeeesenaeeeas 14
Tabelle 8 Relevante Performance INdiKatorencooiiiiiiiiiiii e 27
Tabelle 9 Nicht relevante Performance Indikatoren ..o 27
Tabelle 10 Profiling- UNd TESOOISoiiieiiiiiieee e a e e s e e e e e e e e e e anns 28
Tabelle 11 Grad der Skalierung — 1CPU/2CPU (BerechnungSzeit)............cocccuvviiieeeiiiiiiiiieeee e 31
Tabelle 12 Grad der Skalierung 1CPU/2CPU (CPU-ZEIt)c.oeiiiieiiieiee et 32
Tabelle 13 Thread MapPing.......oo e ettt ettt e e e bt e e e aabs e e e e sbe e e e e snteeeesanneeeas 33
Tabelle 14 Priority Mapping Java-/Win32 Thread (KIIN)coo i 34
Tabelle 15 Priority Mapping Java-/Win32 Thread (GrOSS)......uuu i urriaiiiiieeiiieeeerieiee s 35
Tabelle 16 Skalierung mit variabler Process Priority Class (Berechnungszeit)cccccvviiiiininenn. 37
Tabelle 17 Skalierung mit variabler Process Priority Class (CPU-Zeit)coooviiiiiiiiiiiniiiiee 38
Tabelle 18 Skalierung mit variabler Win32-Prioritat (Berechnungszeit)..........cccoccceviviiiieiiciee e 39
Tabelle 19 Skalierung mit variabler Laststufe (Berechnungszeit)...........cccoccveiiiiiiiiiiiiieecee e 40
Tabelle 20 Skalierung mit variabler Win32-Prioritat (CPU-Zeit)..........coovveiiiiiiiee e, 41
Tabelle 21 Java Anwendung ohne AffiNitat............cccoeiiiiiiiii e 42
Tabelle 22 Java Anwendung - Affinitat auf CPU 1 ... 42
Tabelle 23 Calc ohne Affinitat; Java Anwendung - Affinitadt auf CPU 1........ccccoiiiiiiee 43
Tabelle 24 Calc - Affinitdt CPU 0; Java Anwendung - Affinitdt auf CPU1 ..., 43
Tabelle 25 Skalierung 1 CPU ohne Synchronisation ..o 45
Tabelle 26 Skalierung 2 CPU ohne Synchronisation ..o 46
Tabelle 27 Skalierung 1 CPU mit Methodensynchronisation ... 48
Tabelle 28 Skalierung 1 CPU mit Objektsynchronisation...............cccoiiiiiiii e 49
Tabelle 29 Skalierung 1 CPU mit CAS-Synchronisation.............cccccveiiiiieiiiiee e 50
Tabelle 30 Skalierung 2 CPU mit Methodensynchronisationcccccceiiiiiiiniiee e 52
Tabelle 31 Skalierung 2 CPU mit Objektsynchronisation..............ccccveiiiiiiiiieine e 53
Tabelle 32 Skalierung 2 CPU mit CAS-Synchronisation..............ccccoviiiiiii e 54
Tabelle 33 Skalierung JOMP-TRIEAAScccuuiiiiiiie et e e e e e ee e e e e e e e e aanes 57
TADEIIE 34 GIOSSAN ...ttt ettt ra et b e st ea e et e be e s 59

2006-11-21

Diplomarbeit Seite 61

12.2. Abbildungsverzeichnis

Abbildung 1 Methoden-Synchronisation 1 CPU / 2CPU-Architektur............ooocciiivieei e 4
Abbildung 2 Hardware Testplattform ..o 12
Abbildung 3 CodeAnalyst for WIindows (AMD)........cooiiiiiiiiii e 29
Abbildung 4 ProcessEXplorer (SYSINTErNQAIS)eiiiiiiiiiiiiiie e 30
Abbildung 5 Grad der Skalierung — 1CPU/2CPU (BerechnungSzeit)cccccveviiiieeiiiiieeeiiiee e 31
Abbildung 6 Grad der Skalierung 1CPU/2CPU (CPU-ZEIt)........cccueeieiiiiiie et 32
Abbildung 7 Priority Mapping Java-/Win32 Thread (KIEIN)ccccveiiiiiieiiiie e 34
Abbildung 8 Priority Mapping Java-/Win32 Thread (QroSS)........ccicccuriiiieeeei it e e e eeeeieeee e e e 36
Abbildung 9 Skalierung mit variabler Process Priority Class (Berechnungszeit)............ccccceveeeeinnnnee. 37
Abbildung 10 Skalierung mit variabler Process Priority Class (CPU-Zeit)cccccceeoevciiieeiieeeeee 38
Abbildung 11 Skalierung mit variabler Win32-Prioritat (Berechnungszeit)ccccooveiiiiieiiieens 39
Abbildung 12 Skalierung mit variabler Laststufe (Berechnungszeit)..............cccooiiiiiiniee 40
Abbildung 13 Skalierung mit variabler Win32-Prioritat (CPU-Zeit)............ooooiiiiiieee e 41
Abbildung 14 Java Anwendung ohne Affinitat.............ccooiiiii 42
Abbildung 15 Java Anwendung - Affinitdt auf CPU 1 ... 42
Abbildung 16 Calc ohne Affinitat; Java Anwendung - Affinitédt auf CPU 1 ..., 43
Abbildung 17 Calc - Affinitdt CPU 0; Java Anwendung - Affinitat auf CPUT..........cc.ocoiiiiiiieeceee, 43
Abbildung 18 Skalierung 1 CPU ohne Synchronisationccccceviiiiieiiiiiie e 45
Abbildung 19 Skalierung 2 CPU ohne Synchronisationccccceviiiiieiiiiee e 46
Abbildung 20 Skalierung 1 CPU mit Methodensynchronisation................cccoocciiiiiiiii e, 48
Abbildung 21 Skalierung 1 CPU mit Objektsynchronisationcccccoeiiiiiiiiii e, 49
Abbildung 22 Skalierung 1 CPU mit CAS-Synchronisation.............cccocueeiiiiiiiiiinie e 50
Abbildung 23 Skalierung 2 CPU mit Methodensynchronisation..............cccooiiiiiiie e 52
Abbildung 24 Skalierung 2 CPU mit Objektsynchronisationcccoccueeiiiiiiiniii e 53
Abbildung 25 Skalierung 2 CPU mit CAS-Synchronisation.............ccocueeiiiiiiiiiiiec e 54
Abbildung 26 Skalierung 1 CPU/2 CPU mit Methodensynchronisationccccccoiiiiiiii e 56
Abbildung 27 Skalierung JOMP-TRIEAASccoiiuuiiiiiiiiii et 57

12.3. Code Listings

Listing 1 Ausgabe der ANWENAUNGuiiiiiiiiii ettt e et e e s enbre e e e ennee e e e enees 29

12.4. Index

Abkirzungen...........cc....... 8 Betrachtungsbereiche .. 11 CPU-Anzahl......cccccceeeen. 16
Affinitat ... 59 Betriebssystem.............. 13 Definitionen...................... 8
ANT Lo 13 Bildgrosse......cooccceeeeeennn. 15 DEP ... 14,59
APl 59 CAS . 59 Eclipse ..o 13
Ausschnitt........cccoeeeeeeen. 15 CPU....cccceee e, 59 Ergebnisse............... 18, 31

2006-11-21

Diplomarbeit Seite 62
Fixe Grossen.................. 15 Prioritat.........ccccoveeneeenn. 16 Test-Plattform 12
Indikatoren 27 Protokollieren 27 Test-Scope.......oevuvvenen 11
Iterationencccuueeeee 15 Rahmenbedingungen.... 15 Testtools ..o 28
JaVA..iiiiiiiie e 59 Referenzencccccccoeee 8 Testverfahren................. 15
JOMP....ooviiiiiiieiiiiee e, 13 Runtimecccccovceeennen. 13 Thread.........ocoevevviinennnne 59
JVM 59 Softwarecceveveviinnnnn, 13 TOOIS oo 28
LinkKS oo, 9 Synchroniisierung......... 59 Variable Géssen 16
Locking ...uvevveveeeeiiiiinne, 16 Synchronisation 16 WOTKEr .. 16
Messgrossen.................. 10 System Information....... 12

NUMPIOCS ..oevvveieeeereeniennn 14 Testcasescccceevveveveenenn 18

2006-11-21

	1. Management Summary
	2. Inhaltsverzeichnis
	3. Dokumentinformationen
	3.1. Referenzierte Dokumente
	3.2. Definitionen und Abkürzungen
	3.3. Links
	4. Einleitung
	4.1. Zweck des Dokuments

	5. Test-Scope
	6. Test-Plattform
	6.1. Hardware-Dokumentation
	6.2. Software-Dokumentation

	7. Testverfahren
	7.1. Rahmenbedingungen
	7.1.1. Fixe Grössen
	7.1.2. Variable Gössen

	7.2. Durchführung der Testreihe
	7.3. Anforderungen Testcases

	8. Testcases
	8.1. Testcase Hardware
	8.1.1. Testcase 1

	8.2. Testcases Betriebssystem
	8.2.1. Testcase 2
	8.2.2. Testcase 3
	8.2.3. Testcase 4
	8.2.4. Testcase 5
	8.2.5. Testcase 6
	8.2.6. Testcase 7

	8.3. Testcases JVM
	8.3.1. Testcase 8
	8.3.2. Testcase 9
	8.3.3. Testcase 10

	9. Messen und Protokollieren
	9.1. Performance Indikatoren
	9.2. Profiling und Testtools
	9.2.1. Übersicht der Tools
	9.2.2. Ausgabe Testtools

	10. Ergebnisse der Testcases
	10.1. Testcase 1
	10.1.1. Berechnungszeit
	10.1.2. CPU-Zeit
	10.1.3. Ergebnisse

	10.2. Testcase 2
	10.2.1. Thread Mapping
	10.2.2. Ergebnisse

	10.3. Testcase 3
	10.3.1. Priority-Mapping
	10.3.2. Ergebnisse

	10.4. Testcase 4
	10.4.1. Priority-Mapping
	10.4.2. Ergebnisse

	10.5. Testcase 5
	10.5.1. Berechnungszeit
	10.5.2. CPU-Zeit
	10.5.3. Ergebnisse

	10.6. Testcase 6
	10.6.1. Berechnungszeit (variable Win32-Priorität)
	10.6.2. Berechnungszeit (variable Laststufe)
	10.6.3. CPU-Zeit
	10.6.4. Ergebnisse

	10.7. Testcase 7
	10.7.1. Ergebnisse

	10.8. Testcase 8
	10.8.1. Skalierung 1 CPU ohne Synchronisation
	10.8.2. Skalierung 2 CPU ohne Synchronisation
	10.8.3. Ergebnisse

	10.9. Testcase 9
	10.9.1. Skalierung 1 CPU - Methodensynchronisation
	10.9.2. Skalierung 1 CPU - Objektsynchronisation
	10.9.3. Skalierung 1 CPU – CAS-Synchronisation
	10.9.4. Ergebnisse
	10.9.5. Skalierung 2 CPU - Methodensynchronisation
	10.9.6. Skalierung 2 CPU - Objektsynchronisation
	10.9.7. Skalierung 2 CPU - CAS-Synchronisation
	10.9.8. Ergebnisse

	10.10. Testcase 10
	10.10.1. Skalierung 2 CPU - JOMP-Threads
	10.10.2. Ergebnisse

	11. Glossar
	12. Verzeichnisse
	12.1. Tabellenverzeichnis
	12.2. Abbildungsverzeichnis
	Code Listings
	Index

