

FHZ FACHHOCHSCHULE ZENTRALSCHWEIZ

HTA HOCHSCHULE FÜR TECHNIK+ARCHITEKTUR LUZERN

Abteilung Informatik

HTA LUZERN T: 041-349-33-11

Java

Thread Skalierung

STD
Software Test Document

Diplomarbeit 2006

Aregger Marcel

Meier Rainer

Technikumstrasse 21

CH—6048 Horw

F: 041-349-39-60

W: www.hta.fhz.ch

Diplomarbeit Seite 2

Änderungskontrolle

Version Datum Ausführende Stelle Bemerkungen/Art der Änderung

1.1 2006-10-16 Rainer Meier Initial Release

1.2 2006-11-10 Marcel Aregger Testcases

1.3 2006-11-14 Marcel Aregger Resultate Testcases

Prüfung und Freigabe

Vorname/Name Dokumentversion Status Datum Visum

Rainer Meier 1.3 Final 2006-11-20

Marcel Aregger 1.3 Final 2006-11-20

 2006-11-21

Diplomarbeit Seite 3

1. Management Summary
Der Startpunkt des vorliegenden Testdokuments bilden die 8 Zielsetzungen im SDD [2] in Bezug auf
den geplanten Testumfang in den Ebenen Hardware, Betriebssystem und Java Virtual Machine.

Die effektive Testplattform in Zusammenhang mit der eingesetzten Hardware, bildet eine Fujitsu Sie-
mens Workstation vom Typ Celsius V810 der Firma Pilatus. Dieses SMP-System beinhaltet 2 AMD
Opteron 246-Prozessoren mit einer Taktrate von 2GHz. Aufgesetzt auf diese Hardware bilden Win-
dows XP Professional 32 Bit und eine Sun Java HotSpot Client Runtime in der Version 1.5.0_09-b03
die wesentliche Bestandteile der Software Plattform. JOMP-Tests wurden mit einer JOMP-
Implementierung in der Version 1.0 Beta durchgeführt. Da einzelne Testcases eine Single-CPU-
Architektur erfordern, wurde die oben beschriebene Multi-CPU-Plattform bei Bedarf mit dem Bootflag
numprocs=1 (c:\boot.ini) softwareseitig in eine Single-CPU-Plattform umgewandelt.

Das Testverfahren sichert mit fixen und variablen Rahmenbedingungen die Reproduzierbarkeit und
Vergleichbarkeit der Testresultate. Für jeden Testcase sind der Ausschnitt aus der Mandelbrotmenge
und die Anzahl Iterationen in der Berechnung dieses Ausschnitts konstante Grössen. Parameter wie-
beispielsweise die Anzahl Worker Threads oder die Basispriorität eines Threads werden dem entspre-
chenden Testcase angepasst. Die Durchführung der Testreihe orientiert sich ebenfalls an spezifische
Verhaltensregeln. So wird jede Messung in unveränderter Konfiguration 5-mal wiederholt wobei die
Mittelwerte den eigentlichen Messwert bilden. Unrealistische Messwerte oder Programmfehler wäh-
rend der Messung führen zur Wiederholung der ganzen Testreihe.

Insgesamt 10 Testcases bzw. deren Resultate bilden die Grundlage für die Analyse und Interpretation
des Systemverhaltens. Sie sind aus den Zielsetzungen {T?} im SDD abgeleitet und können wie folgt
zugeordnet werden:

Testcase # Zielsetzung Hardware, Betriebssystem und JVM

1 {T1} Feststellung Grad der Skalierung zw. Single- und Multi-Prozessor-Architektur

2 {T2} Nachweis Abbildung Java-Thread auf Win32-Thread

3, 4 {T3} Nachweis Abbildung Java-Thread-Priorität auf Win32-Thread-Priorität

5, 6 {T4} Analyse Systemverhalten bei Änderung Win32-Thread-Priorität

7 {T5} Analyse Systemverhalten bei Festlegung einer Prozess-Affinität

8 {T6} Analyse der Skalierung einer multithreaded Java-Applikation

9 {T7} Analyse Einfluss der Thread-Synchronisation auf die Skalierung

10 {T8} Analyse Anwendbarkeit und Effektivität von JOMP

10 Performance Indikatoren wie beispielsweise Berechnungszeit, Kernel Thread Priorität oder die
Affinität bilden die Messgrössen der Testcases. Sie werden mit 3 Tools gemessen und protokolliert.
Die Konsolenausgabe der Mandelbrot-Anwendung, der CodeAnalyst von AMD und der ProcessExplo-
rer von Sysinternals bilden die Tooling-Plattform.

Alle Tetscases konnten wie geplant abgearbeitet werden und lieferten aussagekräftige Resultate für
die nachfolgende Analyse und Interpretation. Sie können in die drei Bereiche Priorität, Affinität und
Skalierung gegliedert werden.

Priorität

Im Bereich der Thread-Prioritäten konnte eine lineare Abbildung von Java-Thread- auf Kernel-Thread-
Prioritäten nachgewiesen werden. Da jeweils 2 Java-Prioritäten auf eine Kernel-Priorität abgebildet
werden, resultieren pro Process Priority Class faktisch 5 nutzbare Prioritätsstufen in Java. Das „exten-
ded mapping“, wo zusätzlich die Win32 Process Priority Class mitberücksichtigt wurde, hat gezeigt,
dass im Bereich der Basisprioritäten Überlappungen entstehen. Die Kombination verschiedener Java-
Thread-Prioritäten und Process Priority Classes ergeben als Resultat die gleiche Basispriorität. Für

 2006-11-21

Diplomarbeit Seite 4

die Festlegung der Java Thread Priorität ist somit auch die Priorität des Prozesskontextes im Kernel
zu beachten.

Affinität

Für eine multithreaded Java-Anwendung auf Windows XP resultiert eine gleichförmige Verteilung der
Threads auf die verfügbaren CPUs des Systems sofern keine andere „Last“ um CPU-Zeit konkurriert.
Über die Windows API können Affinitäten auf Level Thread und Prozess definiert werden. In der vor-
liegenden Versuchsreihe konnte mit dem ProcessExplorer ([PROCEXP]) auf Prozessebene eine Affi-
nität gesetzt werden. Die Zuweisung wurde auf alle Threads dieses Prozesses weitervererbt womit die
Kernel-Threads der Java-Anwendung auf eine CPU konzentriert wurden. Versuche unter Einwirkung
von konkurrierenden Prozessen haben weiter gezeigt, dass mit dem Setzen einer Affinität der jeweili-
ge Prozessor nicht exklusiv zugeteilt wird.

Skalierung

Ein grundlegender Versuch bestätigte die 1:1-Abbildung eines Java-Threads auf einen Win32-Thread
im Kernel. Somit laufen unter Windows XP die Threads einer Java-Anwendung als Kernel-Threads in
einem Prozess-Kontext wo sie durch den Scheduler auf verfügbare CPUs verteilt werden können.

Die Skalierung einer Anwendung mit variabler Thread-Anzahl ohne Synchronisation zeigt zwischen
der Single- und Multi-Prozessor-Architektur deutliche Unterschiede im Verlauf. Während die 1 CPU-
Architektur für 1 bis 512 Threads annähernd konstante Berechnungs- und CPU-Zeiten aufweist, wird
auf der 2 CPU-Architektur die Berechnungszeit halbiert. Durch die Verteilung der Threads wird auf der
Multi-Prozessor-Umgebung ein Skalierungsfaktor von nahezu 2 erreicht. Gemeinsam haben die Sin-
gle- und Multi-Prozessor-Architektur, dass der zunehmende Verwaltungsaufwand für 1 bis 512
Threads zu keiner nennenswerten Zunahme der CPU-Zeit führt (ohne Synchronisation).

Das verwendete Synchronisationsverfahren ist für die Skalierung in der Single CPU-Umgebung ent-
scheidend. Mit der Methoden-Synchronisation (grobes Locking) bricht ab >2 Threads die Skalierung
um bis zu 50% ein. Wird mit Objekt- oder CAS synchronisiert ergeben sich annähernd konstante Be-
rechnungs- und CPU-Zeiten.

0.30

0.80

1.30

1.80

1 2 8 32 128 512

Berechnungszeit (1 CPU)

CPU-Zeit (2 CPU)

CPU-Zeit (1 CPU)

Berechnungszeit (2 CPU)

Abbildung 1 Methoden-Synchronisation 1 CPU / 2CPU-Architektur

Im 2 CPU-Umfeld führen verschiedene Synchronisationsverfahren zu einem ähnlichen Verlauf in Be-
zug auf die benötigte Berechnungs- und CPU-Zeit. Mit 2 Threads wird ein Skalierungsfaktor von an-
nähernd 2 erreicht. Zwischen 3 bis 512 Threads ergibt sich dann abhängig von der gewählten Syn-
chronisierungsvariante eine Zunahme der Berechnungs- und CPU-Zeit die zwischen 4% und 20%
liegt. Ein 2 CPU-System wird also durch die Verwendung einer Methoden-Synchronisation weit weni-
ger ausgebremst als ein 1 CPU-System.

 2006-11-21

Diplomarbeit Seite 5

2. Inhaltsverzeichnis
1. Management Summary ... 3
2. Inhaltsverzeichnis ... 5
3. Dokumentinformationen... 8

3.1. Referenzierte Dokumente.. 8
3.2. Definitionen und Abkürzungen... 8
3.3. Links... 9

4. Einleitung ... 10
4.1. Zweck des Dokuments... 10

5. Test-Scope ... 11
6. Test-Plattform .. 12

6.1. Hardware-Dokumentation .. 12
6.2. Software-Dokumentation ... 13

7. Testverfahren... 15
7.1. Rahmenbedingungen... 15

7.1.1. Fixe Grössen .. 15
7.1.2. Variable Gössen... 16

7.2. Durchführung der Testreihe... 16
7.3. Anforderungen Testcases.. 17

8. Testcases ... 18
8.1. Testcase Hardware.. 18

8.1.1. Testcase 1.. 18
8.2. Testcases Betriebssystem... 19

8.2.1. Testcase 2.. 19
8.2.2. Testcase 3.. 19
8.2.3. Testcase 4.. 20
8.2.4. Testcase 5.. 21
8.2.5. Testcase 6.. 22
8.2.6. Testcase 7.. 23

8.3. Testcases JVM .. 24
8.3.1. Testcase 8.. 24
8.3.2. Testcase 9.. 25
8.3.3. Testcase 10.. 26

9. Messen und Protokollieren .. 27
9.1. Performance Indikatoren.. 27
9.2. Profiling und Testtools ... 28

9.2.1. Übersicht der Tools .. 28
9.2.2. Ausgabe Testtools.. 29

 2006-11-21

Diplomarbeit Seite 6

10. Ergebnisse der Testcases .. 31
10.1. Testcase 1 ... 31

10.1.1. Berechnungszeit... 31
10.1.2. CPU-Zeit... 32
10.1.3. Ergebnisse ... 32

10.2. Testcase 2 ... 33
10.2.1. Thread Mapping ... 33
10.2.2. Ergebnisse ... 33

10.3. Testcase 3 ... 34
10.3.1. Priority-Mapping ... 34
10.3.2. Ergebnisse ... 34

10.4. Testcase 4 ... 35
10.4.1. Priority-Mapping ... 35
10.4.2. Ergebnisse ... 36

10.5. Testcase 5 ... 37
10.5.1. Berechnungszeit... 37
10.5.2. CPU-Zeit... 38
10.5.3. Ergebnisse ... 38

10.6. Testcase 6 ... 39
10.6.1. Berechnungszeit (variable Win32-Priorität).. 39
10.6.2. Berechnungszeit (variable Laststufe)... 40
10.6.3. CPU-Zeit... 41
10.6.4. Ergebnisse ... 41

10.7. Testcase 7 ... 42
10.7.1. Ergebnisse ... 43

10.8. Testcase 8 ... 45
10.8.1. Skalierung 1 CPU ohne Synchronisation... 45
10.8.2. Skalierung 2 CPU ohne Synchronisation... 46
10.8.3. Ergebnisse ... 46

10.9. Testcase 9 ... 48
10.9.1. Skalierung 1 CPU - Methodensynchronisation .. 48
10.9.2. Skalierung 1 CPU - Objektsynchronisation.. 49
10.9.3. Skalierung 1 CPU – CAS-Synchronisation .. 50
10.9.4. Ergebnisse ... 51
10.9.5. Skalierung 2 CPU - Methodensynchronisation .. 52
10.9.6. Skalierung 2 CPU - Objektsynchronisation.. 53
10.9.7. Skalierung 2 CPU - CAS-Synchronisation ... 54
10.9.8. Ergebnisse ... 55

10.10. Testcase 10 ... 57
10.10.1. Skalierung 2 CPU - JOMP-Threads ... 57

 2006-11-21

Diplomarbeit Seite 7

10.10.2. Ergebnisse ... 58
11. Glossar ... 59
12. Verzeichnisse... 60

12.1. Tabellenverzeichnis ... 60
12.2. Abbildungsverzeichnis ... 61
12.3. Code Listings ... 61
12.4. Index .. 61

 2006-11-21

Diplomarbeit Seite 8

3. Dokumentinformationen

3.1. Referenzierte Dokumente

Tabelle 1 Referenzierte Dokumente

Referenz Beschreibung

[1] Basisanalyse

[2] SDD, Software Design Document

[3] Systeminformationen „System-Information.nfo“

[4] JavaDev JumpStart, Java Entwicklungsumgebung

[5] Conclusion, Schlussfolgerung Projektergebnisse

3.2. Definitionen und Abkürzungen

Tabelle 2 Abkürzungen

Abkürzung Beschreibung

API Application Programming Interface

CPU Central Processing Unit

DEP Date Execution Prevention (siehe auch NX)

HAT HyperTransport

JVM Java Virtual Machine

NX No eXecute

SDD Software Design Document

STD Software Test Document

 2006-11-21

Diplomarbeit Seite 9

3.3. Links

Tabelle 3 Links

Referenz Beschreibung

[BOOTFLAG] Windows XP boot parameters: http://support.microsoft.com/kb/833721

[SUNJAVA] Sun Java Home: http://java.sun.com/

[ECLIPSE] Eclipse IDE: http://www.eclipse.org/

[APACHEANT] Apache ANT, Java Builder: http://ant.apache.org/

[JOMP] EPCC, OpenMP-like directives for Java:

http://www.epcc.ed.ac.uk/research/jomp/

[CODEANALYST] AMD CodeAnalyst: http://developer.amd.com/cawin.jsp

[PROCEXP] Sysinternals Process Explorer:

http://www.microsoft.com/technet/sysinternals/utilities/ProcessExplorer.mspx

 2006-11-21

http://support.microsoft.com/kb/833721
http://java.sun.com/
http://www.eclipse.org/
http://ant.apache.org/
http://www.epcc.ed.ac.uk/research/jomp/
http://developer.amd.com/cawin.jsp
http://www.microsoft.com/technet/sysinternals/utilities/ProcessExplorer.mspx

Diplomarbeit Seite 10

4. Einleitung

4.1. Zweck des Dokuments

Das Software Test Document STD beinhaltet alle notwendigen Elemente für die konkrete Umsetzung
des geplanten Testumfanges im SDD ([2]). Es definiert dabei die effektiv eingesetzten Hardware- und
Softwarekomponenten und beschreibt mit dem Testverfahren die Rahmenbedingungen und Verhal-
tensregeln für die Durchführung einer transparenten Testreihe.

Das eigentliche Testing wird in Form von Testcases beschrieben und erstreckt sich im Sinne der laye-
rorientierten Betrachtung über die Layer Hardware, Betriebssystem und JVM. Das Systemverhalten in
den einzelnen Testcases wird über vorab definierte Performance Indikatoren (Messgrössen) gemes-
sen. Testcases und deren Performance Indikatoren sind ebenfalls Teil des STDs.

Die Messung und Protokollierung der oben genannten Indikatoren muss über spezifische Instrumente
(Tools) erfolgen, die in diesem Dokument festgelegt werden. Sie ermöglichen reproduzierbare Ergeb-
nisse, die nachfolgen verifiziert werden können.

Ergebnisse aus den Testcases werden in komprimierter Form in diesem Dokument dargestellt. Die
Interpretation des Systemverhaltens ist aber Teil des Conclusion ([5]).

 2006-11-21

Diplomarbeit Seite 11

5. Test-Scope
Der geplante Testumfang im Software Design Document SDD (Kapitel 6) bietet einen ersten Überblick
über jene Aspekte, die im Zusammenhang mit der Skalierung einer Applikation analysiert und getestet
werden müssen. Für diese Aspekte, die in Form von Zielsetzungen und zugehörigen Betrachtungsbe-
reichen beschrieben wurden, werden im vorliegenden Software Test Document STD entsprechende
Testverfahren und Testcases abgeleitet. Der Testumfang im SDD mit den insgesamt 8 Hauptzielset-
zungen {T1}...{T8} (siehe Tabelle 4) ist in diesem Zusammenhang als Guideline zu betrachten.

Tabelle 4 Geplanter Test-Umfang gemäss SDD ([2])

Zielsetzung Kategorie

{T1} Feststellung Grad der Skalierung zwischen Single- und Multi-Prozessor-
Architektur

Muss

{T2} Nachweis Abbildung Java-Thread auf Win32-Thread Muss

{T3} Nachweis Abbildung Java-Thread-Priorität auf Win32-Thread-Priorität Kann

{T4} Analyse Systemverhalten bei Änderung Win32-Thread-Priorität Kann

{T5} Analyse Systemverhalten bei Festlegung einer Prozess-Affinität Kann

{T6} Analyse der Skalierung einer multithreaded Java-Applikation Muss

{T7} Analyse Einfluss der Thread-Synchronisation auf die Skalierung Kann

{T8} Analyse Anwendbarkeit und Effektivität von JOMP Muss

 2006-11-21

Diplomarbeit Seite 12

6. Test-Plattform
Da uns die Schule keine geeignete Testplattform (Multi-Core/Multi/CPU, Windows XP) zur Verfügung
stellen konnte haben wir diese selber beschafft. Unser Dank geht hier an die Pilatus Flugzeugwerke
AG in Stans die uns freundlicherweise die Hardware für die Dauer der Diplomarbeit zur Verfügung
gestellt hat.

Die verwendete Hard- und Software wird nachfolgend möglichst detailliert erfasst. Zusätzlich wird ein
Microsoft System Information 7 Dokument (siehe [3]) abgegeben. Dieses enthält alle wichtigen Eckda-
ten des Systems um die Reproduzierbarkeit zu gewährleisten.

6.1. Hardware-Dokumentation

Abbildung 2 Hardware Testplattform

Alle Tests wurden auf einer Fujitsu Siemens Celsius
V810 durchgeführt. Die folgende Tabelle beinhaltet die
wichtigsten Eckdaten des verwendeten Systems:

Tabelle 5 Hardware-Eckdaten

Bezeichnung Konfiguration

Hersteller Fujitsu Siemens

Modell Celsius V810

Anzahl Prozessoren 2

Prozessor Typ AMD Opteron 246 (Sledgehammer Core), 0.13μ SOI, Version 2.0, Genera-
tion 15, Model 5, Stepping 8, Single-Core, NX-Technology, Socket 940

Cache L1: 64kB Instruction Cache, 64kB Data-Cache

L2: 1MB

Taktrate 2GHz

HT-Speed 800MHz

Speicher 4GB DDR333 (166MHz) non-ECC, 184 Pin

Chipset AMD 8131

Festplatte(n) 2x 80GB RAID-0 Array (160GB Total), 1 Primäre NTFS Partition

DVD 1x HL-DT-SR RW/DVD GCC-4480B

Netzwerk Broadcom NetXtreme Gigabit Ethernet

Grafik nVidia GeForce Quadro FX 1100, 128MB, Driver Version 6.14.10.7756

 2006-11-21

Diplomarbeit Seite 13

6.2. Software-Dokumentation

Für die Tests wurden absichtlich keine Windows-Dienste deaktiviert, Registry-Optimierungen oder
ähnliches vorgenommen. Beim Betriebssystem handelt es sich somit um ein standardmässig instal-
liertes System. Dies sollte somit weitgehend der üblichen Konfiguration einer Workstation entsprechen
womit auch die Ergebnisse auf ähnlichen Maschinen und im Praxiseinsatz vergleichbar sind.

Die relevante, zusätzlich installierte Software ist in folgender Tabelle festgehalten:

Tabelle 6 Software-Umgebung

Bezeichnung Beschreibung

Windows XP Pro-
fessional 32 Bit

Als Betriebssystem kommt Windows XP Professional in der 32 Bit Version mit
ServicePack 2 zum Einsatz.

Java VM Wir verwenden für alle Tests die Sun Java HotSpot Client Runtime in der Versi-
on build 1.5.0_09-b03.

Weitere Informationen unter [SUNJAVA].

Eclipse Zur Entwicklung wird Eclipse in der Version 3.2.1 verwendet. Zur Unterstützung
verwenden wir einige Plugins wie den Visual Editor für die Erzeugung der GUI-
Klassen.

Weitere Informationen unter [ECLIPSE].

Apache-ANT Der Build-Support wird mit Hilfe von Apache-ANT realisiert. Dies gewährleistet
die Plattformunabhängigkeit und erlaubt die Kompilierung auch ohne Eclipse.

Weitere Informationen unter [APACHEANT].

Java-Dev
JumpStart

Sowohl die Sun Java VM als auch Eclipse incl. Plugins und weitere Hilfspro-
gramme wie Apache ANT sind Teil dieses Paketes. Das Installationsprogramm
wird zusammen mit dieser Arbeit abgegeben und erlaubt die Installation der
gesamten Java-Umgebung innerhalb weniger Minuten.

Siehe auch [4].

JOMP Für die JOMP Implementierung wird JOMP in der Version 1.0 Beta verwendet;
die zu diesem Zeitpunkt aktuellste Version.

Siehe auch [PROCEXP].

 2006-11-21

Diplomarbeit Seite 14

Die folgende Tabelle beinhaltet eine Auflistung der durchgeführten Konfigurationsanpassungen:

Tabelle 7 Software Konfigurationsanpassung

Bezeichnung Beschreibung

/PAE Kernel Parameter Der /PAE Parameter (Physical Address Translation) wird häufig wegen
der Speicherunterstützung über 4GB verwendet. Dies ist für unsere Tests
zwar nicht relevant aber aktiviert auch die Hardware-DEP (Date Executi-
on Prevention) Unterstützung. Da unser Opteron basierendes System
das NX Bit (gleichzusetzen mit der Microsoft-Bezeichnung DEP) unter-
stützt haben wir es auch aktiviert. Der Parameter wird in c:\boot.ini einge-
tragen. Siehe auch [BOOTFLAG].

/numprocs=1 Für unsere Single-CPU Messungen haben wir den zusätzlichen Parame-
ter /numprocs=1 verwendet. Dieser teilt dem Kernel die maximale An-
zahl zu verwendender Prozessoren mit. Dies erlaubt uns die Verwen-
dung desselben Systems für Single- und Multiprozessor Tests. Der Pa-
rameter wird in c:\boot.ini eingetragen und nur Singleprozessor Tests
verwendet. Siehe auch [BOOTFLAG].

Wie bereits erwähnt liegt der Arbeit eine Ausgabe von Microsoft System Information 7 bei (siehe [3]).
Das Programm kann über „Start Ausführen msinfo32“ gestartet werden. Um die Lesbarkeit zu
garantieren haben wir ausserdem noch einen Textbasierenden Export beigelegt.

 2006-11-21

Diplomarbeit Seite 15

7. Testverfahren
Das Testverfahren legt die Rahmenbedingen und Verhaltensregeln der geplanten Testreihe fest. Wei-
ter werden in diesem Kapitel die formellen Anforderungen an die Testcases beschrieben. Die nachfol-
genden Themenbereiche dienen dazu, die Testreihe effizient zu gestalten und die Nachvollziehbarkeit
der Resultate sicherzustellen.

7.1. Rahmenbedingungen

Rahmenbedingungen sind als grundlegende Voraussetzung für die Durchführung eines Tests zu be-
trachtet. Sie können aus der Aufgabenstellungen abgeleitet werden (beispielsweise beim Betriebssys-
tem: Windows XP) oder ergeben sich aus dem jeweiligen Testcase (beispielsweise ein Tool für variab-
le CPU-Belastung; Windows Calculator). Die Rahmenbedingungen können differenziert werden in
Bedingungen, die global für alle Testcases gelten und jene, die spezifisch für einzelne Testcases an-
zuwenden sind.

7.1.1. Fixe Grössen

Fixe Rahmenbedingungen gelten für alle Testcases gleichermassen und werden darum in den
Testcases nicht explizit aufgeführt:

Ausschnitt Mandelbrotmenge

Um die Resultate der Benchmarks vergleichbar zu machen, wird für jeden Testcase und Berech-
nungsdurchlauf der gleiche Ausschnitt aus der Mandelbrot-Menge berechnet. Dazu müssen die exak-
ten Koordinaten dieses Ausschnitts persistent gespeichert werden können. Eine Bookmark-Datei mit
der Definition des entsprechenden Bereiches wird unter dem Namen benchmark-location.xml
mitgeliefert.

Anzahl Iterationen

Mit der Anzahl Iterationen kann der Berechnungsaufwand der Mandelbrot-Menge beliebig gesteuert
werden. Gemäss Requirement {R1.3} (SDD, Kapitel 7.1) soll die Laufzeit (Berechnungszeit) des Pro-
gramms zwischen 30 Sekunden und 5 Minuten betragen. Für die Durchführung der Testreihe soll eine
geeignete „Iterationstiefe“ ermittelt und generell angewendet werden. Eine Bookmark-Datei mit der
Definition der entsprechenden Iterationstiefe wird unter dem Namen benchmark-location.xml
mitgeliefert.

Bildgrösse

Der Berechnungsaufwand hängt natürlich auch von der Anzahl der berechneten Bildpunkte ab. Um
diese konstant zu halten wird das Hauptfenster in der Initialgrösse von 1024x768 Pixel belassen. Dies
resultiert in einer darstellbaren Bildgrösse von 1016x718 Pixel oder umgerechnet 729'488 Bildpunkte.

 2006-11-21

Diplomarbeit Seite 16

7.1.2. Variable Gössen

Variable Rahmenbedingungen sind für den jeweiligen Testcase spezifisch festzulegen und somit in
der Beschreibung dieses Testcases aufzuführen.

Anzahl CPU

Für plattformübergreifende Testcases (1 CPU / 2 CPU) ist die Anzahl verfügbarer CPUs festzulegen.
Sind diesbezüglich keine Einschränkungen erwähnt, werden Tests auf der 2 CPU-Architektur ausge-
führt.

Anzahl Worker Threads

Die Pixel der Mandelbrot-Menge werden von 1...n Worker Threads berechnet. Da diese Worker auf
Kernel-Threads abgebildet und somit verteilt werden können, ist deren Anzahl im voraus festzulegen.
Die Menge der Threads, die an der Berechnung teilnehmen, ist für einen Testcase konstant oder ent-
sprechend der Testreihe anzupassen.

Priorität eines Prozess/Threads

Die Basispriorität eines Threads beeinflusst das Schedulingverhalten des Kernel und somit die Lauf-
zeit des Programms. Die festgelegte Basispriorität der Threads eines Prozesses ist für einen Testcase
konstant oder entsprechend der Testreihe anzupassen.

Synchronisation/Locking

Der Verwaltungsaufwand im Zusammenhang mit der Synchronisation von Threads kann die Berech-
nungs- und CPU-Zeit direkt beeinflussen. Die Anwendung von Synchronisation bzw. Synchronisati-
ons-Mechanismus ist für einen entsprechenden Testcase auszuweisen.

7.2. Durchführung der Testreihe

Der Ablauf einer Testreihe ist auf Level Testcase festgelegt und beinhaltet folgende grundsätzlichen
Verhaltensregeln:

• Eine spezifische Messung wird mit der unveränderten Konfiguration 5 mal durchgeführt.

• Sind Abweichungen der Teilresultate vernachlässigbar, kann die Durchlaufzahl auf mind. 3
reduziert werden.

• Die Teilresultate der Messungen werden in Excel erfasst.

• Das Mittel der Teilresultate bildet den eigentlichen Messwert.

• Ergibt eine Messung ein unrealistisches Teilresultat, wird der ganze Durchgang wiederholt.

• Tritt während einer Messung ein Programmfehler auf, wird der ganze Durchgang wiederholt.

• Tritt der Programmfehler erneut auf, wird dieser Test übersprungen.

• Offene Tests werden nach der Korrektur des Programms nachgeholt.

• Auswirkungen der Programmänderung auf bereits durchgeführte Tests sind zu analysieren.

• Nach jedem Testcase werden die Applikation neu gestartet (Mandelbrot, Systools).

• Single-CPU Tests werden mit gesetztem Kernel-Flag /numproc=1 in c:\boot.ini getestet.

 2006-11-21

Diplomarbeit Seite 17

7.3. Anforderungen Testcases

Um die Tests effektiv und effizient durchführen zu können, müssen die Testcases bestimmte formelle
Bedingungen erfüllen. Als minimale Anforderung müssen folgende Punkte für jeden Testcase be-
schrieben werden:

• ID und zugehörige Zielsetzung aus dem SDD ({T?})

• Erwartete(s) Resultat(e)

• (Variable) Rahmenbedingen

• Performance Indikatoren (Messgrössen)

• Spezifische Ablaufschritte

 2006-11-21

Diplomarbeit Seite 18

8. Testcases
Die nachfolgenden Testcases realisieren den geplanten Testumfang aus dem SDD ([2]). Sie be-
schreiben für die Layer Hardware, Betriebssystem und JVM alle Testszenarien die durchgeführt wer-
den müssen um die formulierten Zielsetzungen umzusetzen. Die Ergebnisse aus diesen Testcases
sind im Kapitel 10; Ergebnisse der Testcases einsehbar.

8.1. Testcase Hardware

8.1.1. Testcase 1

Testcase für Zielsetzung {T1} aus geplantem Test-Umfang SDD ([2])

Testcase 1 Betrachtungsbereich: Hardware

Zielsetzung Feststellung Grad der Skalierung zwischen Single- und Multi-Prozessor-
Architektur

Erwartetes Resultat Faktor über potenzielle (vertikale) Skalierung zwischen Single- und Multi-
Prozessor-Architektur einer Java-Anwendung ohne Berücksichtigung von
Einflüssen wie bspw. Synchronisation und Prioritäten

Vergleichbare Testplattform mit Single- und Multi-Prozessor

Single-Threaded Testklasse erweiterbar auf Multi-Threaded

Rahmenbedingungen

Messbare Berechnungszeit und Ressourcenbedarf

Verfügbare CPU

Aktive Threads

Berechnungszeit

CPU-Zeit

Performance-Indikatoren

Kontextwechsel

Anwendung; Testklasse auf 1 CPU-Architektur

Anwendung; Anzahl Worker-Threads (1 | 2) festlegen

Protokollieren Performance-Indikatoren

Anwendung; Testklasse auf 2 CPU-Architektur

Anwendung; Anzahl Worker-Threads (1 | 2) festlegen

Ablaufschritte

Protokollieren Performance-Indikatoren

 2006-11-21

Diplomarbeit Seite 19

8.2. Testcases Betriebssystem

8.2.1. Testcase 2

Testcase für Zielsetzung {T2} aus geplantem Test-Umfang SDD ([2])

Testcase 2 Betrachtungsbereich: Betriebssystem

Zielsetzung Nachweis Abbildung Java-Thread auf Win32-Thread

Beweis für 1:1-Abbildung von Java-Thread auf Win32-Thread.

Identifikation Deamon-Threads (Anzahl) für spezifische Java-Anwendung

Erwartetes Resultat

Identifikation zugehörigen Prozesskontext auf Level Betriebssystem

Betriebssystem Windows XP

VM mit Native-Thread-Unterstützung

Rahmenbedingungen

Java-Anwendung mit variabler Thread-Anzahl

Java-Threads

Kernel-Threads

Performance-Indikatoren

Prozesskontext Kernel-Threads

Device; Processexplorer starten

Anwendung; Mandelbrot starten

Anwendung; Threadanzahl (n) in Konfigmenü festlegen

Systemtool; Resultierende Threadanzahl in Processexplorer ermitteln

Testablauf mit Threadanzahl (!= n) wiederholen

Ablaufschritte

Anzahl Deamon-Threads bestimmen

8.2.2. Testcase 3

Testcase für Zielsetzung {T3} aus geplantem Test-Umfang SDD ([2])

Testcase 3 Betrachtungsbereich: Betriebssystem

Zielsetzung Nachweis Abbildung Java-Thread-Priorität auf Win32-Thread-Priorität mit
unveränderter Default Process Priority-Class

Erwartetes Resultat Mapping Tabelle die Java-Thread Priorität (1...5...10) auf die Kernel-Thread-
Priorität abbildet (Basispriorität) unter Verwendung von Default-Einstellung
für Process Priority-Class

Betriebssystem Windows XP Rahmenbedingungen

Java-Anwendung mit veränderbarer Thread-Priorität (Konfigmenü)

Performance-Indikatoren Java Thread Priorität

 2006-11-21

Diplomarbeit Seite 20

Kernel Thread Priorität

Systemtool; Processexplorer starten

Anwendung; Mandelbrot starten

Anwendung; Java Thread Priorität(n) in Konfigmenü festlegen

Systemtool; Resultierende Kernel Thread Priorität in Processexplorer ermit-
teln

Test mit ; Java Thread Priorität (!= n) wiederholen

Ablaufschritte

Priorität-Mapping durchführen, Java Thread Priorität (n= 1...5...10)

8.2.3. Testcase 4

Testcase für Zielsetzung {T3} aus geplantem Test-Umfang SDD ([2])

Testcase 4 Betrachtungsbereich: Betriebssystem

Zielsetzung Nachweis Abbildung Java-Thread-Priorität auf Win32-Thread-Priorität mit
variabler Process Priority-Class

Erwartetes Resultat Mapping Tabelle die Java-Thread Priorität (1...5...10) auf die Kernel-Thread-
Priorität abbildet (Basispriorität) unter Verwendung möglicher Einstellungen
für die Process Priority-Class

Betriebssystem Windows XP

Java-Anwendung mit veränderbarer Thread-Priorität (Konfigmenü)

Rahmenbedingungen

Systemtool mit dem Process Priority Class eigestellt werden kann

Java Thread Priorität Performance-Indikatoren

Kernel Thread Priorität

Systemtool; Processexplorer starten

Anwendung; Mandelbrot starten

Anwendung; Java Thread Priorität (n= 1...5...10) in Konfigmenü festlegen

Systemtool; Process Priority Class festlegen

Systemtool; Resultierende Kernel Thread Priorität in Processexplorer ermit-
teln

Test mit Java Thread Priorität (n= 1...5...10) und allen Process Priority Clas-
ses wiederholen

Ablaufschritte

Priorität-Mapping durchführen Java Thread Priorität, Process Priority Class,
Kernel Thread Priorität

 2006-11-21

Diplomarbeit Seite 21

8.2.4. Testcase 5

Testcase für Zielsetzung {T4} aus geplantem Test-Umfang SDD ([2])

Testcase 5 Betrachtungsbereich: Betriebssystem

Zielsetzung Analyse Systemverhalten (Skalierung) bei Änderung der Process Priority
Class und unterschiedlicher Last

Erwartetes Resultat Faktor der Skalierung auf Multi-CPU-Maschine für Anwendungen mit gleicher
Kernel Thread Priorität bei unterschiedlicher Process Priority Classes unter
Berücksichtigung variabler Laststufen

Betriebssystem Windows XP

Priorität-Mapping Java Thread Priorität, Process Priority Class und Kernel
Thread Priorität

Java-Anwendung mit veränderbarer Thread-Priorität (Konfigmenü)

Systemtool mit dem Process Priority Class eigestellt werden kann

Rahmenbedingungen

Tool für variable CPU-Belastung (Windows Calculator, 999999!)

Kernel Thread Priorität

Process Priority Class

Berechnungszeit

Performance-Indikatoren

CPU-Zeit

Systemtool; Processexplorer starten

Anwendung; Mandelbrot starten

Anwendung; Java Thread Priorität (m) in Konfigmenü so festlegen dass mit
spezifischer Process Priority Class (n) die gewünschte Kernel Thread Priori-
tät (p) resultiert

Systemtool; Process Priority Class (n) mit Systemtool so festlegen dass mit
spezifischer Java Thread Priorität (m) die gewünschte Kernel Thread Priorität
(p) resultiert

Calculator; CPU-Belastung festlegen (keine | mittel | stark)

Anwendung; Mandelbrotberechnung starten

Protokollieren Performance-Indikatoren

Test mit unveränderter Einstellung der Prioritäten (m, n, p) aber veränderter
Lastsituation wiederholen

Test mit gleicher Kernel Thread Priorität (p) aber unterschiedlicher Process
Priority Class (n’) wiederholen

Ablaufschritte

Test mit unveränderter Einstellung der Prioritäten (m’, n’, p) aber veränderter
Lastsituation wiederholen

 2006-11-21

Diplomarbeit Seite 22

8.2.5. Testcase 6

Testcase für Zielsetzung {T4} aus geplantem Test-Umfang SDD ([2])

Testcase 6 Betrachtungsbereich: Betriebssystem

Zielsetzung Analyse Systemverhalten (Skalierung) bei Änderung Win32-Thread-Priorität
und unterschiedlicher Last

Erwartetes Resultat Faktor der Skalierung auf Multi-CPU-Maschine für Anwendungen mit unter-
schiedlicher Kernel Thread Priorität und Process Priority Classes unter Be-
rücksichtigung variabler Laststufen

Betriebssystem Windows XP

Priorität-Mapping Java Thread Priorität, Process Priority Class und Kernel
Thread Priorität

Java-Anwendung mit veränderbarer Thread-Priorität (Konfigmenü)

Systemtool mit dem Process Priority Class eigestellt werden kann

Rahmenbedingungen

Tool für variable CPU-Belastung (Windows Calculator, 999999!)

Kernel Thread Priorität

Process Priority Class

Berechnungszeit

Performance-Indikatoren

CPU-Zeit

Systemtool; Processexplorer starten

Anwendung; Mandelbrot starten

Anwendung; Java Thread Priorität (m) in Konfigmenü so festlegen dass mit
spezifischer Process Priority Class (n) die gewünschte Kernel Thread Priori-
tät (p) resultiert

Systemtool; Process Priority Class (n) mit Systemtool so festlegen dass mit
spezifischer Java Thread Priorität (m) die gewünschte Kernel Thread Priorität
(p) resultiert

Calculator; CPU-Belastung festlegen (keine | mittel | stark)

Anwendung; Mandelbrotberechnung starten

Protokollieren Performance-Indikatoren

Test mit unveränderter Einstellung der Prioritäten (m, n, p) aber veränderter
Lastsituation wiederholen

Test mit ungleicher Kernel Thread Priorität (p’) und unterschiedlicher Process
Priority Class (n’) wiederholen

Ablaufschritte

Test mit unveränderter Einstellung der Prioritäten (m’, n’, p’) aber veränderter
Lastsituation wiederholen

 2006-11-21

Diplomarbeit Seite 23

8.2.6. Testcase 7

Testcase für Zielsetzung {T5} aus geplantem Test-Umfang SDD ([2])

Testcase 7 Betrachtungsbereich: Betriebssystem

Zielsetzung Analyse Systemverhalten bei Festlegung einer Prozess-Affinität

Nachweis Prozess-Affinität wird auf Kernel Threads dieses Prozesses vererbt

Nachweis Auslastung kann mit Affinität auf 1 Prozessor konzentriert werden

Nachweis über Systemtool / Affinität kann kein „Ideal Processor“ gesetzt
werden

Erwartetes Resultat

Nachweis Threads eines Prozesses mit Affinität auf eine CPU konkurrieren
auf dieser CPU mit Threads ohne explizite Affinität

Betriebssystem Windows XP

Systemtool mit dem Affinität gesetzt werden kann

2 CPU-Maschine

Rahmenbedingungen

Tool für variable CPU-Belastung (Windows Calculator, 999999!)

Kernel Thread Priorität

Affinität

Performance-Indikatoren

Berechnungszeit

Systemtool; Processexplorer starten

Anwendung; Mandelbrot starten

Anwendung; Mandelbrotberechnung starten ohne Prozess-Affinität

Protokollieren Performance-Indikatoren

Systemtool; Anwendungs-Prozess selektieren und Affinität setzen (CPU 1)

Anwendung; Mandelbrotberechnung starten mit Prozess-Affinität (CPU 1)

Protokollieren Performance-Indikatoren

Calculator; CPU-Belastung festlegen, ohne Calc-Prozess Affinität

Anwendung; Mandelbrotberechnung starten mit Prozess-Affinität (CPU 1)

Protokollieren Performance-Indikatoren

Calculator; CPU-Belastung festlegen, mit Calc-Prozess Affinität (CPU 0)

Anwendung; Mandelbrotberechnung starten mit Prozess-Affinität (CPU 1)

Ablaufschritte

Protokollieren Performance-Indikatoren

 2006-11-21

Diplomarbeit Seite 24

8.3. Testcases JVM

8.3.1. Testcase 8

Testcase für Zielsetzung {T6} aus geplantem Test-Umfang SDD ([2])

Testcase 8 Betrachtungsbereich: JVM

Zielsetzung Analyse der Skalierung einer multithreaded Java-Applikation

Faktoren für Skalierung zwischen Single- und Multi-Prozessor-Architektur
einer Java-Anwendung mit 1...n Threads. Die Analyse erfolgt unter Berück-
sichtigung variabler Java Thread Anzahl und ohne Berücksichtigung der
Thread Synchronisation

Erwartetes Resultat

Charakteristischer Verlauf der Performance-Indikatoren auf Single- und Multi-
Prozessor-Architektur mit 1...n Threads und variablen Thread Prioritäten

Vergleichbare Testplattform mit Single- und Multi-Prozessor

Single-Threaded Testklasse erweiterbar auf Multi-Threaded

Java-Anwendung mit veränderbarer Thread-Priorität (Konfigmenü)

Rahmenbedingungen

Messbare Berechnungszeit und Ressourcenbedarf

Verfügbare CPU

Aktive Threads

Java Thread Priorität

Berechnungszeit

Performance-Indikatoren

CPU-Zeit

Anwendung; Testklasse auf 1 CPU-Architektur

Systemtool; Processexplorer starten

Anwendung; Anzahl Worker-Threads (1) festlegen

Anwendung; Mandelbrot starten

Anwendung; Java Thread Priorität(1) in Konfigmenü festlegen

Anwendung; Mandelbrotberechnung starten

Protokollieren Performance-Indikatoren

Testablauf wiederholen für (2...n) Threads und Java Thread Prio (2...5...10)

Anwendung; Testklasse auf 2 CPU-Architektur

Ablaufschritte

Testablauf analog 1 CPU-Architektur

 2006-11-21

Diplomarbeit Seite 25

8.3.2. Testcase 9

Testcase für Zielsetzung {T7} aus geplantem Test-Umfang SDD ([2])

Testcase 9 Betrachtungsbereich: JVM

Zielsetzung Analyse Einfluss der Thread-Synchronisation auf die Skalierung

Faktoren für Skalierung zwischen Single- und Multi-Prozessor-Architektur
einer Java-Anwendung mit 1...n Threads. Die Analyse erfolgt unter Berück-
sichtigung variabler Java Thread Anzahl und Thread Synchronisation

Erwartetes Resultat

Charakteristischer Verlauf der Performance-Indikatoren auf Single- und Multi-
Prozessor-Architektur mit 1...n Threads, variablen Thread Prioritäten und
Synchronisation

Vergleichbare Testplattform mit Single- und Multi-Prozessor

Single-Threaded Testklasse erweiterbar auf Multi-Threaded

Java-Anwendung mit veränderbarer Thread-Priorität (Konfigmenü)

Java-Anwendung mit Synchronisation (mittlerer/grosser lock contention)

Rahmenbedingungen

Messbare Berechnungszeit und Ressourcenbedarf

Verfügbare CPU

Aktive Threads

Java Thread Priorität

Berechnungszeit

Performance-Indikatoren

CPU-Zeit

Anwendung; Testklasse auf 1 CPU-Architektur

Systemtool; Processexplorer starten

Anwendung; Anzahl Worker-Threads (1) festlegen

Anwendung; Mandelbrot starten

Anwendung; Java Thread Priorität(1) in Konfigmenü festlegen

Anwendung; Mandelbrotberechnung starten

Protokollieren Performance-Indikatoren

Testablauf wiederholen für (2...n) Threads und Java Thread Prio (2...5...10)

Anwendung; Testklasse auf 2 CPU-Architektur

Ablaufschritte

Testablauf analog 1 CPU-Architektur

 2006-11-21

Diplomarbeit Seite 26

8.3.3. Testcase 10

Testcase für Zielsetzung {T8} aus geplantem Test-Umfang SDD ([2])

Testcase 10 Betrachtungsbereich: JVM

Zielsetzung Parallelisierung durch JOMP

Erwartetes Resultat Automatische Threadbildung durch JOMP-Direktiven in Abhängigkeit der
Konfiguration (setNumThreads())

Testklasse mit for-Schleife die in JOMP-Direktiven gekapselt werden kann Rahmenbedingungen

JOMP-Precompiler

Verfügbare CPU

Java-Threads (JOMP)

Berechnungszeit

Performance-Indikatoren

CPU-Zeit

Anwendung; Testklasse auf 2 CPU-Architektur

Pre-Compiler; Testklasse(n) kompilieren

Anwendung; JOMP konfigurieren (Anzahl Threads festlegen)

Anwendung; JOMP Testlauf starten

Protokollieren Performance-Indikatoren

Ablaufschritte

Testablauf mit veränderter Konfiguration (Thread Anzahl) widerholen

 2006-11-21

Diplomarbeit Seite 27

9. Messen und Protokollieren
Die Skalierung bzw. das Systemverhalten soll auf Basis von Performance Indikatoren analysiert und
dokumentiert werden. Jeder Testcase definiert „seine“ spezifischen Indikatoren die in Tabelle 1 zu-
sammengefasst sind. Für diese relevanten Faktoren werden unter 9.2; Profiling und Testtools ent-
sprechende Instrumente definiert mit denen die Messung und Protokollierung durchgeführt werden
kann.

9.1. Performance Indikatoren

Tabelle 8 Relevante Performance Indikatoren

Performance-Indikator Beschreibung

Verfügbare CPU Anzahl CPU (Cores) die Rechenzeit zu Verfügung stellen

Java-Thread Anzahl instanzierter Worker-Threads die Berechnung durchführen

Kernel-Thread Anzahl erzeugter Kernel-Threads aus Java-Threads

Java Thread Priorität Aktuelle Priorität des Worker-Threads

Kernel Thread Priorität Aktuelle Priorität des Kernel-Level-Threads (Basispriorität)

Process Priority Class Priorität des Win32-Prozesses

Kontextwechsel Totale Anzahl Kontextwechsel alle Threads

Affinität Explizite Zuordnung eines Prozesses auf eine CPU

Berechnungszeit Zeitpunkt vom Start bis zum Ende einer Berechnung (Gesamtbild)

CPU-Zeit Aufkumulierte CPU-Zeit des Java Prozesses

Die Laufzeit (Prozesslebensdauer) der Java-Anwendung ist von der eigentlichen Berechnungszeit
abzugrenzen. Sie beinhaltet neben der/den Berechnungszeit(en) auch die Zeit für das Setup der An-
wendung (Erzeugung und Konfiguration der Threads) und ist darum für Performance-Messungen irre-
levant.

Tabelle 9 Nicht relevante Performance Indikatoren

Performance-Indikator Beschreibung

Laufzeit Zeitpunkt vom Start bis zum Ende einer Anwendung (Prozesslebens-
dauer)

 2006-11-21

Diplomarbeit Seite 28

9.2. Profiling und Testtools

9.2.1. Übersicht der Tools

Tabelle 10 Profiling- und Testtools

Performance-Indikator Profiling Protokollierung

Berechnungszeit Code (Mandelbrot-Anwendung) Automatisch

System.out.println()

Java-Thread Code (Mandelbrot-Anwendung) Automatisch

System.out.println()

Java Thread Priorität Code (Mandelbrot-Anwendung) Automatisch

System.out.println()

Affinität CodeAnalyst (AMD) Manuell

Profile; Thread Profile

Affinität ProcessExplorer (Sysinternals) Manuell

Performance Graph

CPU-Zeit ProcessExplorer (Sysinternals) Manuell

Process view; CPU-Time

Kernel Thread Priorität ProcessExplorer (Sysinternals) Manuell

Thread view; Base Priority

Kernel-Thread ProcessExplorer (Sysinternals) Manuell

Process view; Threads

Kontextwechsel ProcessExplorer (Sysinternals) Manuell

Thread view; Context Switches

Process Priority Class ProcessExplorer (Sysinternals) Manuell

Process view; Priority

Verfügbare CPU ProcessExplorer (Sysinternals) Manuell

Performance Graph

 2006-11-21

Diplomarbeit Seite 29

9.2.2. Ausgabe Testtools

Ausgabe Mandelbrot-Anwendung

Von der Mandelbrot-Anwendung werden wie folgt Daten auf die Konsole geschrieben:
. . . .
Calculating...
X: 1 to 1016
Y: 177 to 353
Thread Thread-1 done (Priority 5)
Thread Thread-4 done (Priority 5)
Thread Thread-2 done (Priority 5)
Thread Thread-3 done (Priority 5)
Run time: 4930ms
Number of pixels rendered: 718312

Listing 1 Ausgabe der Anwendung

Ausgabe Code Analyst

Ursprünglich sollte der „Intel Thread Profiler 3.0 for Windows“ ([2]) dazu benutzt werden, das Schedu-
lingverhalten im Mehrprozessor-Umfeld zu analysieren. Da dieses viel versprechende Tool aber keine
Unterstützung für die AMD Opteron-Architektur bietet, haben wir ein anderes Tool verwendet.

Mit dem „CodeAnalyst for Windows“ von AMD ([CODEANALYST]) steht mit der Version 2.69 (beta)
eine kostenlose Alternative zu Verfügung.

Abbildung 3 CodeAnalyst for Windows (AMD)

Ausgabe ProcessExplorer

Mit dem ProcessExplorer von Sysinternals steht wie erwartet ein sehr funktionales Tool zu Verfügung,
mit dem „all-in-one“ eine Vielzahl von Performance Indikatoren gemessen werden können.

 2006-11-21

Diplomarbeit Seite 30

Abbildung 4 ProcessExplorer (Sysinternals)

 2006-11-21

Diplomarbeit Seite 31

10. Ergebnisse der Testcases

10.1. Testcase 1

Testcase 1 Betrachtungsbereich: Hardware

Zielsetzung Feststellung Grad der Skalierung zwischen Single- und Multi-Prozessor-
Architektur

10.1.1. Berechnungszeit

Tabelle 11 Grad der Skalierung – 1CPU/2CPU (Berechnungszeit)

 1 Thread 2 Thread

Berechnungszeit - 1CPU 69.41 69.77

Berechnungszeit - 2 CPU 68.10 35.72

Kontextwechsel - 1CPU 3555 3915

Kontextwechsel - 2CPU 13299 11014

Faktor Skalierung (zw. 1CPU/2CPU) 1.02 1.95

Grad der Skalierung - 1CPU/2CPU
Berechnungszeit

1.00 1.000.98

0.51

0.27 0.36

1.00 1.00
1.02

1.95

0.00

0.50

1.00

1.50

2.00

1 Thread 2 Thread
0.00

0.50

1.00

1.50

2.00

Berechnungszeit 1 CPU (normalisiert) Berechnungszeit 2 CPU (normalisiert)

Kontextwechsel - 1CPU (normalisiert) Kontextwechsel - 2CPU (normalisiert)
Faktor Skalierung (zw. 1CPU/2CPU)

Abbildung 5 Grad der Skalierung – 1CPU/2CPU (Berechnungszeit)

 2006-11-21

Diplomarbeit Seite 32

10.1.2. CPU-Zeit

Tabelle 12 Grad der Skalierung 1CPU/2CPU (CPU-Zeit)

 1 Thread 2 Threads

CPU-Zeit - 1 CPU 1:09 1:09

CPU-Zeit - 2 CPU 1:12 1:11

Kontextwechsel - 1 CPU 3555 3915

Kontextwechsel - 2 CPU 13299 11014

Faktor Skalierung (zw. 1CPU/2CPU) 0.96 0.97

Grad der Skalierung - 1CPU/2CPU
CPU-Zeit

0.96 0.971.00 1.00

0.36

1.00 1.00

0.27

0.97
0.96

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 Thread 2 Thread
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

CPU-Zeit 1 CPU (normalisiert) CPU-Zeit 2 CPU (normalisiert)
Kontextwechsel - 1CPU (normalisiert) Kontextwechsel - 2CPU (normalisiert)
Faktor Skalierung (zw. 1CPU/2CPU)

Abbildung 6 Grad der Skalierung 1CPU/2CPU (CPU-Zeit)

10.1.3. Ergebnisse

Für den Grad der Skalierung zwischen Single- und Multi-Prozessor-Architektur (Testcase 1) können
aus den Messresultaten und dem zugehörigen Graph (Abbildung 6) folgende Eigenschaften abgeleitet
werden:

• Berechnungszeit mit 1 Thread ist gleich bleibend

• Berechnungszeit mit 2 Thread auf 2 CPU wird halbiert (Skalierungsfaktor 1.95)

• Sprunghafter Anstieg für die Anzahl Kontextwechsel auf zwei CPU (1/2 Threads)

 2006-11-21

Diplomarbeit Seite 33

10.2. Testcase 2

Testcase 2 Betrachtungsbereich: Betriebssystem

Zielsetzung Nachweis Abbildung Java-Thread auf Win32-Thread

10.2.1. Thread Mapping

Tabelle 13 Thread Mapping

Java Threads # Kernel Threads # Deamon Threads PID Process

0 13 13 2572

1 14 13 2572

3 16 13 2572

16 29 13 2572

32 45 13 2572

(Grenzwert) 7146 7159 13 2572

10.2.2. Ergebnisse

Mit der flexiblen Mandelbrot-Anwendung und dem Processexplorer konnte die Erzeugung von Worker-
und Deamon-Threads im Kern einfach verfolgt werden. Für die Beziehung zwischen Java- und Kernel-
Threads unter Windows XP gelten folgende Eigenschaften:

• 1:1 Abbildung zwischen Java- und Kernel-Threads

• Mit variabler Anzahl Worker-Threads werden 13 Deamon Threads erzeugt

• Für die bestehende Plattform resultiert ein Grenzwert von 7146 Threads

• Zur Laufzeit erzeugte Threads werden ebenfalls auf Kernel-Threads abgebildet

 2006-11-21

Diplomarbeit Seite 34

10.3. Testcase 3

Testcase 3 Betrachtungsbereich: Betriebssystem

Zielsetzung Nachweis Abbildung Java-Thread-Priorität auf Win32-Thread-Priorität mit
unveränderter Default Process Priority-Class

10.3.1. Priority-Mapping

Tabelle 14 Priority Mapping Java-/Win32 Thread (klein)

Java Thread Priorität 1 2 3 4 5 6 7 8 9 10

Win32-Thread-Priorität 6 6 7 7 8 8 9 9 10 10

 Process Priority Class = 8 (Normal)

Priority Mapping Java-/Win32-Thread
Process-Priority-Class = 8 (Normal)

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

Java-Thread Priorität

W
in

32
-T

hr
ea

d
P

rio
rit

ät

Win32-Thread-Priorität

Abbildung 7 Priority Mapping Java-/Win32 Thread (klein)

10.3.2. Ergebnisse

Die Java-Thread-Priorität wird von der JVM auf eine entsprechende Kernel-Priorität gemappt. Für
dieses Mapping gelten folgende Regeln:

• Java Prioritäten werden linear auf Basisprioritäten abgebildet

• Mehrere Java Prioritäten werden auf die selbe Basispriorität abgebildet

• Faktisch stehen nur 5 Java Prioritäten zu Verfügung

 2006-11-21

Diplomarbeit Seite 35

10.4. Testcase 4

Testcase 4 Betrachtungsbereich: Betriebssystem

Zielsetzung Analyse Systemverhalten bei Änderung Win32-Thread-Priorität mit variabler
Default Process Priority-Class

10.4.1. Priority-Mapping

Tabelle 15 Priority Mapping Java-/Win32 Thread (gross)

Java Thread Priorität
Process Priority Class

1 2 3 4 5

IDLE_PRIORITY_CLASS 2 2 3 3 4

BELOW_NORMAL_PRIORITY_CLASS 4 4 5 5 6

NORMAL_PRIORITY_CLASS 6 6 7 7 8

ABOVE_NORMAL_PRIORITY_CLASS 8 8 9 9 10

HIGH_PRIORITY_CLASS 11 11 12 12 13

REALTIME_PRIORITY_CLASS 22 22 23 23 24

Java Thread Priorität
Process Priority Class

6 7 8 9 10

IDLE_PRIORITY_CLASS 4 5 5 6 6

BELOW_NORMAL_PRIORITY_CLASS 6 7 7 8 8

NORMAL_PRIORITY_CLASS 8 9 9 10 10

ABOVE_NORMAL_PRIORITY_CLASS 10 11 11 12 12

HIGH_PRIORITY_CLASS 13 14 14 15 15

REALTIME_PRIORITY_CLASS 24 25 25 26 26

 2006-11-21

Diplomarbeit Seite 36

Priority Mapping Java-/Win32-Thread
Process-Priority-Class variabel

2

6

26

2 3 3 4 4 5 5
6

22 22
23 23

24 24
25 25

26

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Java-Thread Priorität

W
in

32
-T

hr
ea

d
P

rio
ri

tä
t

0

5

10

15

20

25

30

BELOW_NORMAL_PRIORITY_CLASS IDLE_PRIORITY_CLASS

NORMAL_PRIORITY_CLASS ABOVE_NORMAL_PRIORITY_CLASS
HIGH_PRIORITY_CLASS REALTIME_PRIORITY_CLASS

Abbildung 8 Priority Mapping Java-/Win32 Thread (gross)

10.4.2. Ergebnisse

Das Java-Priority-Mapping kann ausgedehnt werden, wenn zusätzlich die Kernel Process-Priority-
Class berücksichtigt wird. Die Matrix und der zugehörige Graph (Abbildung 8) zeigen folgende charak-
teristische Eigenschaften:

• Java Prioritäten werden linear auf Basisprioritäten abgebildet

• Mehrere Java Prioritäten werden auf die selbe Basispriorität abgebildet

• Faktisch stehen nur 5 Java Prioritäten pro Process Priority Class zu Verfügung

• Überproportionaler Sprung für die HIGH_PRIORITY_CALSS (Δ=3)

• Überproportionaler Sprung für die REAL_TIME_PRIORITY_CLASS (Δ=11)

• Überlappungen Basisprioritäten bei unterschiedlichen Process Priority Classes

• Standard Basispriorität ist 8 (Standard Java Priorität = 5, NORMAL_PRIORITY_CLASS)

• (Bemerkung; nur Admin kann mit REAL_TIME_PRIORITY_CLASS Basis-Prioritäten über 15
erzeugen)

 2006-11-21

Diplomarbeit Seite 37

10.5. Testcase 5

Testcase 5 Betrachtungsbereich: Betriebssystem

Zielsetzung Analyse Systemverhalten (Skalierung) bei Änderung der Process Priority
Class und unterschiedlicher Last

10.5.1. Berechnungszeit

Tabelle 16 Skalierung mit variabler Process Priority Class (Berechnungszeit)

 Process Priority Class

Win32-Thread-Prio=8 NORMAL_PRIORITY_CLASS ABOVE_NORMAL_PRIORITY_CLASS

Laststufe null 35.7358 37.7074

Laststufe klein 42.0374 46.7240

Laststufe gross 47.0906 49.8650

Faktor Skalierung (Last
klein/gross) 0.89 0.94

Skalierung - mit variabler Process Priority Class
Berechnungszeit

0.76 0.76

1.00 1.00
0.89 0.94

0.940.89

0.00

0.50

1.00

NORMAL_PRIORITY
_CLASS

ABOVE_NORMAL_PRIORITY
_CLASS

0.00

0.50

1.00

Laststufe null (normalisiert) Laststufe klein (normalisiert)

Laststufe gross (normalisiert) Faktor Skalierung (Last klein/gross)

Win32-Thread-Pri o = 8
Java Thread Priorität = 5

Win32-Thread-Prio = 8
Java Thread Priorität = 2

Abbildung 9 Skalierung mit variabler Process Priority Class (Berechnungszeit)

 2006-11-21

Diplomarbeit Seite 38

10.5.2. CPU-Zeit

Tabelle 17 Skalierung mit variabler Process Priority Class (CPU-Zeit)

 Process Priority Class

Win32-Thread-Prio=8 NORMAL_PRIORITY_CLASS ABOVE_NORMAL_PRIORITY_CLASS

Laststufe null 1:10 1:12

Laststufe klein 1:09 1:13

Laststufe gross 1:09 1:12

Faktor Skalierung (Last
klein/gross) 1.00 1.01

Skalierung - mit variabler Process Priority Class
CPU-Zeit

1.00 0.98 0.99

1.000.99 0.99

1.00 1.01

0.00

0.50

1.00

NORMAL_PRIORITY
_CLASS

ABOVE_NORMAL_PRIORITY
_CLASS

0.00

0.50

1.00

Laststufe null (normalisiert) Laststufe klein (normalisiert)

Laststufe gross (normalisiert) Faktor Skalierung (Last klein/gross)

Win32-Thread-Prio = 8
Java Thread Priorität = 5

Win32-Thread-Prio = 8
Java Thread Priorität = 2

Abbildung 10 Skalierung mit variabler Process Priority Class (CPU-Zeit)

10.5.3. Ergebnisse

Der Einfluss einer variablen Process Priority Class auf das Schedulingverhalten des Kernels bei
gleichbleibender Basispriorität kann wie folgt umschrieben werden:

• Für gleiche Basispriorität resultiert die gleiche Berechnungsdauer

• Die resultierende Berechnungsdauer ist unabhängig von der Process Priority Class

• Das Windows Scheduling wird nur durch die Basispriorität beeinflusst

• Die konsumierte CPU-Zeit bleibt konstant

 2006-11-21

Diplomarbeit Seite 39

10.6. Testcase 6

Testcase 6 Betrachtungsbereich: Betriebssystem

Zielsetzung Analyse Systemverhalten bei Änderung Win32-Thread-Priorität und unter-
schiedlicher Last

10.6.1. Berechnungszeit (variable Win32-Priorität)

Tabelle 18 Skalierung mit variabler Win32-Priorität (Berechnungszeit)

 Win32-Thread-Priorität

 Basispriorität 6 Basispriorität 10

Laststufe null 37.51 34.85

Laststufe klein 72.29 34.71

Laststufe gross 100.00 34.99

Faktor Skalierung (Last klein/gross) 0.72 0.99

Skalierung - mit variabler Win32-Priorität
Berechnungszeit

72.29

34.8537.51 34.71 34.99

0.99

0.72

0.00

40.00

80.00

120.00

Basispriorität 6 Basispriorität 10
0.00

0.50

1.00

1.50

Laststufe null Laststufe klein

Laststufe gross Faktor Skalierung (Last klein/gross)

920.42 (nicht massstäblich)

Abbildung 11 Skalierung mit variabler Win32-Priorität (Berechnungszeit)

 2006-11-21

Diplomarbeit Seite 40

10.6.2. Berechnungszeit (variable Laststufe)

Tabelle 19 Skalierung mit variabler Laststufe (Berechnungszeit)

Berechnungszeit (variable Basispriorität und Laststufe)

Laststufe

null

Laststufe

klein

Laststufe

gross

Basispriorität 6 37.51 72.29 100.00

Basispriorität 8 35.74 42.04 47.09

Basispriorität 10 34.85 34.71 34.99

Skalierung - variabler Win32-Priorität, variabler Laststufe
Berechnungszeit

37.51

72.29

47.09

34.85 34.71 34.99

35.74
42.04

0.00

30.00

60.00

90.00

120.00

Laststufe null Laststufe klein Laststufe gross

Basispriorität 6 Basispriorität 8 Basispriorität 10

(nicht massstäblich) 920.42

Abbildung 12 Skalierung mit variabler Laststufe (Berechnungszeit)

 2006-11-21

Diplomarbeit Seite 41

10.6.3. CPU-Zeit

Tabelle 20 Skalierung mit variabler Win32-Priorität (CPU-Zeit)

 Win32-Thread-Priorität

 Basispriorität 6 Basispriorität 10

Laststufe null 1:12 1:08

Laststufe klein 1:14 1:08

Laststufe gross 1:09 1:08

Faktor Skalierung (Last klein/gross) 1.08 1.00

Skalierung - mit variabler Win32-Priorität
CPU-Zeit

0.98 1.00
0.93

1.00

1.001.00

1.00
1.08

0.00

0.50

1.00

1.50

Basispriorität 6 Basispriorität 10
0.00

0.50

1.00

1.50

Laststufe null (normalisiert) Laststufe klein (normalisiert)

Laststufe gross (normalisiert) Faktor Skalierung (Last klein/gross)

Abbildung 13 Skalierung mit variabler Win32-Priorität (CPU-Zeit)

10.6.4. Ergebnisse

Der Einfluss einer variablen Basispriorität (Win32-Thread-Priorität) auf das Schedulingverhalten des
Kernels kann abhängig von 3 verschiedenen Laststufen wie folgt umschrieben werden:

• Für Laststufe „null“ resultiert die gleiche Berechnungszeit, die Basispriorität ist nicht relevant

• Für Laststufe „gering“ ergibt sich mit tieferer Priorität in Bezug auf die Last eine Verdoppelung
der Berechnungszeit

• Für Laststufe „gross“ ergibt sich mit tieferer Priorität in Bezug auf die Last einen sprunghaften
Anstieg der Berechnungszeit

• Für alle Laststufe ergeben sich mit höherer Priorität in Bezug auf die Last gleichbleibende Be-
rechnungszeiten

 2006-11-21

Diplomarbeit Seite 42

10.7. Testcase 7

Testcase 7 Betrachtungsbereich: Betriebssystem

Zielsetzung Analyse Systemverhalten bei Festlegung einer Prozess-Affinität

Tabelle 21 Java Anwendung ohne Affinität

Testcase # Java Threads Basispriorität Affinität Last Basispriorität Affinität

Rahmenbedingung 2 8 ohne NEIN keine ohne

Berechnungszeit 35.5900

Abbildung 14 Java Anwendung ohne Affinität

Tabelle 22 Java Anwendung - Affinität auf CPU 1

Testcase # Java Threads Basispriorität Affinität Last Basispriorität Affinität

Rahmenbedingung 2 8 CPU 1 NEIN keine ohne

Berechnungszeit 69.8000

Abbildung 15 Java Anwendung - Affinität auf CPU 1

 2006-11-21

Diplomarbeit Seite 43

Tabelle 23 Calc ohne Affinität; Java Anwendung - Affinität auf CPU 1

Testcase # Java Threads Basispriorität Affinität Last Basispriorität Affinität

Rahmenbedingung 2 8 CPU 1 JA 8 ohne

Berechnungszeit 101.3900

Abbildung 16 Calc ohne Affinität; Java Anwendung - Affinität auf CPU 1

Tabelle 24 Calc - Affinität CPU 0; Java Anwendung - Affinität auf CPU1

Testcase # Java Threads Basispriorität Affinität Last Basispriorität Affinität

Rahmenbedingung 2 8 CPU 1 JA 8 CPU 0

Berechnungszeit 70.2000

Abbildung 17 Calc - Affinität CPU 0; Java Anwendung - Affinität auf CPU1

10.7.1. Ergebnisse

Das Verhalten des Kernels bei expliziter Zuweisung eines Prozessors (Affinität) konnte mit Hilfe eines
Systools analysiert werden und lässt sich wie folgt charakterisieren:

• Ohne Affinität und Last resultiert eine gleichförmige Verteilung auf alle verfügbaren CPUs

 2006-11-21

Diplomarbeit Seite 44

• Vererbung der Prozess Affinität auf die Threads dieses Prozesses

• Durch die Prozesses-Affinität werden andere Prozessoren für diesen Prozess „ausgeblendet“

• Ein Prozessor wird durch die Affinitäts(Maske) nicht exklusiv zugeteilt

• Die manuelle „Trennung“ von Anwendungen (Prozessen) ist über die Affinität möglich

 2006-11-21

Diplomarbeit Seite 45

10.8. Testcase 8

Testcase 8 Betrachtungsbereich: JVM

Zielsetzung Analyse der Skalierung einer multithreaded Java-Applikation

10.8.1. Skalierung 1 CPU ohne Synchronisation

Tabelle 25 Skalierung 1 CPU ohne Synchronisation

1 CPU Anzahl Threads

JThreadpriorität = 5,

Basispriorität = 8
1 2 8 32 128 512

Berechnungszeit 69.6344 70.3050 70.6148 69.4788 69.7438 69.5392

CPU-Zeit 1:09 1:10 1:10 1:09 1:09 1:09

Faktor Skalierung 1.00 0.99 0.99 1.00 1.00 1.00

Skalierung - 1 CPU mit 1...n Threads (ohne Synchronisation)
Basispriorität = 8

0.95

1.00

1.05

1 2 8 32 128 512
0.95

1.00

1.05

Berechnungszeit (normalisiert) Faktor Skalierung CPU-Zeit (normalisiert)

Abbildung 18 Skalierung 1 CPU ohne Synchronisation

 2006-11-21

Diplomarbeit Seite 46

10.8.2. Skalierung 2 CPU ohne Synchronisation

Tabelle 26 Skalierung 2 CPU ohne Synchronisation

2 CPU Anzahl Threads

JThreadpriorität = 5,

Basispriorität = 8
1 2 8 32 128 512

Berechnungszeit 68.2768 35.5212 35.5932 35.0078 35.3916 36.1504

CPU-Zeit 1:09 1:09 1:10 1:09 1:10 1:12

Faktor Skalierung 1.00 1.92 1.92 1.95 1.93 1.89

Skalierung - 2 CPU mit 1...n Threads (ohne Synchronisation)
Basispriorität = 8

0.530.520.510.520.52

1.00

1.89

1.00

1.931.951.921.92

1.000.980.970.980.970.97

0.00

0.50

1.00

1.50

2.00

1 2 8 32 128 512
0.00

0.50

1.00

1.50

2.00

Berechnungszeit (normalisiert) Faktor Skalierung CPU-Zeit (normalisiert)

Abbildung 19 Skalierung 2 CPU ohne Synchronisation

10.8.3. Ergebnisse

Die Skalierung einer Anwendung mit variabler Anzahl Threads ohne Synchronisation zeigt zwischen
der Single- und Multi-Prozessor-Architektur deutliche Unterschiede im Verlauf:

• Auf der 1 CPU-Architektur für 1 bis 512 Threads annähernd konstante Berechnungs- und
CPU-Zeiten (Schwankung BZ: ~1.6%, Schwankung CPU-Zeit: ~1.4%)

 2006-11-21

Diplomarbeit Seite 47

• Auf der 2 CPU-Architektur ab 2 Threads durch Verteilung der Threads eine Halbierung der
Berechnungszeit

• CPU-Zeit bleibt auch bei der 2 CPU-Architektur annähernd konstant (Schwankung CPU-Zeit:
~2.7%)

• Auf der 2 CPU-Architektur wird ab 2 Threads durch Verteilung der Threads ein Skalierungs-
faktor von nahezu 2 erreicht

• Der zunehmende Verwaltungsaufwand für 1 bis 512 Threads führt bei der 1 CPU und 2 CPU-
Architektur nicht zu einer nennenswerten Zunahme der CPU-Zeit

 2006-11-21

Diplomarbeit Seite 48

10.9. Testcase 9

Testcase 9 Betrachtungsbereich: JVM

Zielsetzung Analyse Einfluss der Thread-Synchronisation auf die Skalierung

10.9.1. Skalierung 1 CPU - Methodensynchronisation

Tabelle 27 Skalierung 1 CPU mit Methodensynchronisation

1 CPU

Methodensynchronisation
Anzahl Threads

JThreadpriorität = 5,

Basispriorität = 8
1 2 8 32 128 512

Berechnungszeit 69.3373 69.9843 114.2270 129.0133 127.3140 124.4367

CPU-Zeit 1:10 1:10 1:53 2:07 2:06 2:03

Faktor Skalierung 1.00 0.99 0.61 0.54 0.54 0.56

Skalierung - 1 CPU mit 1...n Threads (mit Synchronisation)
Methodensynchronisation

1.79
1.841.86

1.65

1.00 1.01

0.56
0.540.54

0.61

1.00 0.99

0.00

0.50

1.00

1.50

2.00

1 2 8 32 128 512
0.00

0.50

1.00

1.50

2.00

Berechnungszeit (normalisiert) CPU-Zeit (normalisiert) Faktor Skalierung

Abbildung 20 Skalierung 1 CPU mit Methodensynchronisation

 2006-11-21

Diplomarbeit Seite 49

10.9.2. Skalierung 1 CPU - Objektsynchronisation

Tabelle 28 Skalierung 1 CPU mit Objektsynchronisation

1 CPU

Objektsynchronisation
Anzahl Threads

JThreadpriorität = 5,

Basispriorität = 8
1 2 8 32 128 512

Berechnungszeit 69.6983 69.6860 70.7043 69.8513 69.2120 70.2033

CPU-Zeit 1:10 1:10 1:11 1:10 1:09 1:10

Faktor Skalierung 1.00 1.00 0.99 1.00 1.01 0.99

Skalierung - 1 CPU mit 1...n Threads (mit Synchronisation)
Objektsynchronisation

1.01

0.99

1.001.00

0.99

1.00

0.95

1.00

1.05

1 2 8 32 128 512
0.95

1.00

1.05

CPU-Zeit (normalisiert) Berechnungszeit (normalisiert) Faktor Skalierung

Abbildung 21 Skalierung 1 CPU mit Objektsynchronisation

 2006-11-21

Diplomarbeit Seite 50

10.9.3. Skalierung 1 CPU – CAS-Synchronisation

Tabelle 29 Skalierung 1 CPU mit CAS-Synchronisation

1 CPU

CAS-Synchronisation
Anzahl Threads

JThreadpriorität = 5,

Basispriorität = 8
1 2 8 32 128 512

Berechnungszeit 69.0243 69.5647 70.8340 69.7330 69.6180 69.6500

CPU-Zeit 1:09 1:10 1:11 1:10 1:10 1:10

Faktor Skalierung 1.00 0.99 0.97 0.99 0.99 0.99

Skalierung - 1 CPU mit 1...n Threads (mit Synchronisation)
CAS

0.99 0.99

1.00

0.97

0.990.99

0.95

1.00

1.05

1 2 8 32 128 512
0.95

1.00

1.05

Berechnungszeit (normalisiert) CPU-Zeit (normalisiert) Faktor Skalierung

Abbildung 22 Skalierung 1 CPU mit CAS-Synchronisation

 2006-11-21

Diplomarbeit Seite 51

10.9.4. Ergebnisse

Die Skalierung einer Anwendung mit variabler Anzahl Threads zeigt auf einer 1 CPU-Architektur unter
Berücksichtigung verschiedener Synchronisations-Methoden deutliche Unterschiede im Verlauf:

Methodensynchronisation

• Bis 2 Threads resultiert ein konstanter Verlauf von Berechnungs- und CPU-Zeit

• Verwendung > 2 Threads führt zu massiven Anstieg von Berechnungs- und CPU-Zeit

• Einbruch der Skalierung bei > 2 Threads um bis zu 50%

Objektsynchronisation

• Für Objektsynchronisation mit 1 bis 512 Threads annähernd konstante Berechnungs- und
CPU-Zeit (Schwankung BZ: ~2.1%, Schwankung CPU-Zeit: ~2.8%)

CAS-Synchronisation

• Für CAS-Synchronisation mit 1 bis 512 Threads annähernd konstante Berechnungs- und
CPU-Zeit (Schwankung BZ: ~2.6%, Schwankung CPU-Zeit: ~2.8%)

 2006-11-21

Diplomarbeit Seite 52

10.9.5. Skalierung 2 CPU - Methodensynchronisation

Tabelle 30 Skalierung 2 CPU mit Methodensynchronisation

2 CPU

Methodensynchronisation
Anzahl Threads

JThreadpriorität = 5,

Basispriorität = 8
1 2 8 32 128 512

Berechnungszeit 69.3133 35.2490 38.5930 40.5993 42.1927 42.3203

CPU-Zeit 1:10 1:10 1:16 1:20 1:23 1:23

Faktor Skalierung 1.00 1.97 1.80 1.71 1.64 1.64

Skalierung - 2 CPU mit 1...n Threads (mit Synchronisation)
Methodensynchronisation

0.61

0.51

0.56 0.59 0.61
1.00

1.20

1.64

1.191.141.09
1.01

1.00

1.97

1.64

1.71
1.80

1.00

0.00

0.50

1.00

1.50

2.00

2.50

1 2 8 32 128 512
0.00

0.50

1.00

1.50

2.00

2.50

Berechnungszeit (normalisiert) CPU-Zeit (normalisiert) Faktor Skalierung

Abbildung 23 Skalierung 2 CPU mit Methodensynchronisation

 2006-11-21

Diplomarbeit Seite 53

10.9.6. Skalierung 2 CPU - Objektsynchronisation

Tabelle 31 Skalierung 2 CPU mit Objektsynchronisation

2 CPU

Objektsynchronisation
Anzahl Threads

JThreadpriorität = 5,

Basispriorität = 8
1 2 8 32 128 512

Berechnungszeit 68.8343 35.8957 39.1343 40.4560 41.3240 42.1283

CPU-Zeit 1:13 1:11 1:17 1:20 1:21 1:23

Faktor Skalierung 1.00 1.92 1.76 1.70 1.67 1.63

Skalierung - 2 CPU mit 1...n Threads (mit Synchronisation)
Objektsynchronisation

0.61

1.00

0.600.590.570.52

1.18

1.63

1.03

1.151.141.09
1.00

1.00

1.671.701.76
1.92

0.00

0.50

1.00

1.50

2.00

2.50

1 2 8 32 128 512
0.00

0.50

1.00

1.50

2.00

2.50

Berechnungszeit (normalisiert) CPU-Zeit (normalisiert) Faktor Skalierung

Abbildung 24 Skalierung 2 CPU mit Objektsynchronisation

 2006-11-21

Diplomarbeit Seite 54

10.9.7. Skalierung 2 CPU - CAS-Synchronisation

Tabelle 32 Skalierung 2 CPU mit CAS-Synchronisation

2 CPU

CAS-Synchronisation
Anzahl Threads

JThreadpriorität = 5,

Basispriorität = 8
1 2 8 32 128 512

Berechnungszeit 68.6270 35.9630 35.8297 35.1910 35.5630 37.0027

CPU-Zeit 1:10 1:10 1:11 1:10 1:11 1:14

Faktor Skalierung 1.00 1.91 1.92 1.95 1.93 1.85

Skalierung - 2 CPU mit 1...n Threads (mit Synchronisation)
CAS

0.54
0.520.510.520.52

1.00

1.05

1.85

1.011.001.011.00
1.00

1.931.951.921.91

1.00

0.00

0.50

1.00

1.50

2.00

2.50

1 2 8 32 128 512
0.00

0.50

1.00

1.50

2.00

2.50

Berechnungszeit (normalisiert) CPU-Zeit (normalisiert) Faktor Skalierung

Abbildung 25 Skalierung 2 CPU mit CAS-Synchronisation

 2006-11-21

Diplomarbeit Seite 55

10.9.8. Ergebnisse

Die Skalierung einer Anwendung mit variabler Anzahl Threads zeigt auf einer 2 CPU-Architektur unter
Berücksichtigung verschiedener Synchronisations-Methoden Ähnlichkeiten im Verlauf:

Methodensynchronisation

• Bis 2 Threads resultiert eine lineare Skalierung (Halbierung der Berechnungs-Zeit)

• Zwischen 3 bis 512 Threads ergibt sich eine 20%-Zunahme der BERECHNUNGS-Zeit

• Zwischen 3 bis 512 Threads ergibt sich eine 20% Zunahme der CPU-Zeit

• Maximaler Skalierungs-Faktor bei 2 Threads beträgt annähernd 2, sinkt bis 512 Threads auf
ca.1.6

Objektsynchronisation

• Für Objektsynchronisation ähnlicher Verlauf im Vergleich zur Methoden Synchronisation

• Zwischen 3 bis 512 Threads ergibt sich eine 17%-Zunahme der Berechnungs-Zeit

• Zwischen 3 bis 512 Threads ergibt sich eine 18% Zunahme der CPU-Zeit

• Maximaler Skalierungs-Faktor bei 2 Threads beträgt annähernd 2, sinkt bis 512 Threads auf
ca.1.6

CAS-Synchronisation

• Für CAS-Synchronisation flacherer Verlauf im Vergleich zur Methoden- und Objekt-
Synchronisation

• Zwischen 3 bis 512 Threads ergibt sich eine 4%-Zunahme der Berechnungs-Zeit

• Zwischen 3 bis 512 Threads ergibt sich eine 5% Zunahme der CPU-Zeit

• Maximaler Skalierungs-Faktor bei 2 Threads beträgt 1.9, sinkt bis 512 Threads nur unwesent-
lich

 2006-11-21

Diplomarbeit Seite 56

Direkter Vergleich 1 CPU und 2CPU mit Methodensynchronisation

Skalierung - 1 CPU/2 CPU mit 1...n Threads (mit Synchronisation)
Methodensynchronisation

0.61

1.20

0.51

1.00

0.56 0.59 0.61

1.00 1.00

1.761.801.82

1.62

1.191.14
1.09

1.00
1.01

0.30

0.80

1.30

1.80

1 2 8 32 128 512
0.30

0.80

1.30

1.80

Berechnungszeit (1 CPU) Berechnungszeit (2 CPU)
CPU-Zeit (1 CPU) CPU-Zeit (2 CPU)

Abbildung 26 Skalierung 1 CPU/2 CPU mit Methodensynchronisation

Ergebnisse direkter Vergleich

• Ein 2 CPU-System wird durch grobkörnige Synchronisation deutlich weniger ausgebremst als
ein 1 CPU-System

• Jede Synchronisation benötigt Rechenzeit, die im direkten Zusammenhang mit der Anzahl ak-
tiver Threads und der resultierenden „lock-contention“ steht

 2006-11-21

Diplomarbeit Seite 57

10.10. Testcase 10

Testcase 10 Betrachtungsbereich: JVM

Zielsetzung Parallelisierung durch JOMP

10.10.1. Skalierung 2 CPU - JOMP-Threads

Tabelle 33 Skalierung JOMP-Threads

2 CPU

ohne Synchronisation
Anzahl JOMP-Threads

Basispriorität = 8 1 2 8 32 128 512

Berechnungszeit 68.2590 36.0777 35.4657 35.2003 35.3213 35.7390

CPU-Zeit 1:10 1:14 1:11 1:13 1:15 1:15

Faktor Skalierung 1.00 1.89 1.92 1.94 1.93 1.91

Skalierung - 2 CPU mit 1...n JOMP Threads
(ohne Synchronisation)

0.52
0.53

1.00

0.52 0.52 0.52

1.08

1.91

1.071.041.02

1.00

1.06

1.89

1.00

1.92 1.94 1.93

0.30

0.80

1.30

1.80

1 2 8 32 128 512
0.30

0.80

1.30

1.80

Berechnungszeit (normalisiert) CPU-Zeit (normalisiert) Faktor Skalierung

Abbildung 27 Skalierung JOMP-Threads

 2006-11-21

Diplomarbeit Seite 58

10.10.2. Ergebnisse

Die Skalierung einer JOMP-Anwendung mit variabler Anzahl Threads zeigt auf einer 2 CPU-
Architektur unter Berücksichtigung der Methoden-Synchronisation folgende charakteristische Merkma-
le:

• Ab 2 Threads wird auf der 2 CPU-Architektur durch Verteilung der Threads eine Halbierung
der Berechnungszeit erreicht

• CPU-Zeit bleibt auch bei JOMP-Threads annähernd konstant (Schwankung CPU-Zeit: ~1%)

• (Hinweis; Grafik zeigt leichten Anstieg der CPU-Zeit da Threads nach der Berechnung im Bu-
sy-Waiting verbleiben und somit CPU-Zeit verbrauchen)

• Skalierungsfaktor ist vergleichbar mit einer Java-Thread-Implementierung ohne Synchronisa-
tion (10.8.2 Skalierung 2 CPU ohne Synchronisation)

 2006-11-21

Diplomarbeit Seite 59

11. Glossar
Tabelle 34 Glossar

Begriff Beschreibung

Affinität Bezeichnet die Zuordnung eines Prozesses/Threads zu physikalischen Recheneinhei-
ten. Durch die Definition einer Affinitätsmaske kann gesteuert werden auf welchen
Recheneinheiten die Anwendung ausgeführt werden kann.

API API (Application Programming Interface) defniert eine Schnittstelle zwischen verschie-
denen Software Systemen. Eine API definiert typischerweise eine Reihe von Metho-
den, Parametern, Datentypen und Datenfeldern.

CAS Compare and Swap bzw. Compare and Set bezeichnet eine atomare (meist hardware-
unterstützte) Operation in der ein gespeicherter Wert mit dem vermuteten Wert vergli-
chen wird. Stimmt dieser überein, so wird ein neuer Wert gesetzt. Ansonsten wird
nichts getan. CAS Funktionen erlauben Lock-freie Algorithmen.

CPU Abkürzung für Central Processing Unit. Wird synonym für die deutsche Bezeichnung
Hauptrpozessor bzw. Prozessor verwendet.

DEP Data Execution Prevention; Eine Technologie, die es erlaubt Speicherbereiche als
nicht ausführbar zu markieren. Damit verlieren Overflow-Basierende Sicherheitslücken
(die grosse Masse) an Bedeutung. AMD bezeichnet die Hardware-Unterstützung als
NX (No eXecute) Bit.

Java Eine von Sun Microsystems forcierte Programmtechnologie. Java-Programme werden
nicht wie klassische C/C++ Programme in Plattformabhängige Binaries kompiliert son-
dern in den so genannten Bytecode. Dieser wird dann von der Java Virtual Machine
interpretiert und zur Laufzeit optimiert. Java-Programme können somit auf jeder Platt-
form ausgeführt werden, für die eine Java Virtual Machine existiert.

JVM Die Java Virtual Machine ist ein Interpreter für Java Bytecode. Die JVM ist dabei das
Bindeglied zwischen Betriebssystem und den plattformunabhängigen Java Anwen-
dungen.

Synchroni-
isierung

Allgemeine Bezeichnung für die Überwachung von konkurrierenden Zugriffen.

Thread Ein leichtgewichtiger Prozess. Ein Thread teilt den Adressraum mit dem Prozess zu
dem er gehört. Dadurch werden einerseits die Kommunikation und andererseits der
Kontextwechsel beschleunigt.

 2006-11-21

Diplomarbeit Seite 60

12. Verzeichnisse

12.1. Tabellenverzeichnis

Tabelle 1 Referenzierte Dokumente.. 8
Tabelle 2 Abkürzungen.. 8
Tabelle 3 Links .. 9
Tabelle 4 Geplanter Test-Umfang gemäss SDD ([2]) ... 11
Tabelle 5 Hardware-Eckdaten... 12
Tabelle 6 Software-Umgebung.. 13
Tabelle 7 Software Konfigurationsanpassung... 14
Tabelle 8 Relevante Performance Indikatoren.. 27
Tabelle 9 Nicht relevante Performance Indikatoren .. 27
Tabelle 10 Profiling- und Testtools.. 28
Tabelle 11 Grad der Skalierung – 1CPU/2CPU (Berechnungszeit).. 31
Tabelle 12 Grad der Skalierung 1CPU/2CPU (CPU-Zeit)... 32
Tabelle 13 Thread Mapping... 33
Tabelle 14 Priority Mapping Java-/Win32 Thread (klein) .. 34
Tabelle 15 Priority Mapping Java-/Win32 Thread (gross)... 35
Tabelle 16 Skalierung mit variabler Process Priority Class (Berechnungszeit) 37
Tabelle 17 Skalierung mit variabler Process Priority Class (CPU-Zeit) .. 38
Tabelle 18 Skalierung mit variabler Win32-Priorität (Berechnungszeit).. 39
Tabelle 19 Skalierung mit variabler Laststufe (Berechnungszeit) ... 40
Tabelle 20 Skalierung mit variabler Win32-Priorität (CPU-Zeit).. 41
Tabelle 21 Java Anwendung ohne Affinität ... 42
Tabelle 22 Java Anwendung - Affinität auf CPU 1 .. 42
Tabelle 23 Calc ohne Affinität; Java Anwendung - Affinität auf CPU 1... 43
Tabelle 24 Calc - Affinität CPU 0; Java Anwendung - Affinität auf CPU1... 43
Tabelle 25 Skalierung 1 CPU ohne Synchronisation .. 45
Tabelle 26 Skalierung 2 CPU ohne Synchronisation .. 46
Tabelle 27 Skalierung 1 CPU mit Methodensynchronisation .. 48
Tabelle 28 Skalierung 1 CPU mit Objektsynchronisation.. 49
Tabelle 29 Skalierung 1 CPU mit CAS-Synchronisation... 50
Tabelle 30 Skalierung 2 CPU mit Methodensynchronisation .. 52
Tabelle 31 Skalierung 2 CPU mit Objektsynchronisation.. 53
Tabelle 32 Skalierung 2 CPU mit CAS-Synchronisation... 54
Tabelle 33 Skalierung JOMP-Threads .. 57
Tabelle 34 Glossar .. 59

 2006-11-21

Diplomarbeit Seite 61

12.2. Abbildungsverzeichnis

Abbildung 1 Methoden-Synchronisation 1 CPU / 2CPU-Architektur... 4
Abbildung 2 Hardware Testplattform... 12
Abbildung 3 CodeAnalyst for Windows (AMD).. 29
Abbildung 4 ProcessExplorer (Sysinternals) ... 30
Abbildung 5 Grad der Skalierung – 1CPU/2CPU (Berechnungszeit) ... 31
Abbildung 6 Grad der Skalierung 1CPU/2CPU (CPU-Zeit)... 32
Abbildung 7 Priority Mapping Java-/Win32 Thread (klein) .. 34
Abbildung 8 Priority Mapping Java-/Win32 Thread (gross)... 36
Abbildung 9 Skalierung mit variabler Process Priority Class (Berechnungszeit) 37
Abbildung 10 Skalierung mit variabler Process Priority Class (CPU-Zeit) .. 38
Abbildung 11 Skalierung mit variabler Win32-Priorität (Berechnungszeit) ... 39
Abbildung 12 Skalierung mit variabler Laststufe (Berechnungszeit)... 40
Abbildung 13 Skalierung mit variabler Win32-Priorität (CPU-Zeit).. 41
Abbildung 14 Java Anwendung ohne Affinität... 42
Abbildung 15 Java Anwendung - Affinität auf CPU 1.. 42
Abbildung 16 Calc ohne Affinität; Java Anwendung - Affinität auf CPU 1 .. 43
Abbildung 17 Calc - Affinität CPU 0; Java Anwendung - Affinität auf CPU1... 43
Abbildung 18 Skalierung 1 CPU ohne Synchronisation .. 45
Abbildung 19 Skalierung 2 CPU ohne Synchronisation .. 46
Abbildung 20 Skalierung 1 CPU mit Methodensynchronisation.. 48
Abbildung 21 Skalierung 1 CPU mit Objektsynchronisation ... 49
Abbildung 22 Skalierung 1 CPU mit CAS-Synchronisation... 50
Abbildung 23 Skalierung 2 CPU mit Methodensynchronisation.. 52
Abbildung 24 Skalierung 2 CPU mit Objektsynchronisation ... 53
Abbildung 25 Skalierung 2 CPU mit CAS-Synchronisation... 54
Abbildung 26 Skalierung 1 CPU/2 CPU mit Methodensynchronisation .. 56
Abbildung 27 Skalierung JOMP-Threads .. 57

12.3. Code Listings

Listing 1 Ausgabe der Anwendung.. 29

12.4. Index

Abkürzungen.................... 8

Affinität 59

ANT 13

API................................... 59

Ausschnitt 15

Betrachtungsbereiche .. 11

Betriebssystem.............. 13

Bildgrösse 15

CAS 59

CPU 59

CPU-Anzahl.................... 16

Definitionen...................... 8

DEP 14, 59

Eclipse............................ 13

Ergebnisse 18, 31

 2006-11-21

Diplomarbeit Seite 62

Fixe Grössen.................. 15

Indikatoren 27

Iterationen 15

Java................................. 59

JOMP............................... 13

JVM 59

Links 9

Locking........................... 16

Messgrössen.................. 10

numprocs 14

Priorität........................... 16

Protokollieren 27

Rahmenbedingungen.... 15

Referenzen 8

Runtime 13

Software 13

Synchroniisierung......... 59

Synchronisation 16

System Information....... 12

Testcases 18

Test-Plattform 12

Test-Scope 11

Testtools 28

Testverfahren................. 15

Thread............................. 59

Tools............................... 28

Variable Gössen 16

Worker 16

 2006-11-21

	1. Management Summary
	2. Inhaltsverzeichnis
	3. Dokumentinformationen
	3.1. Referenzierte Dokumente
	3.2. Definitionen und Abkürzungen
	3.3. Links
	4. Einleitung
	4.1. Zweck des Dokuments

	5. Test-Scope
	6. Test-Plattform
	6.1. Hardware-Dokumentation
	6.2. Software-Dokumentation

	7. Testverfahren
	7.1. Rahmenbedingungen
	7.1.1. Fixe Grössen
	7.1.2. Variable Gössen

	7.2. Durchführung der Testreihe
	7.3. Anforderungen Testcases

	8. Testcases
	8.1. Testcase Hardware
	8.1.1. Testcase 1

	8.2. Testcases Betriebssystem
	8.2.1. Testcase 2
	8.2.2. Testcase 3
	8.2.3. Testcase 4
	8.2.4. Testcase 5
	8.2.5. Testcase 6
	8.2.6. Testcase 7

	8.3. Testcases JVM
	8.3.1. Testcase 8
	8.3.2. Testcase 9
	8.3.3. Testcase 10

	9. Messen und Protokollieren
	9.1. Performance Indikatoren
	9.2. Profiling und Testtools
	9.2.1. Übersicht der Tools
	9.2.2. Ausgabe Testtools

	10. Ergebnisse der Testcases
	10.1. Testcase 1
	10.1.1. Berechnungszeit
	10.1.2. CPU-Zeit
	10.1.3. Ergebnisse

	10.2. Testcase 2
	10.2.1. Thread Mapping
	10.2.2. Ergebnisse

	10.3. Testcase 3
	10.3.1. Priority-Mapping
	10.3.2. Ergebnisse

	10.4. Testcase 4
	10.4.1. Priority-Mapping
	10.4.2. Ergebnisse

	10.5. Testcase 5
	10.5.1. Berechnungszeit
	10.5.2. CPU-Zeit
	10.5.3. Ergebnisse

	10.6. Testcase 6
	10.6.1. Berechnungszeit (variable Win32-Priorität)
	10.6.2. Berechnungszeit (variable Laststufe)
	10.6.3. CPU-Zeit
	10.6.4. Ergebnisse

	10.7. Testcase 7
	10.7.1. Ergebnisse

	10.8. Testcase 8
	10.8.1. Skalierung 1 CPU ohne Synchronisation
	10.8.2. Skalierung 2 CPU ohne Synchronisation
	10.8.3. Ergebnisse

	10.9. Testcase 9
	10.9.1. Skalierung 1 CPU - Methodensynchronisation
	10.9.2. Skalierung 1 CPU - Objektsynchronisation
	10.9.3. Skalierung 1 CPU – CAS-Synchronisation
	10.9.4. Ergebnisse
	10.9.5. Skalierung 2 CPU - Methodensynchronisation
	10.9.6. Skalierung 2 CPU - Objektsynchronisation
	10.9.7. Skalierung 2 CPU - CAS-Synchronisation
	10.9.8. Ergebnisse

	10.10. Testcase 10
	10.10.1. Skalierung 2 CPU - JOMP-Threads
	10.10.2. Ergebnisse

	11. Glossar
	12. Verzeichnisse
	12.1. Tabellenverzeichnis
	12.2. Abbildungsverzeichnis
	Code Listings
	Index

