

FHZ FACHHOCHSCHULE ZENTRALSCHWEIZ

HTA HOCHSCHULE FÜR TECHNIK+ARCHITEKTUR LUZERN

Abteilung Informatik

HTA LUZERN T: 041-349-33-11

Java

Thread Skalierung

SDD
Software Design Document

HTA Horw

Diplomarbeit 2006

Aregger Marcel

Meier Rainer

Technikumstrasse 21

CH—6048 Horw

F: 041-349-39-60

W: www.hta.fhz.ch

Diplomarbeit Seite 2

Änderungskontrolle

Version Datum Ausführende Stelle Bemerkungen/Art der Änderung

1.1 2006-10-16 Rainer Meier Initial Release

1.2 2006-11-06 Rainer Meier Diverse Erweiterungen in allen Kapiteln.

Erste freigegebene Draft-Version

1.3 2006-11-10 Rainer Meier Fraktal ausgewählt., Source-Code dokumentiert

Anpassungen Review Evaluation

1.4 2006-11-14 Marcel Aregger Zuordnung Testumfang zu Projektzielsetzungen

Prüfung und Freigabe

Vorname/Name Dokumentversion Status Datum Visum

Rainer Meier 1.4 Final 2006-11-16

Marcel Aregger 1.4 Final 2006-11-16

 2006-11-16

Diplomarbeit Seite 3

1. Management Summary
Das Software Design Document bildet das Bindeglied zwischen der Basisanalyse und der darauf fol-
genden Testserie. Das Dokument ist folgendermassen strukturiert:

1. Evaluation Plattform

2. Abstecken des geplanten Testumfanges

3. Spezifikation der Testklasse

4. Auswahl der Testklasse

5. Implementierung der Testapplikation

Die Evaluation der Testplattform (siehe Kapitel 5) ist nötig um die aus der Basisanalyse (siehe [1])
resultierenden Einflussbereiche abzugrenzen. Daraus resultieren die Anforderungen an die Testplatt-
form auf Ebene Hardware, Betriebssystem, Applikation und JVM:

Tabelle 1 Abgrenzung der Einflussbereiche

Hardware Betriebssystem Applikation JVM

SMP Designprinzip Thread,
Win32 Thread,
Scheduling (Prioritäten),
Affinität

OpenMP (in Form von
JOMP)

Java Threading, JOMP

Die Definition des geplanten Testumfanges (siehe Kapitel 6) ist notwendig um die Anforderungen an
eine geeignete Testklasse definieren zu können da diese direkt vom geplanten Testumfang abhängig
ist. Hier wurden 8 Testziele {T?} formuliert die in direktem Zusammenhang mit den im SPMP definier-
ten Projektzielsetzungen {Z?} stehen.

Tabelle 2 Übersicht Testziele

SPMP # Zielsetzung Hardware, Betriebssystem und JVM Kat.

{Z19} {T1} Feststellung Grad der Skalierung zwischen Single- und Multi-Prozessor-
Architektur

Muss

{Z7} {T2} Nachweis Abbildung Java-Thread auf Win32-Thread Muss

{Z7} {T3} Nachweis Abbildung Java-Thread-Priorität auf Win32-Thread-Priorität Kann

{Z7} {T4} Analyse Systemverhalten bei Änderung Win32-Thread-Priorität Kann

{Z7} {T5} Analyse Systemverhalten bei Festlegung einer Prozess-Affinität Kann

{Z5} {T6} Analyse der Skalierung einer multithreaded Java-Applikation Muss

{Z5} {T7} Analyse Einfluss der Thread-Synchronisation auf die Skalierung Kann

{Z16} {T8} Analyse Anwendbarkeit und Effektivität von JOMP Muss

 2006-11-16

Diplomarbeit Seite 4

Die aus den Testzielen abgeleitete Spezifikation der Testklasse (siehe Kapitel 7) beinhaltet einen An-
forderungskatalog in 8 Punkten. Sie definieren die funktionalen- und logischen Anforderungen an die
Testklasse.

Tabelle 3 Anforderungskatalog an eine geeignete Testklasse

Beschreibung Typisierung

{R1.1} Sequenzieller Code Muss

{R1.2} Parallelisierbar Muss

{R1.3} Messbar Muss

{R1.4} Portierbar auf verschiedene Konzepte und Plattformen Muss

{R1.5} Nachvollziehbar, einfach, übersichtlich Muss

{R1.6} Reproduzierbarkeit Muss

{R2.1} Konkurrierender Datenzugriff Kann

{R2.2} Visualisierbarkeit Kann

Kapitel 8 beinhaltet die Evaluation einer geeigneten Testklasse anhand des Anforderungskataloges
inklusive technischer Analyse des Algorithmus. Die Berechnung der Mandelbrot Menge stellte sich
dabei als optimal heraus da sich alle Anforderungen mit diesem Algorithmus optimal abdecken lassen.

Basierend auf der ausgewählten Testklasse wurde in Kapitel 9 ein Anwendungs-Design erstellt und
dokumentiert, welches eine bequeme Durchführung der Testreihen erlaubt. Das Design beinhaltet
insbesondere die Lebenszyklus-Verwaltung der Threads sowie die Einbindung verschiedener Locking
Techniken und der JOMP Technologie.

 2006-11-16

Diplomarbeit Seite 5

2. Inhaltsverzeichnis
1. Management Summary ... 3
2. Inhaltsverzeichnis ... 5
3. Dokumentinformationen... 7

3.1. Referenzierte Dokumente.. 7
3.2. Definitionen und Abkürzungen... 7
3.3. Links... 8

4. Einleitung ... 9
4.1. Zweck des Dokumentes... 9

5. Evaluation Plattform.. 10
5.1. Hardware ... 10
5.2. Betriebssystem .. 12
5.3. Applikation ... 12
5.4. JVM.. 13

6. Geplanter Testumfang .. 14
6.1. Hardware ... 14
6.2. Betriebssystem .. 15
6.3. Applikation ... 16
6.4. JVM: ... 16

7. Spezifikation der Testklasse .. 18
7.1. Requirements... 18

8. Testklasse .. 20
8.1. Basisinformationen .. 20
8.2. Die Mandelbrot Menge... 20
8.3. Der Algorithmus ... 22
8.4. Analyse des Algorithmus ... 24
8.5. Bewertung.. 25

9. Implementierung.. 26
9.1. Java Threads ... 26

9.1.1. Model.. 27
9.1.2. View.. 32
9.1.3. Control .. 32

9.2. Locking... 34
9.2.1. Kein Locking... 35
9.2.2. Grobes Locking .. 35
9.2.3. Feines Locking ... 36
9.2.4. CAS (Lock-Free) .. 36

9.3. JOMP ... 38
9.4. JOMP Architektur... 38

 2006-11-16

Diplomarbeit Seite 6

9.4.1. Mandelbrot-Berechnung mit JOMP.. 39
10. Glossar ... 41
11. Verzeichnisse... 43

11.1. Tabellenverzeichnis ... 43
11.2. Abbildungsverzeichnis ... 43
11.3. Code Listings ... 44
11.4. Index .. 44

 2006-11-16

Diplomarbeit Seite 7

3. Dokumentinformationen

3.1. Referenzierte Dokumente

Tabelle 4 Referenzierte Dokumente

Referenz Beschreibung

[1] Basisanalyse

[2] Software Test Document (STD)

[3] Software Project Management Plan (SPMP)

3.2. Definitionen und Abkürzungen

Tabelle 5 Abkürzungen

Abkürzung Beschreibung

{R?} Requirement einer Testklasse

{T?} Zielsetzung geplanter Testumfang

{Z?} Projektzielsetzung SPMP

API Application Programming Interface

CAS Compare-and-swap

CMP Chip Multi Processing

CMT Chip Multi Threading

CVS Concurrent Versioning System

HW Hardware

JOMP Java OpenMP

JVM Java Virtual Machine

MPI Message Passing Interface

MVC Model View Control

SDD Software Design Document

SMP Symmetric Multi Processing

STD Software Test Document

TBB Thread Building Blocks

UMA Uniform Memory Architecture

UMA Uniform Memory Access

 2006-11-16

Diplomarbeit Seite 8

3.3. Links

Tabelle 6 Links

Referenz Beschreibung

[FRAKTAL] Wikipedia, Fraktal: http://de.wikipedia.org/wiki/Fraktal

[JAVAMANDELBROT] Java Mandelbrot Fraktal Renderer: http://www.aasted.org/fractal/

[JOMP] EPCC, OpenMP-like directives for Java:

http://www.epcc.ed.ac.uk/research/jomp/

[MANDELBROT] Wikipedia, Mandelbrot-Menge: http://de.wikipedia.org/wiki/Mandelbrot-Menge

[OPENMP] OpenMP, Homepage: http://www.openmp.org/

 2006-11-16

http://de.wikipedia.org/wiki/Fraktal
http://www.aasted.org/fractal/
http://www.epcc.ed.ac.uk/research/jomp/
http://de.wikipedia.org/wiki/Mandelbrot-Menge
http://www.openmp.org/

Diplomarbeit Seite 9

4. Einleitung

4.1. Zweck des Dokumentes

Übergeordnete Zielsetzung dieses Software Design Documents (SDD) ist die Definition einer geeigne-
ten Testplattform. Auf dieser Plattform sollen mögliche Testfälle definiert werden, welche die verschie-
denen Aspekte der Basisanalyse aufgreifen und konkret umsetzten. Ausgehend von dieser Plattform
und den Testfällen definiert dieses Dokument Testklassen, die eine Umsetzung verschiedener Kon-
zepte zulassen und in Bezug auf deren Skalierung getestet werden können.

Die Evaluation der (Test)Plattform bestehend aus HW, Technologien, Konzepten und Standards ist
ebenfalls zentraler Bestandteil dieses Dokuments. Sie orientiert sich an den Einflussbereichen und
Technologien aus der Basisanalyse und berücksichtigt dabei Faktoren wie die themenbezogene Fo-
kussierung der Diplomarbeit oder die (potenzielle) Wirkung von Aspekten auf die Skalierung.

Mit der Absicht vor der eigentlichen Definition und Implementierung von Testklassen den „planned
scope“ der ganzen Testphase abzugrenzen, werden in diesem Dokument auch konkrete Zielsetzung
und Betrachtungsbereiche definiert. Sie beschreiben, was Gegenstand der Testserie sein soll bzw.
welche Aspekte fokussiert werden sollen. Zielsetzungen und Betrachtungsbereiche im Testumfang
können als „Guideline“ betrachtet werden für die Auswahl und Implementierung von Testklassen und
Konzepten. Weiter sind sie Ausgangspunkt für die Erarbeitung der Testcases im STD ([2]).

Der SDD definiert mit Bezug auf die oben genannten Betrachtungsbereiche logisch- und technische
Anforderung an eine Testklasse. Die Evaluation einer oder mehrerer geeigneter Klassen/Funktionen
realisiert diese Requirements und bietet die Möglichkeit, die oben definierten Zielsetzungen über ent-
sprechende Testcases abzudecken.

Eine kritische Auseinandersetzung mit den ausgewählten Testklassen zeigt Schlüsselstellen im Code
in Bezug auf die Einflussbereiche der Skalierung. Sie soll das Verständnis der „Basisimplementierung“
fördern und zeigen wo Konzepte wie bspw. Java Threading, Locking oder CAS umgesetzt werden
können.

Der SDD in der vorliegenden Form definiert mit Anforderungen an die Testplattform, geplanten Ziel-
setzungen/Betrachtungsbereichen und Spezifikation/Umsetzung von Testklassen das eigentliche „De-
sign“ des Testings. Die effektive Umsetzung erfolgt nachfolgend im STD.

 2006-11-16

Diplomarbeit Seite 10

5. Evaluation Plattform
Die Plattform auf der die effektive Skalierung einer multithreaded Java-Applikation getestet bzw.
nachgewiesen werden soll muss nach der Basisanalyse nun festgelegt werden. Die Auswahl und De-
finition von Technologien, Konzepten und Standards die diese Gesamtplattform charakterisieren, er-
folgt wiederum auf den Layern Hardware, Betriebssystem, Applikation und JVM.

Ziel dieser Definition ist die Reproduzierbarkeit durchgeführter Testreihen. Die Nachvollziehbarkeit der
Testresultate und Schlussfolgerungen wird durch Transparenz in der verwendeten Plattform ebenfalls
sichergestellt. Die Evaluation wird aus der Basisanalyse abgeleitet und erfolgt in 3 Schritten:

Schritt 1; Technologien Basisanalyse

In Form einer Zusammenfassung definiert die Basisanalyse für jeden Layer Technologien, Konzepte
oder Standards mit direktem oder indirektem Einfluss auf die Aufgabenstellung (siehe Kapitel „Auswir-
kung auf die Aufgabenstellung“). Sie bilden die themenbezogene Grundlage für die Festlegung der
zukünftigen Testplattform.

Schritt 2; Einfluss auf Skalierung

Die Einflussbereiche pro Thema werden auf deren Wirksamkeit analysiert und bewertet. Der Grad der
Beeinflussung auf die (mögliche) Skalierung einer Applikation wird abgeschätzt und entscheidet letzt-
endlich darüber, ob ein Einflussfaktor für die Testplattform Relevanz hat oder nicht.

Schritt 3; Anforderung an Testplattform

Aus dem Subset der Faktoren die einen „starken“ Einfluss auf die Skalierung ausüben, werden jene
ausgewählt, die im Rahmen der Arbeit umgesetzt werden können. Die Realisierbarkeit wird dabei
beeinflusst durch Rahmenbedingungen wie Aufgabenstellung, Zeit, Aussagekraft, Verfügbarkeit, etc.
Die ausgewählten Faktoren bilden die Anforderungen an die zu realisierende Testplattform.

Punktuell werden auch Faktoren berücksichtigt, die einen geringeren Einfluss auf die Skalierung aus-
üben oder nur indirekt angewendet werden können (beispielsweise Prioriät von Kernel-Level-
Threads). Sofern der Verlauf der Arbeit eine Umsetzung zulässt, werden sie in einzelnen Testfällen
mitberücksichtigt bzw. eingearbeitet.

5.1. Hardware

Tabelle 7 Abgrenzung Hardware

Einfluss auf Skalierung Technologien Basisanalyse

Stark Schwach

Anforderung an

Testplattform

SMP

CMP

CMT

UMA

NUMA

Skalar/Superskalar

Pipeline

SMP

CMP

CMT

UMA

NUMA

Skalar/Superskalar

Pipeline

SMP

Begründung Skalierung

Die technologischen Ansätze können grob differenziert werden in Technologien die eine Verteilung
von Prozessen/Instruktionen oder die Effizienz deren Verarbeitung fokussieren. Beide Bereiche er-

 2006-11-16

Diplomarbeit Seite 11

möglichen die Skalierung einer Anwendung indem die Instruktionen insgesamt schneller abgearbeitet
werden. Die effektive Verteilung steht für diese Arbeit aber im Vordergrund.

Starker Einfluss

Symmetric Multi Processing (SMP) mit 2 oder mehreren Prozessoren und Chip Multi Processing
(CMP) die Multi-Core Architektur mit physikalisch getrennten Kernen im gleichen Chip-Gehäuse er-
möglichen die physische Verteilung von Prozessen und Threads. Mit mehreren zu Verfügung stehen-
den Recheneinheiten bieten sie die Grundlage für eine „echte“ Parallelisierung von multithreaded Ap-
plikationen. Die Chip Multi Threading-Technologie (CMT) unterstützt die parallele Abarbeitung in dem
Sinne, dass pro Taktzyklus und Thread eine Instruktion gelesen werden kann.

Schwacher Einfluss

Uniform Memory Access (UMA) und Non-Uniform Memory Access (NUMA) Architekturen definieren
die Art und Geschwindigkeit von Speicherzugriff für die jeweiligen CPUs. Ihre charakteristischen Ei-
genschaften haben in Bezug auf die Cache-Synchronisierung primär Einfluss auf die Verarbeitungs-
geschwindigkeit von Prozessen/Instruktionen. Pipelines und Superskalare-Prozessoren fokussieren
die Auslastung eines Prozessors bzw. die Optimierung des Durchsatzes. Sie sind für die Skalierbar-
keit im Kontext der Aufgabestellung von geringerer Bedeutung.

Begründung Testumgebung

Die Verfügbarkeit von Hardware-Plattformen für diese Diplomarbeit ist limitiert. Ursprüngliche Zielset-
zung war der Einsatz mehrerer Plattformen (SMP, CMP, CMT) um das Verhalten plattformübergrei-
fend zu untersuchen. Für die zukünftige Testplattform steht aktuell eine SMP-Maschine zu Verfügung.
Referenzplattform bildet eine Single-CPU-Maschine.

Tabelle 8 Hardwareplattform

SMP-Maschine

Anzahl Prozessoren 2

Prozessor Typ AMD Opteron 2GHz

Anzahl physische Cores 1 (pro Prozessor)

Hyperthreading Nein

L1 Cache 128 kB

L2 Cache 1024 kB

L1 Data Cache 64 kB

L1 Instruction Cache 64 kB

AMD64 Architektur Ja

Die Single-CPU Maschine kann durch die Angabe des /numprocs=1 Parameters in c:\boot.ini
simuliert werden. Dies bietet insbesondere den Vorteil, dass die Plattform (Hard-
ware/Hintergrundprozesse) vergleichbar ist. Die Messwerte sind also direkt miteinander vergleichbar.

 2006-11-16

Diplomarbeit Seite 12

5.2. Betriebssystem

Tabelle 9 Abgrenzung Betriebssystem

Einfluss auf Skalierung Technologien Basisanalyse

Stark Schwach

Anforderung an

Testplattform

Designprinzip

Win32 Thread

Scheduling

Affinität

Designprinzip

Win32 Thread

Scheduling

Affinität

Designprinzip

Win32 Thread

Scheduling (Prioritäten)

Affinität

Begründung Skalierung

Der Fokus im Bereich Betriebssystem lag auf der Art und Weise wie Prozesse und Threads unter
Windows XP verwaltet bzw. auf Systemressourcen verteilt werden. Die Skalierung auf Layer Betriebs-
system umfasst daher die Themenbereiche Threads (als Designprinzip), Win32 Thread, Scheduling
und die Affinität.

Starker Einfluss

Die Verwendung von Threads als Design-Prinzip ist gegeben um überhaupt eine Verteilung auf ver-
schiedene Kerne zu ermöglichen. Da Windows XP mit dem Win32 Thread einen Kernel-Level-Thread
implementiert, ist die Verteilung auf Level Betriebssystem realisierbar und nachvollziehbar. Diese 1:1-
Abbildung eines Java-Threads auf einen Win32 Thread wird über die entsprechende JVM-
Implementierung sichergestellt.

Schwacher Einfluss

Das „priority-driven“-Scheduling unter Windows XP erfolgt auf Level Threads und ist gesteuert über
die Basis-Priorität dieser Threads. Der Festlegung von Prioritäten kommt in diesem Zusammenhang
eine grosse Bedeutung zu. Sie kann über die Win32-API direkt, vom Java-Entwickler aber nur indirekt
über die Priorität der Java-Threads beeinflusst werden. Weiter besteht die Möglichkeit mit Systemtools
Prioritäten zur Laufzeit zu ändern um die Auswirkung auf die Skalierung zu untersuchen.

Die Affinität, eine explizite Zuordnung von Prozess und Prozessor kann unter Windows XP auf Level
Prozess oder Threads erfolgen. Sie ist wiederum über die Win32-API oder entsprechende System-
tools steuerbar. Die indirekte Einflussnahme und die Tatsache, dass die Funktionen der Win32-API in
dieser Arbeit nicht genutzt werden, führen zu dieser Klassifikation.

Begründung Testumgebung

Das Designprinzip Thread soll dahingehend umgesetzt werden, dass mit der Auswahl der „richtigen“
JVM die 1:1-Abbildung (Java- auf Win32-Thread) sichergestellt ist. Die Wirkung von Thread-
Prioritäten auf Level Java soll in Kombination mit manueller Änderung durch Systemtools ebenfalls
untersucht werden. Es soll weiter gezeigt werden, wie die Affinität über Systemtools beeinflussbar ist
und welche Wirkungen daraus resultieren.

5.3. Applikation

Tabelle 10 Abgrenzung Applikation

Einfluss auf Skalierung Technologien Basisanalyse

Stark Schwach

Anforderung an

Testplattform

 2006-11-16

Diplomarbeit Seite 13

POSIX Threads

OpenMP

TBB

MPI

POSIX Threads

OpenMP

TBB

MPI

 (OpenMP)

Begründung Skalierung

Techniken und Standards welche die Parallelität unterstützen oder aus diesem Themenbereich her-
aus entwickelt wurden gibt es einige. Die Basisanalyse hat mit POSIX Threads, OpenMP, TBB oder
MPI aktuelle Themen aufgezeigt. Sie haben alle in Bezug auf die Skalierung eine sehr grosse Bedeu-
tung, für die weiterführende Analyse sind sie allerdings weniger wichtig.

Begründung Testumgebung

Im Rahmen der Aufgabenstellung interessiert primär die Umsetzung eines Konzeptes auf Basis einer
Java-Umgebung. Hiermit scheiden alle Verfahren ausser OpenMP aus, das in Form des JOMP Pro-
jekt für Java umgesetzt wurde.

5.4. JVM

Tabelle 11 Abgrenzung JVM

Einfluss auf Skalierung Technologien Basisanalyse

Stark Schwach

Anforderung an

Testplattform

Java Threading

JOMP

JVM Optimierung

Java Threading

JOMP

JVM Optimierung

Java Threading

JOMP

Begründung Skalierung

Der Java-Entwickler besitzt mit der Java-API ein hilfreiches Interface für die parallele Programmie-
rung. Threads sind integraler Bestandteil dieser API die implizit Funktionalität für die Verwaltung und
Synchronisation von Threads bietet. Weiter besteht die Möglichkeit über Parameter das Verhalten der
JVM zu beeinflussen. Letzteres ist aber eher als Feintuning zu verstehen.

Starker Einfluss

Der Umfang der Java-API in Bezug auf Threads und Synchronisierung von Threads soll für die Imp-
lementierung voll ausgeschöpft werden. Basis bilden hier die verfügbaren Packages aus Java-5.

JOMP ist die spezifische Umsetzung vom OpenMP-Standard auf Java und dient der semi-
automatischen Parallelisierung von Java-Anwendungen. Es ist ein Werkzeug der Parallelisierung de-
ren Wirksamkeit getestet werden soll.

Schwacher Einfluss

Die Optimierung der JVM in Bereichen wie JIT-Compiler oder Garbage Collection ist als Feintuning zu
verstehen und wird die Skalierung nicht im Bereich von Faktoren beeinflussen. Sie wird darum für
Implementierung und Test sekundären Charakter haben.

Begründung Testumgebung

Schwerpunkt und Zielsetzung der Arbeit ist u.a. die Implementierung in Java. Die Verwendung von
Java-Threads aus der Java-API ist dadurch gegeben. Weiter bietet sich die JOMP Implementierung
als (zukünftigen) Standard für diesen Themenbereich geradezu an. Die Anwendbarkeit soll im prakti-
schen Test ebenfalls geprüft werden.

 2006-11-16

Diplomarbeit Seite 14

6. Geplanter Testumfang
Die Skalierung einer Applikation kann auf verschiedenen Ebenen wie beispielsweise Hardware, Be-
triebssystem oder JVM betrachtet bzw. beeinflusst werden. Mögliche (realisierbare) Einflussbereiche
innerhalb dieser Ebenen im Zusammenhang mit der Fokussierung von Java und der vorliegenden
Arbeit sind begrenzt und wurden im Kapitel 5 „Evaluation Plattform“ definiert. Die daraus resultierende
„Testumgebung“ legt dabei die Plattform fest, mit der die nachfolgend beschriebenen Testbereiche
untersucht werden sollen.

Der geplante Testumfang mit Zielsetzungen und Betrachtungsbereichen konkretisiert die unter „Eva-
luation Plattform“ getätigte Abgrenzung. Die Zielsetzungen definieren dabei, was in der jeweiligen
Ebene untersucht werden soll um eine Aussage über die Skalierung machen zu können. Eine Zielset-
zung fokussiert den Einfluss dieser Ebene oder ein Teilbereich aus dieser Ebene (Technologien, Kon-
zepte, Standards) auf die Skalierung einer Applikation. Die Zielsetzungen {T?} sind jeweils einer Pro-
jektzielsetzung {Z?} aus dem SPMP (Kapitel 4.1; Ziele und Prioritäten) logisch zugeordnet.

Der oder die Betrachtungsbereiche einer Zielsetzung verfeinern diese weiter und geben Hinweise
welche Bereiche fokussiert werden müssen um die Zielsetzungen entsprechend umzusetzen. Zielset-
zungen und zugehörige Betrachtungsbereiche sind die Basis für die Auswahl und Implementierung
von geeigneten Testklassen.

Für alle Betrachtungsbereiche und ausgewählten Testklassen werden im STD Testcases abgeleitet
sowie Testparameter (Performance-Indikatoren) und Testtools definiert.

6.1. Hardware

Eine oder mehrere Testklassen werden auf einer Multi-Prozessor-Architektur (hier SMP) ausgeführt
um die Verteilung von Threads bzw. die Skalierung zu untersuchen. Der Grad der Skalierung wird
durch eine Referenzmessung auf einer Single-Prozessor-Architektur ermittelt.

Tabelle 12 Zielsetzung Hardware

SPMP # Zielsetzung Hardware Kat.

{Z19} {T1} Feststellung Grad der Skalierung zwischen Single- und Multi-Prozessor-
Architektur

Muss

Tabelle 13 Betrachtungsbereiche Hardware

Betrachtungsbereiche Hardware Kat.

{T1.1} Testklasse(n) auf Single Prozessor Maschine

 Eine oder mehrere Testklassen (Single-Threaded; 1 Thread) soll(en) auf einer
Single-Prozessor-Architektur ausgeführt werden um dabei Berechnungszeit und
Ressourcenbedarf zu ermitteln

Muss

 Eine oder mehrere Testklassen (Multi-Threaded; 2 Threads) soll(en) auf einer
Single-Prozessor-Architektur ausgeführt werden um dabei Berechnungszeit und
Ressourcenbedarf zu ermitteln

Muss

{T1.2} Testklasse(n) auf Multi Prozessor Maschine (SMP)

 Eine oder mehrere Testklassen (Single-Threaded; 1 Thread) soll(en) auf einer
Multi-Prozessor-Architektur ausgeführt werden um dabei Berechnungszeit und
Ressourcenbedarf zu ermitteln

Muss

 Eine oder mehrere Testklassen (Multi-Threaded; 2 Threads) soll(en) auf einer
Single-Prozessor-Architektur ausgeführt werden um dabei Berechnungszeit und

Muss

 2006-11-16

Diplomarbeit Seite 15

Ressourcenbedarf zu ermitteln

{T1.3} Direkter Vergleich der Plattformen

 Darstellung der Leistungsindikatoren beider Plattformen. Berechnung des Ska-
lierungs-Faktors auf Basis Single-Threads

Muss

 Darstellung der Leistungsindikatoren beider Plattformen. Berechnung des Ska-
lierungs-Faktors auf Basis Multi-Threads

Muss

6.2. Betriebssystem

Im Bereich Betriebssystem muss der Nachweis erbracht werden, wie Java-Threads auf Win32-
Threads durch die JVM abgebildet werden. Dieser Nachweis schliesst die Priorität von Threads mit
ein, weil Scheduling-Entscheidungen unter Windows durch diese Grösse beeinflusst werden. Das
Systemverhalten in Bezug auf die Skalierung kann dann durch direkte oder indirekte Änderung von
Prioritäten untersucht werden. Die manuelle Zuweisung eines Prozessors auf Level Prozess oder
Thread (Affinität) und deren Auswirkung kann ebenfalls getestet werden.

Tabelle 14 Zielsetzungen Betriebssystem

SPMP # Zielsetzungen Betriebssystem Kat.

{Z7} {T2} Nachweis Abbildung Java-Thread auf Win32-Thread Muss

{Z7} {T3} Nachweis Abbildung Java-Thread-Priorität auf Win32-Thread-Priorität Kann

{Z7} {T4} Analyse Systemverhalten bei Änderung Win32-Thread-Priorität Kann

{Z7} {T5} Analyse Systemverhalten bei Festlegung einer Prozess-Affinität Kann

Tabelle 15 Betrachtungsbereiche Betriebssystem

Betrachtungsbereiche Betriebssystem Kat.

{T2.1} JVM-Implementierung

 Evaluation einer JVM mit Native-Thread-Unterstützung (gemäss Spezifikation) Muss

{T2.2} Testklasse und Nachweisverfahren

 Definition geeignete(s) Testklasse und Verfahren um Abbildung von Java- auf
Win32-Thread sichtbar/nachvollziehbar zu machen

Muss

{T2.3} Nachweis Thread-Abbildung

 Ausführen ein oder mehrerer Testklasse(n) um Thread-Abbildung durch die JVM
im Betriebssystem sichtbar zu machen

Muss

{T3.1} Default Priorität Java- und Win32-Thread

 Java Default-Priorität und deren Abbildung auf die Win32-Thread-Priorität analy-
sieren und dokumentieren

Kann

{T3.2} Änderung Java (Default)Priorität

 (Default)Priorität eines Java-Threads dynamisch ändern und deren Abbildung
auf die Win32-Thread-Priorität analysiert und dokumentieren

Kann

{T3.3} Prioritätsbereich Java

 Abbildung Prioritätsbereich Java-Thread (1...5...10) auf den Prioritätsbereich Kann

 2006-11-16

Diplomarbeit Seite 16

eines Win32-Thread analysieren und dokumentieren

{T4.1} Systemverhalten mit direkter Änderung Priorität

 Direkte Änderung der Win32-Thread-Priorität (Systemtools) und deren Auswir-
kung auf die Skalierung analysieren

Kann

{T4.2} Systemverhalten mit indirekter Änderung Priorität

 Indirekte Änderung der Win32-Thread-Priorität (Java-Thread) und deren Auswir-
kung auf die Skalierung analysieren

Kann

{T5.1} Systemverhalten mit Festlegung Thread-Affinität

 Direkte Festlegung einer Thread-Affinität (Systemtools) und deren Auswirkung
auf die Skalierung analysieren

Kann

{T5.2} Systemverhalten mit Festlegung Prozess-Affinität

 Direkte Festlegung einer Prozess-Affinität (Systemtools) und deren Auswirkung
auf die Skalierung analysieren

Kann

6.3. Applikation

Auf applikatorischer Ebene erfolgen direkt keine Implementierung und Tests. Der OpenMP-Standard
als Werkzeug der parallelen Programmierung wird auf Ebene JVM über die Betrachtung von JOMP
berücksichtigt.

6.4. JVM:

Im Bereich der Java Virtual Machine (JVM) soll die Java-API mit ihren Packages und Funktionen dazu
benutzt werden um multithreaded Java-Applikationen zu schreiben und auszuführen. Dabei soll der
mögliche Einfluss der Synchronisation mehrerer Threads genauer untersucht werden. Die Anwend-
barkeit und Skalierung einer JOMP-Anwendung soll hier ebenfalls Teil der Analyse sein.

Tabelle 16 Zielsetzungen JVM

Zielsetzungen JVM Kat.

{Z5} {T6} Analyse der Skalierung einer multithreaded Java-Applikation Muss

{Z5} {T7} Analyse Einfluss der Thread-Synchronisation auf die Skalierung Kann

{Z16} {T8} Analyse Anwendbarkeit und Effektivität von JOMP Muss

Tabelle 17 Betrachtungsbereiche JVM

Betrachtungsbereiche JVM Kat.

{6.1} Testklasse(n) mit n Threads auf n-Prozessor-Architektur

 Eine oder mehrere Testklassen mit n Threads sollen auf einer Multi-Prozessor-
Architektur ausgeführt werden um dabei Laufzeit, Ressourcenbedarf und Verwal-
tungsaufwand zu ermitteln

Muss

 Gleiche Testklasse(n) mit n Threads sollen auf einer Single-Prozessor-Architektur
ausgeführt werden um dabei Laufzeit, Ressourcenbedarf und Verwaltungsauf-
wand zu ermitteln

Muss

 2006-11-16

Diplomarbeit Seite 17

{6.2} Testklasse(n) mit m Threads auf n-Prozessor-Architektur (für m>>n)

 Eine oder mehrere Testklassen mit m>>n Threads sollen auf einer Multi-
Prozessor-Architektur ausgeführt werden um dabei Laufzeit, Ressourcenbedarf
und Verwaltungsaufwand zu ermitteln

Muss

 Gleiche Testklasse(n) mit m>>n Threads sollen auf einer Single-Prozessor-
Architektur ausgeführt werden um dabei Laufzeit, Ressourcenbedarf und Verwal-
tungsaufwand zu ermitteln

Muss

{7.1} Einfluss der Methoden-Synchronisation auf Skalierung

 Testklasse(n) mit n...m Threads, gemeinsamen Speicherbereich und Methoden-
Synchronisation sollen unter Einfluss von klein bis grossem „lock contention“ auf
einer Multi-Prozessor-Architektur ausgeführt werden. Dabei sollen Laufzeit, Res-
sourcenbedarf und Verwaltungsaufwand ermittelt werden.

Kann

{7.2} Einfluss der Objekt-Synchronisation auf Skalierung

 Testklasse(n) mit n...m Threads, gemeinsamen Speicherbereich und Objekt-
Synchronisation sollen unter Einfluss von klein bis grossem „lock contention“ auf
einer Multi-Prozessor-Architektur ausgeführt werden. Dabei sollen Laufzeit, Res-
sourcenbedarf und Verwaltungsaufwand ermittelt werden.

Kann

{7.3} Einfluss der CAS-Methoden auf Skalierung

 Testklasse(n) mit n...m Threads, gemeinsamen Speicherbereich und Lockfreien-
Synchronisation (CAS) sollen auf einer Multi-Prozessor-Architektur ausgeführt
werden. Dabei sollen Laufzeit, Ressourcenbedarf und Verwaltungsaufwand ermit-
telt werden.

Kann

{8.1} Parallelisierung durch JOMP

 Wirkung der JOMP-Parallelisierung unter Verwendung verschiedener, variabler
Thread-Konfigurationen (Attribut).

Muss

 2006-11-16

Diplomarbeit Seite 18

7. Spezifikation der Testklasse
Um unsere Skalierungs-Tests und Implementierungen machen zu können benötigen wir eine Test-
klasse oder eine Test-Anwendung. Dieses Kapitel definiert welche Anforderungen eine entsprechende
Anwendung haben muss. Die Spezifikation dient später (siehe Kapitel 8) zur Bewertung möglicher
Kandidaten.

7.1. Requirements

Die Requirements können grob in kann- und muss-Requirements aufgeteilt werden:

Beschreibung Typisierung

{R1.1} Sequenzieller Code Muss

{R1.2} Parallelisierbar Muss

{R1.3} Messbar Muss

{R1.4} Portierbar auf verschiedene Konzepte und Plattformen Muss

{R1.5} Nachvollziehbar, einfach, übersichtlich Muss

{R1.6} Reproduzierbarkeit Muss

{R2.1} Konkurrierender Datenzugriff Kann

{R2.2} Visualisierbarkeit Kann

Nachfolgend werden die Requirements noch etwas genauer erläutert.

Requirement {R1.1}, Sequenzieller Code

Um eine Aussage über die Möglichkeiten der Parallelisierung machen zu können muss der Aus-
gangszustand ein sequenziell ablaufendes Programm sein. Dies erlaubt auch eine Aussage darüber,
wie sich ein parallelisierter Code gegenüber einem sequenziellen Code verhält.

Requirement {R1.2}, Parallelisierbar

Der Code muss natürlich erlauben ihn vollumfänglich oder in Teilen parallel ablaufen zu lassen. Ins-
besondere Schleifen sind dazu sehr gut geeignet.

Requirement {R1.3}, Messbar

Der ausgewählte Code sollte eine Mindestlaufzeit aufweisen. Dies soll insbesondere die Messunge-
nauigkeit relativieren. Die Laufzeit sollte zwischen 30 Sekunden und 5 Minuten betragen. Längere
Laufzeiten sind auch denkbar aber für unsere Zwecke kaum von Interesse da wir uns erhoffen Lauf-
zeitverbesserungen im Faktoren- und nicht im Prozentbereich zu erreichen.

Requirement {R1.4}, Portierbar auf verschiedene Konzepte und Plattformen

Der Ausgewählte Code muss auf die ausgewählten Techniken und auf die ausgewählten Plattformen
portierbar sein. Das bedeutet, dass der Code sowohl mit Java Threads als auch mit JOMP implemen-
tierbar ist und auf allen zur Verfügung stehenden Testplattformen laufen muss.

Requirement {R1.5}, Nachvollziehbar, einfach, übersichtlich

Der ausgewählte Code muss möglichst einfach strukturiert sein um ihn schnell erklären und verstehen
zu können. Dazu muss der Umfang des Kernalgorithmus auf weniger als 100 Zeilen Code implemen-
tiert werden können.

 2006-11-16

Diplomarbeit Seite 19

Requirement {R1.6}, Reproduzierbarkeit

Der Code muss reproduzierbare Ergebnisse liefern. Das heisst, dass die gemessene Laufzeit mög-
lichst kleine Schwankungen aufweisen soll. Die Schwankungen müssen bei mehreren Durchläufen
unter gleichen Testbedingungen im Bereich unter 10% liegen.

Requirement {R2.1}, Konkurrierender Datenzugriff

Hiermit ist die so genannte ‚lock contention’ gemeint. Um den Einfluss von konkurrierenden, synchro-
nisierten Speicherzugriffen zu simulieren muss der Code auf gemeinsame Datenfelder zugreifen. Da
der Einfluss verschiedener Locking-Technologien nicht im Hauptfokus der Arbeit liegt ist dieses Requi-
rement optional.

Requirement {R2.2}, Visualisierbarkeit

Nackte Zahlen und Laufzeiten sind zwar aussagekräftig, aber sehr trocken zu lesen. Im Optimalfall ist
die Arbeitsgeschwindigkeit der Anwendung 1:1 verfolgbar.

 2006-11-16

Diplomarbeit Seite 20

8. Testklasse
Dieses Kapitel dient zur Dokumentation der ausgewählten Testklassen inklusive Quelltexte und weite-
re Fragmente. Die Testklassen werden nach den Spezifikationen aus Kapitel 7 ausgewählt. Die aus-
gewählte Klasse (bzw. die ausgewählten Klassen) wird dann in Kapitel 9 ausgearbeitet (parallelisiert).

8.1. Basisinformationen

Der Fokus liegt hier auf der parallelen Verarbeitung mit dem gewünschten Nebeneffekt der Visualisie-
rung. Daher liegt es nahe sich im Bereich der Computergrafik umzusehen. Nach kurzer Recherche
stellen sich Fraktale als besonders geeignet heraus. Insbesondere die Visualisierung ist damit sehr
schön zu sehen; weshalb diese Grafiken auch unter dem Oberbegriff der Computer-Kunst zusam-
mengefasst werden.

Fraktale haben ausserdem die für uns angenehme Eigenschaft, dass sie sich meist beliebig komplex
berechnen lassen. Da zu diesem Zeitpunkt die zur Verfügung stehende Testplattform (insbesondere
die Hardware) noch nicht eindeutig feststeht dürfte sich diese Eigenschaft als sehr nützlich erweisen.
Eine Berechnung, die auf unseren Laptops Minuten dauert könnte ansonsten auf der Testplattform
innert Sekunden erledigt sein was meistens mit einer grossen Messungenauigkeit einhergeht.

Weiterführende Informationen:

• Wikipedia, Fraktal: [FRAKTAL]

8.2. Die Mandelbrot Menge

Wie einleitend erwähnt eigenen sich Fraktale mit hoher Wahrscheinlichkeit am besten für unser Vor-
haben. Hier bietet sich die klassische Mandelbrotmenge an (siehe auch [MANDELBROT]). Die Menge
wird wegen ihrer Form auch gerne Apfelmännchen genannt:

Abbildung 1 Mandelbrot-Menge (Apfelmännchen)

Die Farbgebung kann dabei frei an die persönlichen Vorlieben angepasst werden. Eine weitere wichti-
ge Eigenschaft ist, dass die Menge rekursiv berechnet wird und sich Teile davon beliebig vergrössern
lassen. Je nach gewählter Rekursionstiefe werden dabei mehr Details sichtbar:

 2006-11-16

Diplomarbeit Seite 21

Abbildung 2 Vergrösserung der Mandelbrot Menge

Das Bild zeigt eine Vergrösserung des schwarzen Kreises auf der linken Seite.

Positiv zu erwähnen ist hier auch die Möglichkeit einzelne Bildteile komplett losgelösst voneinander zu
berechnen. Diese Eigenschaft ist ideal für eine parallele Verarbeitung. Dadurch ist im Optimalfall
überhaupt keine Synchronisierung der Prozesse/Threads nötig. Möchte man das Ergebnis aber
visualisieren so muss zumindest in einen gemeinsamen Bildspeicher geschrieben werden.

Auf die mathematischen Grundlagen möchten wir innerhalb dieser Arbeit nicht näher eingehen. Auch
der verwendete Code stammt aus Drittquellen und wird angepasst um eine parellele Verarbeitung zu
ermöglichen.

In diesem Kapitel wird die ausgewählte Testklasse dokumentiert (in unveränderter Originalfassung).

 2006-11-16

Diplomarbeit Seite 22

8.3. Der Algorithmus

Der Algorithmus ist im Internet in verschiedensten Implementierungen zu finden. Eine davon haben
wir uns rausgesucht und werden diese für unsere Arbeit verwenden. Der ursprüngliche Code stammt
aus [JAVAMANDELBROT].

Die Berechnung kann mit folgendem Codefragment beschrieben werden:
 public void run() {
 double dx = width / sizex;
 double dy = height / sizey;

 double z = startx , zi = starty;

 done = false;

 System.out.println("Calculating...");
 for (int x = 0 ; x < sizex ; x++) {
 zi = starty;
 int it;
 for (int y = 0 ; y < sizey ; y++) {
 if ((it =mandelbrotTest(z, zi)) != -1) {
 // In the mandelbrot set.
 raster.setPixel(x,y,(int[]) colors[it]);

 } else {
 // Not in the mandelbrot set
 raster.setPixel(x,y,black);
 }
 zi += dy;
 }
 if ((x%5) == 0) {
 parent.repaint();

 }
 z += dx;
 }

 done = true;

 System.out.println("Done!");
 }

}

Listing 1 Mandelbrot Basisalgorithmus

Es wird also hauptsächlich für jeden Pixel die Methode mandelbrotTest(z, zi) ausgeführt. Der
Rückgabewert dieser Methode entspricht der Anzahl Iterationen (oder -1, falls die maximale Anzahl
überschritten wurde). Die errechnete Iterationszahl wird dann als Index für ein Array von Farben ver-
wendet. Im Beispielcode wird dieses Array statisch initialisiert und bietet 200 Farben (was exakt der
maximalen Iterationstiefe im Originalcode entspricht).

 public int mandelbrotTest(double a, double bi) {
 // System.out.println("Testing ("+ a + "," + bi + ")");

 double atmp, btmp;
 int number = 0;
 double z = 0,zi = 0;

 2006-11-16

Diplomarbeit Seite 23

 while ((number != 200) && (comp_magnitude(z,zi) < 2)) {

 number++;
 atmp = comp_mult_real(z,zi,z,zi);
 btmp = comp_mult_imag(z,zi,z,zi);

 z = atmp;
 zi = btmp;

 z += a;
 zi += bi;
 }

 if (number == 200) {
 // System.out.println("Part of the Mandelbrot set!");

 return -1;
 } else {
 // System.out.print(" " + number);
 return number;
 }
 }

Listing 2 Mandelbrot Test Methode

Diese Funktion wiederum verwendet einzig die externen Methoden comp_magnitude(),
comp_mult_real() und comp_mult_imag().

Diese sind wie folgt definiert:
 public static double comp_mult_real(double a, double b,
 double c, double d) {
 return (a * c) - (b * d);
 }

 public static double comp_mult_imag(double a, double b,
 double c, double d) {
 return (a * d) + (b * c);
 }

 public static double comp_magnitude(double a, double b) {
 return Math.sqrt(a * a + b * b);
 }

Listing 3 Mandelbrot Hilfsmethoden

Die Initialisierung der Farben wird hier nicht abgebildet, da es sich um eine statische Liste (Hard-
Coded) handelt. Für unsere Zwecke lässt sich der Code relativ einfach erweitern und flexibilisieren.
Wir werden zu einem in Kapitel 8 auf die Modifikationen der eigenen Implementierung eingehen.

Den gesamten Code ist auf der Webseite unter [JAVAMANDELBROT] einsehbar und wird auch im
CVS Repository abgelegt um die Nachvollziehbarkeit zu gewährleisten.

Weiterführende Informationen:

• Java Mandelbrot Fraktal Renderer: [JAVAMANDELBROT]

 2006-11-16

Diplomarbeit Seite 24

8.4. Analyse des Algorithmus

Die in der Hauptschleife (siehe Listing 1) verwendeten Methoden und Daten sind bereits alle lokal.
Dies erleichtert die Parallelisierung sehr. Auf den ersten Blick könnte man meinen die Variabeln z und
zi hängen jeweils vom vorherigen Schleifendurchgang ab. Dies ist aber nicht so, da diese nur jeweils
um eine Einheit inkrementiert werden. Aus diesem Grund ist es deshalb ebenso möglich den Wert von
z und zi einer ausgewählten Iteration direkt zu bestimmen (z = startx + x * dx sowie zi =
starty + y * dy).

Weiter wird auf die gemeinsamen Objekte raster und colors zugegriffen. Das colors Objekt wird
dabei nur lesend verwendet und besteht aus einem statischen Array, welches die Farben für die Itera-
tionsstufen beinhaltet. Hier braucht also nicht synchronisiert zu werden. Das Objekt raster wird da-
gegen schreibend verwendet. Allerdings wird ein Pixel (der per x- und y-Koordinate definiert ist) nie
zweimal beschrieben. Somit braucht hier auch nicht synchronisiert zu werden.

Im unglücklichsten Fall würde hier die Methode raster.setPixel() über ein einziges Objekt synchroni-
siert sein. In diesem Fall würde nach jeder Berechnung eines Pixels versucht den Lock zu bekommen.
Dies würde sich vermutlich massiv auf die parallele Verarbeitung auswirken da hohe ‚lock contention’
(siehe [1]) zu befürchten wäre.

Im Optimalfall würde das verwendete Bild-Objekt einen eigenen Lock pro Pixel verwenden. Dieser
würde dann nur von einem einzigen Thread verwendet und würde die Konkrrenzierung (lock contenti-
on) der einzelnen Locks verringern.

Teilt man das Bild in Kacheln oder Streifen auf (lock coarsening/lock striping, siehe [1]) so wären auch
Mischformen denkbar ohne gleich pro Pixel einen eigenen Lock zur Verfügung zu stellen. Man könnte
das Bild in mehrere Blöcke aufteilen und für jeden Block einen eigenen Lock verwenden. Dies würde
die Wahrscheinlichkeit für eine konkurrierende Lock-Anfrage senken. Im Optimalfall würden gleich
viele Lock-Objekte wie Threads zur Verfügung stehen und diese exakt die Teile des Bildes „schützen“,
die von einem Thread bearbeitet werden.

Eine weitere Möglichkeit wäre die Verwendung von Compare-and-Swap (CAS) (siehe [1]) Algorith-
men. Wäre jeder Pixel durch einen CAS-Algorithmus geschützt würde der Aufwand für das Locking
entfallen. Da anzunehmen ist, dass jeder Pixel nur einmal beschrieben wird dürfte diese Implementie-
rung sogar sehr effizient sein, da jeder Schreibvorgang erfolgreich wäre.

Wir werden beide Möglichkeiten und deren Auswirkungen in Kapitel 9 beleuchten.

 2006-11-16

Diplomarbeit Seite 25

8.5. Bewertung

Die ausgewählte Testklasse soll nun anhand der Requirements (siehe Kapitel 7.1) bewertet werden.

Beschreibung

{R1.1} Sequenzieller Code:

Die ausgewählte Testklasse ist nicht bereits parallelisiert und arbeitet in der Referenzimple-
mentation mit nur einem Verarbeitungs-Thread.

{R1.2} Parallelisierbar:

Aufgrund der Analyse (siehe Kapitel 8.4) ist anzunehmen, dass sich der Algorithmus sehr gut
parallel umsetzen lässt.

{R1.3} Messbar:

Die Berechnungsdauer eines kompletten Bildes bei fest definierten Parametern lässt sich
messen. Die Dauer der Berechnung lässt sich durch variable Iterationstiefen fast beliebig
wählen. Somit ist die Messbarkeit gegeben.

{R1.4} Portierbar auf verschiedene Konzepte und Plattformen:

Durch die Implementierung in Java ist der Code Plattformunabhängig. Sowohl auf Hardware-
wie auch auf Software-Ebene. Der Algorithmus lässt sich sowohl mit Java Threads als auch
mit anderen Techniken parallelisieren.

{R1.5} Nachvollziehbar, einfach, übersichtlich:

Der Basisalgorithmus besteht im Wesentlichen aus zwei verschachtelten for-Schliefen. Die
Berechnung der Iterationen (mandelbrotTest()) ist einfach nachvollziehbar, kann aber für
das Verständnis komplett abstrahiert betrachtet werden. Diese Eigenschaften sorgen für eine
sehr einfach erklärbare Codebasis.

{R1.6} Reproduzierbarkeit:

In Tests hat sich gezeigt, dass die Berechnung bei mehreren Durchläufen praktisch immer
gleich lange dauert. Um die geforderte Messungenauigkeit einzuhalten muss lediglich die
Wahl einer geeigneten Iterationstiefe getroffen werden.

{R2.1} Konkurrierender Datenzugriff:

Wie in Kapitel 8.4 erwähnt existiert kaum ‚lock contention’. Diese kann aber „künstlich“ er-
zeugt werden um die Auswirkungen zu eruieren. Somit kann auch diese Anforderung im
Bedarfsfall abgedeckt werden.

{R2.2} Visualisierbarkeit:

Fraktale eignen sich sehr gut zur Visualisierung. Die berechneten Pixel lassen sich direkt am
Monitor darstellen um den Fortschritt der Berechnung direkt mitverfolgen zu können.

Damit erfüllt der ausgesuchte Code alle Anforderungen. Einzig die Anforderung {R2.1} wird nicht di-
rekt vom Referenzcode erfüllt. Diese lässt sich aber simulieren was sich auch als Vorteil herausstellen
kann, da wir versuchen werden den Einfluss verschiedener Locking-Mechanismen einander gegen-
überzustellen. Dann wäre es schlecht, wenn der Algorithmus bereits eine bestimmte Methode zwin-
gend vorschreiben würde.

 2006-11-16

Diplomarbeit Seite 26

9. Implementierung
In diesem Kapitel werden die implementierten, parallelen Klassen dokumentiert. Hierbei werden die
wichtigsten Code-Fragmente kurz erklärt und das Anwendungs-Design offengelegt.

9.1. Java Threads

Diese Implementierung basiert vollständig auf den Basisklassen der Java API (Version 1.5). Dabei
werden die Klassen gemäss dem MVC (Model View Control) Konzept unterteilt:

Abbildung 3 MVC Klassenstruktur

Die schematische Darstellung der internen Architektur sieht wie folgt aus:

Abbildung 4 Architektur der Implementierung

Einzelne Komponenten werden nachfolgend etwas genauer erklärt. Der gesamte Source Code ist Teil
der Arbeit und wird mit den Dokumenten zusammen abgegeben. Die technische Dokumentation auf
Source Ebene wird mittels JavaDoc realisiert. Die entsprechenden Dokumentationen sind ebenfalls
Teil dieser Arbeit und werden ebenfalls mit den Dokumenten zusammen abgegeben.

 2006-11-16

Diplomarbeit Seite 27

9.1.1. Model

Zum Modell gehört dabei die eigentliche Berechnung sowie die Thread Verwaltung. Wobei man sich
bei Letzterer auch über die Zugehörigkeit zum Controller streiten könnte. Im weiteren Sinne gehören
die abgeleiteten BufferedImage Klassen dazu. Die relevanten Klassen und Code-Fragmente wer-
den nachfolgend kurz erklärt.

Benchmark Manager

Die Thread-Verwaltung übernimmt hier der so genannte Benchmark Manager. Dieser erzeugt und
verwaltet die gewünschte Anzahl Worker Threads. Die Besonderheit hier ist, dass die Threads wäh-
rend der gesamten Laufzeit des Programmes bestehen bleiben. Das heisst, dass diese Worker sich
nach beendeter Arbeit nicht beenden und neu erzeugt werden müssen. Dazu holen sich die Worker
ihre Arbeiten aus einer blockierende Queue (genannt jobs).

Dieses Vorgehen ist notwendig um die Last auf den einzelnen Threads besser überwachen zu kön-
nen. Würden sich die Threads nach der Berechnung beenden, so wären diese auch im Betriebssys-
tem verschwunden. Wir möchten aber die Thread-Prioritäten für jeden einzelnen Thread konfigurieren
können und diese Abbildung auch auf der Ebene des Betriebssystems nachvollziehen können. Dies
geht nur, wenn die Threads über die gesamte Laufzeit des Programms existieren.

Hier eine Liste der wichtigsten Methoden der BenchmarkManager Klasse:

Tabelle 18 BenchmarkManager Methoden

Methode Beschreibung

setWorkerNumber() Setzt die neue Anzahl von Worker Threads. Falls mehr Worker bereits exis-
tieren, dann werden später erzeugte Threads beendet. Falls die neue Anzahl
aber grösser ist, dann werden einfach weitere Threads erstellt. Bestehende
Threads bleiben in jedem Fall erhalten.

setJob() Stoppt alle Worker Threads und erstellt einen neuen Aurtrag. Dieser wird
von den laufenden Threads abgeholt und bearbeitet.

Die Klasse BenchmarkManager beinhaltet ausserdem die privaten Klasse BenchmarkJob. Diese
wird als „Container“ verwendet um eine Job-Definition in der Queue abzulegen.

Die zwei weiteren privaten Klassen StartCallback und StopCallbacl werden ebenfalls per
BenchmarkJob in der queue an die Worker übergeben. Hier allerdings verpackt in eine CyclicBar-
rier. Die exakte Messung der Berechnungsdauer schliesst die Verteilung der Jobs und den damit
verbundenen Aufwand nicht ein. Deshalb warten die Threads vor dem Start an einer Barriere (Cyc-
licBarrier). Sind alle Threads an dieser Barriere angekommen wird die Barriere geöffnet und
gleichzeitig eine „Callback“-Methode aufgerufen. Beim Start ist dies die run() Methode der Start-
Callback Klasse. Diese speichert lediglich die Startzeit mittels System.nanoTime(). Am Ende
warten wieder alle Threads an der nächsten Barriere. Erst wenn alle Threads fertig sind wird diese
durch den letzten eintreffenden Thread geöffnet. Dadurch wird die Callback-Methode aufgerufen und
dadurch die Laufzeit ermittelt. Dadurch wird sichergestellt, dass die Laufzeit der gesamten Zeit vom
Start aller Threads bis zur Terminierung des letzten Threads beinhaltet.

Die Threads beenden sich aber nach der Berechnung nicht sondern holen sich den nächsten Job von
der Queue ab.

 2006-11-16

Diplomarbeit Seite 28

Worker Threads

Die grundsätzliche Arbeitsweise der Worker Threads ist im folgenden Bild schematisch dargestellt:

Abbildung 5 Worker Threads Schema

Die Threads bekommen als ihre Aufträge vom Benchmark Manager. Sie starten aber nicht direkt mit
der Berechnung sondern warten an einer Barriere. Erst wenn alle Threads an der Barriere angekom-
men sind wird diese freigegeben und alle Workers können gleichzeitig mit der Arbeit beginnen.
Gleichzeitig sorgt die Barriere für die Messung des Startzeitpunktes. Diese Architektur erlaubt die
Isolation der Messung des Berechnungsaufwandes. Weder das Thread Setup noch andere Aufgaben
haben somit einen Einfluss auf die Messung.

Nach Abschluss der Berechnungen warten die Threads wieder an einer Barriere. Erst wenn alle
Threads ihre Arbeit beendet haben wird die Zeit gemessen und die Laufzeit berechnet. Danach keh-
ren die Threads wieder zu ihrem Ursprungszustand zurück und warten auf weitere Aufträge.

Der wichtigste Teil der Worker-Threads ist die run() Methode. Diese wird hier kurz erklärt:
 @Override
 public void run() {
 while (!isInterrupted()) {
 try {
 // get a job from the queue
 BenchmarkJob job = jobQueue.take();
 synchronized (this) {
 cancelProcessing.set(false);
 this.startBarrier = job.getStartBarrier();
 this.finishBarrier = job.getFinishBarrier();
 this.currentJob = job.getCalculator();
 }

 // releasing the latch
 if (!cancelProcessing.get()) {
 this.startBarrier.await();
 }

 // do calculation
 currentJob.run();

 // wait until all threads finished
 if (!cancelProcessing.get()) {
 System.out.println("Thread " + this.getName()
 + " done (Priority " + this.getPriority() + ")");

 2006-11-16

Diplomarbeit Seite 29

 this.finishBarrier.await();
 }

 } catch (InterruptedException e) {
 // System.out.println("Interrupted while waiting");
 this.interrupt();
 } catch (BrokenBarrierException e) {
 // System.out.println("Warning: Barrier broken.");
 // do nothing, just start over
 }
 }
 System.out.println("Thread " + this.getName() + " done!");
 }

Listing 4 run() Methode der Worker Threads

Wie bereits in [1] erwähnt handelt es sich bei der run() Methode um die Methode, die beim Start des
Threads ausgeführt wird. In diesem Fall besteht die Methode im Wesentlichen aus vier Teilen:

1. Abholung des Jobs von der Queue.

2. Warten an der Barriere (bis alle Threads bereit sind).

3. Ausführen der Berechnung.

4. Warten an einer weiteren Barriere bis alle Threads die Berechnung ausgeführt haben.

Dann beginnt die Schleife wieder von vorne. Die Schleife läuft so lange bis die interrupt() Metho-
de des Threads aufgerufen wird und somit die Prüfmethode isInterrupted() den wert true zu-
rückgibt.

Die Threads können also so lange für die Berechnung verwendet werden bis sie absichtlich abgebro-
chen werden.

Die verteilten Arbeitspakete verarbeiten Objekte vom Typ CalculatorInterface. Dies ermöglicht
die Benutzung der Architektur auch für andere Berechnungen.

 2006-11-16

Diplomarbeit Seite 30

Fraktalberechnung

Auch die Klasse zur Berechnung des Fraktals wurde aktualisiert. Diese wurde erweitert um eine belie-
bige (konfigurierbare) Rekursionstiefe zu erlauben. Dazu musste die statische Definition der Farbta-
bellen-Berechnung einer dynamischen Methode weichen. Die Berechnung wurde durch ein Lock-
Objekt synchronisiert um eine Parameter-Veränderung während Berechnung zu verhindern. Um die
Berechnung (welche sehr lange dauern kann) abzubrechen wurden bei beiden, verschachtelten
Schleifen Abbruchkriterien eingefügt. Somit lässt sich durch das Setzen eines AtomicBoolean Wer-
tes die Berechnung zum jeweils nächsten Schleifendurchgang abbrechen.

Die dazu benötigte run() Methode sieht nun folgendermassen aus (leicht gekürzt):
 /**
 * Main Mandelbrot calculation routine. Calculates the image.
 */
 public void run() {
 // some parameters are not allowed to be changed during
 // calculation these are prtected by the calculationLock
 synchronized (calculationLock) {
 // calculate render area in Mandelbrot set
 double mandelbrotRenderX = this.mandelbrotCoordinates.x
 + (this.mandelbrotCoordinates.width /
 this.image.getWidth() * (this.imageRenderArea.x + 1));
 double mandelbrotRenderY = this.mandelbrotCoordinates.y
 + (this.mandelbrotCoordinates.height
 / this.image.getHeight() *
 (this.imageRenderArea.y + 1));
 double mandelbrotRenderWidth =
 this.mandelbrotCoordinates.width /
 this.image.getWidth() *
 this.imageRenderArea.width;
 double mandelbrotRenderHeight =
 this.mandelbrotCoordinates.height /
 this.image.getHeight() *
 this.imageRenderArea.height;

 // calculate mandelbrot distances from pixel to pixel
 double distanceX = mandelbrotRenderWidth
 / this.imageRenderArea.width;
 double distanceY = mandelbrotRenderHeight
 / this.imageRenderArea.height;

 double z = mandelbrotRenderX, zi = mandelbrotRenderY;
 int iterations = 0;
 double colorspacing = (numColors - 1) /
 (double) maxIteration;

 for (int x = this.imageRenderArea.x; x <
 this.imageRenderArea.x
 + this.imageRenderArea.width
 && !interruptCalculation.get(); x++) {
 zi = mandelbrotRenderY;
 for (int y = this.imageRenderArea.y; y <
 this.imageRenderArea.y
 + this.imageRenderArea.height
 && !interruptCalculation.get(); y++) {
 if ((iterations = mandelbrotTest(z, zi)) != -1) {
 // part of the mandelbrot set
 // get color index to use
 int colorIndex = (int) (colorspacing *
 iterations);
 // write pixel

 2006-11-16

Diplomarbeit Seite 31

 image.setRGB(x, y, ((int[])
 colors[colorIndex])[0]);
 } else {
 // not part of the Mandelbrot set
 // set RGB value - use this method because it's
 // unsnychronized and does not use locking
 image.setRGB(x, y, 1, 1, colorNotPart, 0, 1);
 }
 // notify controller
 if (x % 50 == 0) {
 Controller.getInstance().drawImage(image);
 }
 zi += distanceY;
 }
 z += distanceX;
 }
 // worker finished - draw final image
 Controller.getInstance().drawImage(image);
 }

 }

Listing 5 Angepasste Berechnungsmethode

Die verwendeten Farben werden mit folgendem Algorithmus berechnet:
 /**
 * Generates all colors and stores them in an array
 */
 static {
 byte redInc;
 byte greenInc;
 byte blueInc;
 int redValue = 0;
 int greenValue = 0;
 int blueValue = 0;
 for (byte i = 1; i < 8; i++) {
 // red value
 redInc = 0;
 if ((((i - 1) & 0x4) == 0x0) && ((i & 0x4) == 0x4)) {
 redInc = 1;
 redValue = -1;
 } else if ((((i - 1) & 0x4) == 0x4) && ((i & 0x4) == 0x0)) {
 redInc = -1;
 redValue = 256;
 }
 // green value
 greenInc = 0;
 if ((((i - 1) & 0x2) == 0x0) && ((i & 0x2) == 0x2)) {
 greenInc = 1;
 greenValue = -1;
 } else if ((((i - 1) & 0x2) == 0x2) && ((i & 0x2) == 0x0)) {
 greenInc = -1;
 greenValue=256;
 }
 // blue value
 blueInc = 0;
 if ((((i - 1) & 0x1) == 0x0) && ((i & 0x1) == 0x1)) {
 blueInc = 1;
 blueValue = -1;
 } else if ((((i - 1) & 0x1) == 0x1) && ((i & 0x1) == 0x0)) {
 blueInc = -1;
 blueValue=256;

 2006-11-16

Diplomarbeit Seite 32

 }

 // calculate transition states
 for (char j = 0; j < 256; j++) {
 int[] color = new int[1];
 color[0] = (redValue += redInc) << 16
 | (greenValue += greenInc) << 8
 | (blueValue += blueInc);
 colors[(i - 1) * 256 + j] = color;
 }

 }

Listing 6 Farb-Berechnung

9.1.2. View

Das GUI basiert auf den Java-Swing Klassen und verwendet keine zusätzlichen Hilfsmittel. Im We-
sentlichen beschränkt es sich darauf dem Controller die Benutzereingaben weiterzureichen oder um-
gekehrt die vom Controller benötigten Bildschirmausgaben zu machen.

Die Klassen brauchen hier nicht weiter erklärt zu werden.

9.1.3. Control

Der Controller ist der zentrale Dreh- und Angelpunkt der Anwendung. Die Controller Klasse ist als
Singleton implementiert. Von ihr existiert nur eine einzige Instanz. Diese Instanz kann durch die stati-
sche getInstance() Methode von jeder Komponente abgeholt werden. Dies macht es überflüssig
jeder Klasse die Referenz auf den Controller zu übergeben.

Neben einer Reihe von get* Methoden bietet der Controller vile set* Methoden um den Status der
Anwendung zu beeinflussen. Diese werden insbesondere vom GUI (View) verwendet um die vom
Benutzer definierten Optionen zu aktivieren. Es folgt eine Liste der wichtigsten Methoden:

Tabelle 19 Controller Methoden

Methode Beschreibung

init() Hiermit wird der Controller erstmalig initialisiert. Diese Methode wird
nur von der main() Methode aufgerufen.

drawImage() Diese Methode zeichnet das als Parameter übergebene Bild im GUI.
Diese Methode wird von den Model-Klassen aufgerufen wenn Daten
zur Verfügung stehen.

get*() Über diese Methoden kann der aktuelle Status der Anwendung abge-
fragt werden. Dies Umfasst beispielsweise die aktuellen Koordinaten
im Mandelbrot-Bereich oder die Anzahl aktiver Threads.

interruptCalculation() Mittels dieser Methode kann eine laufende Berechnung abgebrochen
werden.

quit() Threads Anwendung beenden.

restartCalculation() Neu-Start der Berechnung mit den aktuellen Initialdaten.

set*() Setzen verschiedenster Parameter (Anzahl Threads, Koordinaten,
Bildgrösse…)

Die Implementation der einzelnen Methoden ist hier nicht besonders wichtig da der Controller die an-
gefragten Aktionen hauptsächlich direkt an die betroffenen Objekte weiterleitet. So führt ein setNum-

 2006-11-16

Diplomarbeit Seite 33

Workers() zum Aufruf von setWorkersNumber() der Klasse BenchmarkManager (siehe Kapitel 0).
Somit beinhaltet der Controller keine aufwändige Programmlogik oder Algorithmen. Der Gesamte
Code ist natürlich im Umfang der Arbeit enthalten.

 2006-11-16

Diplomarbeit Seite 34

9.2. Locking

Hier werden die relevanten Code-Stellen beschrieben um das Locking-Verhalten zu beeinflussen. Wie
in der Analyse (siehe Kapitel 8.4) erwähnt liegt der beste Ansatzpunkt dafür beim Bild. Jeder Thread
schreibt die Pixel direkt per setPixel() Methode in das Bild. Diese Methode ist in der Referen-
zimplementation des in BufferedImage verwendeten Rasters zwar nicht „Thread safe“ (also auch
nicht synchronisiert) aber da jeder Pixel nur von einem Thread geschrieben wird ist dies hier kein
Problem. Wir werden an diesem Punkt ansetzen um verschiedene Locking-Verfahren zu testen. Der
Einfachheit halber haben wir die setPixel() Methode übrigens durch den Aufruf der setRGB()
Methode direkt aus der BufferedImage Klasse ersetzt.

Um verschiedene Locking-Mechanismen auf der Ebene der BufferedImage Klasse testen zu kön-
nen haben wir diese abgeleitet und eine Klasse mit dem Namen CountingImage erstellt. Diese bie-
tet zusätzlich noch eine Methode getCount() welche einen Zählerstand zurückgibt. Wir haben die-
sen Zähler eingefügt weil wir festgestellt haben, dass selbst bei einer Methodensynchronisation von
setRGB() kein Lock gesetzt wird. Wir vermuten, dass die Sun HotSpot VM 1.5 hier optimiert und
feststellt, dass ein Lock hier nicht nötig ist. Doch dazu mehr in Kapitel 0.

Die Klassenstruktur sieht nun schematisch wie folgt aus:

Abbildung 6 Schematische Klassenstruktur, CountingImage

Die Klasse CountingImage verwendet den folgenden Code:
public class CountingImage extends BufferedImage {
 public int count = 0;

 public CountingImage(int width, int height, int imageType) {
 super(width, height, imageType);
 }

 public synchronized int getCount() {
 return count;
 }
}

Listing 7 CountingImage Implementierung

Da der Controller zentral für die Erstellung der Bilder zuständig ist kann dieser frei zwischen den Imp-
lementierungen wählen und erlaubt somit flexibel die Wahl des Locking-Mechanismus bei jedem Test-
durchgang.

Die Implemntierung der von CountingImage abgeleiteten Klassen wird nachfolgend kurz erklärt.

 2006-11-16

Diplomarbeit Seite 35

9.2.1. Kein Locking

Hier wird die Klasse NonLockingImage verwendet. Diese besteht quasi nur aus einer Wrapper-
Klasse und wurder der Fairness wegen erstellt. Fairness deswegen, weil die Inkrementierung der
count Variable selbst auch CPU-Zeit verbraucht und ein dieser Aufwand bei allen Implementierungen
anfallen soll. Ansonsten wären die Ergebnisse möglicherweise nicht miteinander vergleichbar.

public class NonLockingImage extends CountingImage {
 public NonLockingImage(int width, int height, int imageType) {
 super(width, height, imageType);
 }

 public void setRGB(int startX, int startY, int w, int h,
 int[] rgbArray, int offset, int scansize) {
 count++;
 super.setRGB(startX, startY, w, h, rgbArray, offset, scansize);
 }
}

Listing 8 NonLockingImage Implementierung

Ein wichtiger Hinweis sei hier aber noch angefügt: Diese Klasse ist NICHT Thread-Safe. Das bedeu-
tet, dass der parallele Zugriff hier für inkonsistente Daten sorgen kann. Der Grund liegt nicht in der
unsynchronisierten super.setRGB() Methode sondern im count++ Ausdruck. Dieser könnte auch
als count = count + 1 geschrieben werden. Dies verdeutlicht, dass der Wert von count zuerst
ausgelesen wird, dann inkrementiert und anschliessend wieder zurück geschrieben wird. Findet nun
irgendwo zwischen auslesen und speichern ein Kontextwechsel statt wo ein anderer Thread den In-
halt von count verändert, dann wird beim Zurückschreiben der Wert überschrieben. Deshalb kann
(und wird mit hoher wahrscheinlichkeit) count nach mehreren hunderttausend parallelen Zugriffen auf
setRGB() (einmal pro Pixel) einen falschen Wert beinhalten.

Da wir diesen Wert aber nicht wirklich benötigen ist dieses Problem zu vernachlässigen.

9.2.2. Grobes Locking

Unter grobem Locking versteht man die Verwendung eines Locks für weite Code-Teile. Der Nachteil
liegt darin, dass die entsprechenden Code-Teile für alle anderen Threads für eine entsprechend lange
Zeit blockiert bleiben. In unserem Flll ist die setRGB() Methode sehr kurz. Dafür wird sie entspre-
chend häufig aufgerufen. Bei der Methodensynchronisation werden entsprechend häufig viele Lock-
Wechsel und Blockierungen stattfinden.

Wir ersetzen die von BufferedImage zur Verfügung gestellte setRGB() Methode. Dazu leiten wir
von der Klasse CountingImage ab (welche ihrerseits von BufferedImage abgeleitet ist) und über-
schreiben die Methode. Hinweis: BufferedImage bietet bereits eine synchronisierte setRGB() Me-
thode. Diese zu verwenden wäre aber für unsere Einsatzzwecke zu unflexibel und würde ausserdem
die Anpassung der Berechnungsklasse bedingen was wir mit einer erweiterten, eigenen Klasse ele-
gant umgehen können.

Hier der Code für die LockingImageCoarse Klasse:
public class LockingImageCoarse extends CountingImage {
 public LockingImageCoarse(int width, int height, int imageType) {
 super(width, height, imageType);
 }

 public synchronized void setRGB(int startX, int startY, int w,
 int h, int[] rgbArray, int offset, int scansize) {
 count++;
 super.setRGB(startX, startY, w, h, rgbArray, offset, scansize);
 }
}

 2006-11-16

Diplomarbeit Seite 36

Listing 9 LockingImageCoarse Implementierung

Hier liegt auch der Grund für unsere zusätzliche count Variable. Wir haben festgestellt, dass eine
einfache Methodensynchronisation überhaupt keinen Effekt auf die Performance hatte. Dies war auf
den ersten Blick sehr unlogisch. Wir vermuten, dass durch interne JVM Optimierungen dieser Lock
einfach herausoptimiert wird da die JVM feststellen kann, dass in Wirklichkeit gar kein Lock nötig ist.

Um diese Optimierung zu verunmöglichen findet nun ein Zugriff auf die count Variable statt. Dieser
muss in jedem Fall synchronisiert werden. Die Entfernung dieses Locks durch Optimierung wäre viel
schwerer (wenn auch nicht unmöglich) und wird offenbar von der JVM nicht durchgeführt. Die Testre-
sultate werden dies wohl untermauern können.

9.2.3. Feines Locking

Auch hier wird die setRGB() Methode überschrieben und durch eine mit Locking ersetzt:
public class LockingImageFine extends CountingImage {
 public LockingImageFine(int width, int height, int imageType) {
 super(width, height, imageType);
 // create locks
 locks = new Object[width][height];
 for (int row = 0; row < height; row++) {
 for (int column = 0; column < width; column++) {
 locks[column][row] = new Object();
 }
 }
 }

 public void setRGB(int startX, int startY, int w, int h,
 int[] rgbArray, int offset, int scansize) {
 synchronized (this) {
 count++;
 }
 synchronized (locks[startX][startY]) {
 super.setRGB(startX, startY, w, h, rgbArray,
 offset, scansize);
 }
 }
}

Listing 10 LockingImageFine Implementierung

Auch hier wird synchronisiert. Allerdings wird für jeden Pixel ein eigenes Lock-Objekt zur Verfügung
gestellt. Lock-contention würde hier also nur auftreten wenn zwei Threads gleichzeitig auf einen iden-
tischen Pixel zugreifen würden. Da jeder Pixel nur einmal beschrieben wird dürfte dieser Fall nie ein-
treten. Den Aufwand zur Überprüfung des Locks muss aber trotzdem gemacht werden. Ob dieser von
der JVM ebenfalls wegoptimiert werden kann oder wissen wir zum jetzigen Zeitpunkt noch nicht.

Dieser Code-Teil beinhaltet noch einen weiteren Lock auf die this Referenz. Dieser schützt den ge-
meinsamen Zugriff auf die count Variable. Die Besonderheit liegt hier darin, dass der synchronisierte
Bereich extrem kurz ist und somit die Wahrscheinlichkeit für Lock-contention sinkt. Der Code zur In-
krementierung der Variable dürfte innerhalb weniger CPU-Befehle erledigt sein.

9.2.4. CAS (Lock-Free)

Um die Vergleichbarkeit der Resultate zu gewährleisten baut diese Locking-Klasse auf der für feines
Locking (siehe Listing 10 LockingImageFine Implementierung) auf. Einzig der synchronisierte Block
für die Inkrementierung des Zählers wird nicht mehr durch einen Objekt-Lock sondern durch eine
CAS-Methode implementiert. Zu diesem Zweck wird die AtomicInteger Klasse verwendet. Diese

 2006-11-16

Diplomarbeit Seite 37

bietet eine Lock-freie incrementAndGet() Methode, die mittels CAS Funktion implementiert wurde.
Der verwendete Code sieht folgendermassen aus:

public class LockingImageCAS extends CountingImage {
 /** Array of objects used to lock each pixel */
 private Object[][] locks;
 /**
 * Use an atomic integer as a counter. This one provides a CAS
 * method which is lock-free.
 */
 private AtomicInteger atomicCount = new AtomicInteger(0);

 /**
 * @see ch.skybeam.mandelbrot.model.lock.CountingImage#getCount()
 */
 @Override
 public synchronized int getCount() {
 return atomicCount.get();
 }

 public LockingImageCAS(int width, int height, int imageType) {
 super(width, height, imageType);
 // create locks
 locks = new Object[width][height];
 for (int row = 0; row < height; row++) {
 for (int column = 0; column < width; column++) {
 locks[column][row] = new Object();
 }
 }
 }

 @Override
 public void setRGB(int startX, int startY, int w, int h,
 int[] rgbArray, int offset, int scansize) {
 // increment counter using a CAS method.
 atomicCount.incrementAndGet();
 synchronized (locks[startX][startY]) {
 super.setRGB(startX, startY, w, h, rgbArray,
 offset, scansize);
 }
 }
}

Abbildung 7 LockingImageCAS Implementierung

Die Impementierung der CAS-Methode incrementAndGet() sieht folgendermassen aus:
public final int incrementAndGet() {
 for (;;) {
 int current = get();
 int next = current + 1;
 if (compareAndSet(current, next))
 return next;
 }
}

Abbildung 8 compareAndGet Implementierung

 2006-11-16

Diplomarbeit Seite 38

9.3. JOMP

Bei JOMP (siehe auch [JOMP]) handelt es sich um eine Implementierung der OpenMP direktiven für
Java. Die Implementierung unterscheidet sich aber in der Umsetzung von der Referenz-Spezifikation.
In Java übernimmt nicht der Java-Compiler die Umsetzung mittels Compiler-Direktiven sondern ein
Pre-Compiler. Dieser übersetzt die JOMP-Klassen (Dateiendung .jomp) in Java Klassen (Dateiendun
.java). Die generierten Java-Klassen können dann mit dem normalen Java Coompiler übersetzt wer-
den. Auch in weiteren Details unterscheidet sich die Implementation. Einige Direktiven werden nicht
unterstützt und gemäss Dokumentation werden die Threads nicht am Anfang generiert und existieren
dann während des ganzen Programmablaufes sondern werden erst zur Laufzeit erzeugt und gleich
wieder beendet.

Wir wollen hier untersuchen in wie fern sich die Mandelbrot-Berechnung mit JOMP parallelisieren
lässt. Der Vorteil dieser Methode liegt insbesondere darin, dass die Architektur der Applikation meist
nicht geändert werden muss um einige Teile/Schleifen parallel ablaufen zu lassen.

Ein weiter Nachteil der JOMP-Implementierung scheint die manuelle Konfiguration zu sein. Da über
die Java-API die aktuelle CPU-Anzahl nicht abgefragt werden kann muss diese dem Programm mitge-
teilt werden. Entweder zur Laufzeit oder per -Djomp.threads=n Parameter beim Start der Anwen-
dung.

Weiterführende Informationen:

• OpenMP, Homepage: [OPENMP]

• EPCC, OpenMP-like directives for Java: [JOMP]

9.4. JOMP Architektur

Der Entwicklungsprozess bei der Entwicklung von JOMP-Programmen ist im folgenden Bild schema-
tisch dargestellt:

Abbildung 9 Schematische JOMP Entwicklung

Meistens wird zuerst der Java-Sourcecode erstellt. Häufig ist dieser aber schon in Form einer seriellen
Verarbeitung vorhanden, der nun parallelisiert werden soll. Im bestehenden Java-Code werden jetzt
JOMP-Direktiven (einfache Kommentare) eingefügt. Die daraus entstehende Datei könnte in der Re-
gel immer noch mit dem Java-Compiler übersetzt werden. Dieser würde aber die JOMP Direktiven
ignorieren und wie gewohnt ein Single-Threaded Programm erzeugen. Um diesen erweiterten Sour-
cecode als JOMP Programm zu kennzeichnen wird die Datei von .java in .jomp umbenannt. Diese
Dateien können dann mit dem JOMP-Compiler in eine neue Java-Sourcecode-Datei konvertiert wer-
den. Diese generierten Sourcen verwenden dann erweiterte Konstrukte um die Arbeit auf Threads
aufzuteilen. Die generierten Sourcen lassen sich dann wieder mit einem beliebigen Java-Compiler in
Bytecode übersetzen der auf einer normalen JVM läuft.

Da die JOMP Source-Dateien lediglich JOMP-Kommentare enthalten lassen sich diese bei Bedarf
sogar ohne JOMP mit dem Java-Compiler übersetzen. Dabei werden die JOMP-Direktiven einfach
ignoriert.

Die Übersetzung einer JOMP-Klasse geschieht mit folgendem Aufruf:

 2006-11-16

Diplomarbeit Seite 39

java -cp jomp1.0b.jar jomp.compiler.Jomp <Klasse>

Listing 11 Übersetzung einer JOMP-Klasse

Der Ausdruck <Klasse> braucht dabei natürlich durch die entsprechende JOMP-Klasse ersetzt zu
werden. Die Endung .jomp wird nicht angegeben. Der -cp Parameter wurde nur der Vollständigkeit
halber angeben, da das jomp1.0b.jar Java Archiv sowohl den Compiler als auch die Laufzeitklas-
sen enthält. Dieselbe JAR Datei muss übrigens auch bei der Programmausführung im Classpath zu
finden sein, da dort die von JOMP verwendeten Klassen liegen.

Beim Start der Applikation braucht dann noch per Parameter mitgeteilt zu werden, auf wie viele
Threads die Aufgabe verteilt werden soll:

java -Djomp.threads=n <Klasse>

Listing 12 Start einer JOMP-Applikation

Hier unterscheidet sich JOMP einmal mehr von der C/C++/Fortran Implementierung. Dort werden
standardmässig so viele Threads wie CPUs erzeugt. Bei Java ist dies nicht möglich, da einer Java-
Anwendung die Anzahl physikalischer Prozessoren nicht bekannt ist. Deshalb muss dieser Parameter
entweder beim Start oder zur Laufzeit gesetzt werden. JOMP bietet dafür aber auch eine dynamische
Anpassung der Thread-Anzahl.

Bei Tests hat sich gezeigt, dass die Implementation noch einige Schwachstellen aufweisst. Insbeson-
dere treten bei der parallelen Anwendung von JOMP und eigenen Java-Threads Probleme in Form
von Exceptions auf. Weitere Probleme betreffen die Implementierung. Doch dazu mehr im Kapitel
9.4.1.

9.4.1. Mandelbrot-Berechnung mit JOMP

Um JOMP für die zentrale Berechnung der Mandelbrotmenge verwenden zu können haben wir die
bestehende Klasse MandelbrotCalculator erweitert und die Berechnungs-Schleife (doppelt-
verschachtelte for Schleife) überschrieben.

Die überarbeitete Methode sieht nun folgendermassen aus (leicht gekürzt):
public void run() {
 double mandelbrotRenderX = this.mandelbrotCoordinates.x
 + (this.mandelbrotCoordinates.width / this.image.getWidth()
* (this.imageRenderArea.x + 1));
 double mandelbrotRenderY = this.mandelbrotCoordinates.y
 + (this.mandelbrotCoordinates.height /
this.image.getHeight() * (this.imageRenderArea.y + 1));
 double mandelbrotRenderWidth = this.mandelbrotCoordinates.width
 / this.image.getWidth() * this.imageRenderArea.width;
 double mandelbrotRenderHeight = this.mandelbrotCoordinates.height
 / this.image.getHeight() * this.imageRenderArea.height;

 // calculate mandelbrot distances from pixel to pixel
 double distanceX = mandelbrotRenderWidth /
 this.imageRenderArea.width;
 double distanceY = mandelbrotRenderHeight /
 this.imageRenderArea.height;

 double z = mandelbrotRenderX, zi = mandelbrotRenderY;
 int iterations = 0;
 double colorspacing = (numColors - 1) / (double) maxIteration;

 // omp parallel for shared(distanceX, distanceY, mandelbrotRenderX,
 mandelbrotRenderY) private(z, zi, iterations)
 for (int x = imageRenderArea.x; x < imageRenderArea.x
 + imageRenderArea.width; x++) {
 z = mandelbrotRenderX + (distanceX * ((x - imageRenderArea.x) +
 1));

 2006-11-16

Diplomarbeit Seite 40

 zi = mandelbrotRenderY;
 for (int y = imageRenderArea.y; y < imageRenderArea.y
 + imageRenderArea.height; y++) {
 zi = mandelbrotRenderY + ((y - imageRenderArea.y)) *
 distanceY;
 if ((iterations = mandelbrotTest(z, zi)) != -1) {
 // part of the mandelbrot set
 // get color index to use
 int colorIndex = (int) (colorspacing * iterations);
 // write pixel
 image
 .setRGB(x, y, 1, 1,
 ((int[]) colors[colorIndex]), 0, 1);
 } else {
 // not part of the Mandelbrot set
 // set RGB value - use this method because it's
 // unsnychronized and does not use locking
 image.setRGB(x, y, 1, 1, colorNotPart, 0, 1);
 }
 // notify controller
 if (x % 50 == 0) {
 Controller.getInstance().drawImage(image);
 }
 }
 }
 Controller.getInstance().drawImage(image);
}

Listing 13 JOMP Implementierung der MandelbrotCalculator Klasse

Hier wurde sehr wenig geändert. Lediglich die omp parallel for Direktive vor der ersten Schleife
eingefügt. Ausserdem wurde die inkrementelle Berechnung von z und zi durch eine absolute ersetzt.
Damit braucht diese nicht synchronisiert zu werden was den Programmfluss bzw. die parallele Verar-
beitung einschränken würde.

Eine JOMP Besonderheit war, dass alle Parameter des Konstruktors in gleichnamige Datenfelder
(Klassenvariabeln) geschrieben werden müssen. Ansonsten wiesen die generierten Java-Quelldateien
(nach der Generierung durch den JOMP-Compiler) Fehler auf. Deshalb musste in unserem Beispiel
noch der Konstruktor überschrieben werden:

public class MandelbrotCalculatorJOMP extends MandelbrotCalculator {
 private double mandelbrotX = 0;
 private double mandelbrotY = 0;
 private double mandelbrotWidth = 0;
 private Rectangle renderArea;
 public MandelbrotCalculatorJOMP(BufferedImage image, Rectangle
 renderArea, double mandelbrotX, double mandelbrotY,
 double mandelbrotWidth, int maxIteration) {
 super(image, renderArea, mandelbrotX, mandelbrotY,
 mandelbrotWidth, maxIteration);
 this.mandelbrotX = mandelbrotX;
 this.mandelbrotY = mandelbrotY;
 this.mandelbrotWidth = mandelbrotWidth;
 this.renderArea = renderArea;
 }
[…]

Listing 14 Überschriebener Konstruktor

 2006-11-16

Diplomarbeit Seite 41

10. Glossar
Tabelle 20 Glossar

Begriff Beschreibung

Affinität Bezeichnet die Zuordnung eines Prozesses/Threads zu physikalischen Recheneinhei-
ten. Durch die Definition einer Affinitätsmaske kann gesteuert werden auf welchen
Recheneinheiten die Anwendung ausgeführt werden kann.

Siehe Kapitel 5.2.

CAS Compare and Swap bzw. Compare and Set bezeichnet eine atomare (meist hardware-
unterstützte) Operation in der ein gespeicherter Wert mit dem vermuteten Wert vergli-
chen wird. Stimmt dieser überein, so wird ein neuer Wert gesetzt. Ansonsten wird
nichts getan. CAS Funktionen erlauben Lock-freie Algorithmen.

CMP Chip Multi Processing (CMP) bezeichnet einen Chip, der in der Lage ist mehrere Pro-
zesse gleichzeitig abzuarbeiten. Dies passiert aber auf einem Chip und nicht auf meh-
reren Prozessoren.

Siehe Kapitel 5.1.

CMT Chip Multi Threading (CMT) ist eine Technologie bei der ein Prozessor bei jedem
Taktzyklus n Instruktionen (je eine pro n-Threads) einlesen kann.

Siehe Kapitel 5.1.

CPU Abkürzung für Central Processing Unit. Wird synonym für die deutsche Bezeichnung
Hauptrpozessor bzw. Prozessor verwendet.

CVS Concurrent Versioning System; Ein System zur Versionierung von Dateien (vorzugs-
weise Source-Code). CVS erlaubt die konkurrierende Arbeit an Quelltexten ohne diese
für den exklusiven Zugriff zu sperren.

JVM Die Java Virtual Machine ist ein Interpreter für Java Bytecode. Die JVM ist dabei das
Bindeglied zwischen Betriebssystem und den plattformunabhängigen Java Anwen-
dungen.

MPI Das Message Passing Interface (MPI) wird zum Nachrichtenaustausch (Inter-Process-
Communication, IPC) verwendet. Dabei kann MPI transparent sowohl auf einem loka-
len Rechner als auch verteilt im Netzwerk verwendet werden.

Siehe Kapitel 5.3.

NUMA Non-Uniform Memory Access (NUMA) bezeichnet eine Architektur in der jede Verar-
beitungseinheit lokalen Speicher besitzt und durch Kommunikation mit den anderen
Verarbeitungseinheiten auch deren Speicher ansprechen kann.

Siehe Kapitel 5.1.

OpenMP Eine Spezifikation der API zur Parallelisierung von Programmen. OpenMP definiert
Compiler-Direktiven damit ein Compiler den bestehenden Code parallelisieren kann.

Siehe Kapitel 5.3.

Pipelining Bezeichnet die Abarbeitung einer Instruktion in vereinfachten Teilschritten. Dadurch
kann die folgende Instruktion bereits eingelesen werden sobald die vorhergehende die
nächste Stufe erreicht hat.

Siehe Kapitel 5.1.

Scheduling Bezeichnet die Tätigkeit des Betriebssystems beim Preemptiven Multitasking die Pro-
zessorzeit nach einem bestimmten Algorithmus den einzelnen Ausführungseinheiten
zuzuweisen (auf Ebene Thread oder Prozess).

 2006-11-16

Diplomarbeit Seite 42

Begriff Beschreibung

Skalar Ein Prozessor in Skalarem Design verarbeitet immer nur eine Instruktion gleichzeitig.

Siehe Kapitel 5.1.

SMP Symmetric Multi Processing (SMP) bezeichnet die Verarbeitung mit parallel arbeiten-
den Einheiten wobei jede Einheit gleichberechtigt behandelt wird.

Siehe Kapitel 5.1.

Superskalar Ein Prozssor in superskalarem Design versucht mittels Dispatcher alle Recheneinhei-
ten gleichzeitig auszulasten.

Siehe Kapitel 5.1.

TBB Intel Thread Building Blocks. Eine C++ Bibliothek die Methoden zur parallelen Verar-
beitung bereitstellt (Schleifenparalleisierung).

Siehe Kapitel 5.3.

Thread Ein leichtgewichtiger Prozess. Ein Thread teilt den Adressraum mit dem Prozess zu
dem er gehört. Dadurch werden einerseits die Kommunikation und andererseits der
Kontextwechsel beschleunigt.

UMA Uniform Memory Access (UMA) bezeichnet eine Architektur in der alle Verarbeitungs-
einheiten über ein gemeinsames Bussystem auf den Speicher zugreifen.

Siehe Kapitel 5.1.

 2006-11-16

Diplomarbeit Seite 43

11. Verzeichnisse

11.1. Tabellenverzeichnis

Tabelle 1 Abgrenzung der Einflussbereiche.. 3
Tabelle 2 Übersicht Testziele .. 3
Tabelle 3 Anforderungskatalog an eine geeignete Testklasse ... 4
Tabelle 4 Referenzierte Dokumente.. 7
Tabelle 5 Abkürzungen.. 7
Tabelle 6 Links .. 8
Tabelle 7 Abgrenzung Hardware... 10
Tabelle 8 Hardwareplattform ... 11
Tabelle 9 Abgrenzung Betriebssystem.. 12
Tabelle 10 Abgrenzung Applikation... 12
Tabelle 11 Abgrenzung JVM ... 13
Tabelle 12 Zielsetzung Hardware.. 14
Tabelle 13 Betrachtungsbereiche Hardware... 14
Tabelle 14 Zielsetzungen Betriebssystem... 15
Tabelle 15 Betrachtungsbereiche Betriebssystem.. 15
Tabelle 16 Zielsetzungen JVM .. 16
Tabelle 17 Betrachtungsbereiche JVM ... 16
Tabelle 18 BenchmarkManager Methoden ... 27
Tabelle 19 Controller Methoden .. 32
Tabelle 20 Glossar .. 41

11.2. Abbildungsverzeichnis

Abbildung 1 Mandelbrot-Menge (Apfelmännchen).. 20
Abbildung 2 Vergrösserung der Mandelbrot Menge ... 21
Abbildung 3 MVC Klassenstruktur... 26
Abbildung 4 Architektur der Implementierung ... 26
Abbildung 5 Worker Threads Schema .. 28
Abbildung 6 Schematische Klassenstruktur, CountingImage ... 34
Abbildung 7 LockingImageCAS Implementierung... 37
Abbildung 8 compareAndGet Implementierung .. 37
Abbildung 9 Schematische JOMP Entwicklung .. 38

 2006-11-16

Diplomarbeit Seite 44

11.3. Code Listings

Listing 1 Mandelbrot Basisalgorithmus.. 22
Listing 2 Mandelbrot Test Methode ... 23
Listing 3 Mandelbrot Hilfsmethoden .. 23
Listing 4 run() Methode der Worker Threads .. 29
Listing 5 Angepasste Berechnungsmethode... 31
Listing 6 Farb-Berechnung .. 32
Listing 7 CountingImage Implementierung.. 34
Listing 8 NonLockingImage Implementierung ... 35
Listing 9 LockingImageCoarse Implementierung .. 36
Listing 10 LockingImageFine Implementierung... 36
Listing 11 Übersetzung einer JOMP-Klasse.. 39
Listing 12 Start einer JOMP-Applikation.. 39
Listing 13 JOMP Implementierung der MandelbrotCalculator Klasse... 40
Listing 14 Überschriebener Konstruktor .. 40

11.4. Index

Abkürzungen.................... 7

Affinität 41

Algorithmus 22

Analyse........................ 24

Bewertung 25

Apfelmännchen.............. 20

Applikation 12

Betrachtungsbereiche... 14

Betriebssystem.............. 12

CAS 9, 36, 41

CMP.....................10, 11, 41

CMT.....................10, 11, 41

Control 32

CPU 41

CVS 41

Definitionen...................... 7

Fraktalberechnung 30

Hardware 10

Implementierung............ 26

JOMP......................... 38, 39

JVM 13, 14, 15, 41

Links 8

lock contention.............. 19

Locking........................... 34

CAS............................. 36

Fein 36

Grob 35

Kein 35

Mandelbrot 20

Messbar 18

Model 27

MPI 13, 41

MVC................................. 26

Nachvollziehbar............. 18

NUMA........................ 11, 41

OpenMP................ 8, 13, 41

Parallelisierbar............... 18

Pipeline........................... 10

Pipelining 41

Plattform......................... 10

Portierbar 18

Rahmenbedingungen.... 10

Realisierbarkeit.............. 10

Referenzen 7

Reproduzierbarkeit........ 19

Requirements 18

Scheduling 12, 41

SDD................................... 9

Sequenziell..................... 18

Skalar........................ 10, 42

Skalierung 10

SMP............... 10, 11, 14, 42

Spezifikation 18

STD 14

Superskalar.............. 10, 42

TBB 13, 42

Technologien 10

Testklasse 20

Testplattform 9, 10

Testumfang
 2006-11-16

Diplomarbeit Seite 45

Applikation................... 16

Betriebssystem............ 15

Testumfang 9, 14

Hardware..................... 14

Testumfang

JVM 16

Thread....................... 12, 42

UMA 10, 11, 42

View 32

Visualisierbarkeit........... 19

Zielsetzungen 14

 2006-11-16

	1. Management Summary
	2. Inhaltsverzeichnis
	3. Dokumentinformationen
	3.1. Referenzierte Dokumente
	3.2. Definitionen und Abkürzungen
	3.3. Links

	4. Einleitung
	4.1. Zweck des Dokumentes

	5. Evaluation Plattform
	5.1. Hardware
	5.2. Betriebssystem
	5.3. Applikation
	5.4. JVM

	6. Geplanter Testumfang
	6.1. Hardware
	6.2. Betriebssystem
	6.3. Applikation
	6.4. JVM:

	7. Spezifikation der Testklasse
	7.1. Requirements

	8. Testklasse
	8.1. Basisinformationen
	8.2. Die Mandelbrot Menge
	8.3. Der Algorithmus
	8.4. Analyse des Algorithmus
	8.5. Bewertung

	9. Implementierung
	9.1. Java Threads
	9.1.1. Model
	9.1.2. View
	9.1.3. Control

	9.2. Locking
	9.2.1. Kein Locking
	9.2.2. Grobes Locking
	9.2.3. Feines Locking
	9.2.4. CAS (Lock-Free)

	9.3. JOMP
	9.4. JOMP Architektur
	9.4.1. Mandelbrot-Berechnung mit JOMP

	10. Glossar
	11. Verzeichnisse
	11.1. Tabellenverzeichnis
	Abbildungsverzeichnis
	Code Listings
	Index

