EHZ & FACHHOCHSCHULE ZENTRALSCHWEIZ

T

HTA 2 HOCHSCHULE FUR TECHNIK+ARCHITEKTUR LUZERN
Abteilung Informatik

Java
Thread Skalierung

SDD

Software Design Document

HTA Horw

HTA LUZERN T: 041-349-33-11 Diplomarbeit 2006

Technikumstrasse 21 F: 041-349-39-60 Aregger Marcel

CH—6048 Horw W: www.hta.fthz.ch Meier Rainer

Diplomarbeit

Seite 2

Anderungskontrolle

Version Datum Ausfiihrende Stelle Bemerkungen/Art der Anderung

11 2006-10-16 Rainer Meier Initial Release

1.2 2006-11-06 Rainer Meier Diverse Erweiterungen in allen Kapiteln.
Erste freigegebene Draft-Version

1.3 2006-11-10 Rainer Meier Fraktal ausgewahlt., Source-Code dokumentiert
Anpassungen Review Evaluation

1.4 2006-11-14 Marcel Aregger Zuordnung Testumfang zu Projektzielsetzungen

Prifung und Freigabe

Vorname/Name Dokumentversion Status Datum Visum
Rainer Meier 1.4 Final 2006-11-16
Marcel Aregger 1.4 Final 2006-11-16

2006-11-16

Diplomarbeit Seite 3

1. Management Summary

Das Software Design Document bildet das Bindeglied zwischen der Basisanalyse und der darauf fol-
genden Testserie. Das Dokument ist folgendermassen strukturiert:

1. Evaluation Plattform

2. Abstecken des geplanten Testumfanges
3. Spezifikation der Testklasse

4. Auswahl der Testklasse

5. Implementierung der Testapplikation

Die Evaluation der Testplattform (siehe Kapitel 5) ist nétig um die aus der Basisanalyse (siehe [1])
resultierenden Einflussbereiche abzugrenzen. Daraus resultieren die Anforderungen an die Testplatt-
form auf Ebene Hardware, Betriebssystem, Applikation und JVM:

Tabelle 1 Abgrenzung der Einflussbereiche

Hardware Betriebssystem Applikation JVM

SMP Designprinzip Thread, OpenMP (in Formvon Java Threading, JOMP
Win32 Thread, JOMP)
Scheduling (Prioritaten),
Affinitat

Die Definition des geplanten Testumfanges (siehe Kapitel 6) ist notwendig um die Anforderungen an
eine geeignete Testklasse definieren zu kdnnen da diese direkt vom geplanten Testumfang abhangig
ist. Hier wurden 8 Testziele {T?} formuliert die in direktem Zusammenhang mit den im SPMP definier-
ten Projektzielsetzungen {Z?} stehen.

Tabelle 2 Ubersicht Testziele

SPMP # Zielsetzung Hardware, Betriebssystem und JVM Kat.

{Zz19} {T1} Feststellung Grad der Skalierung zwischen Single- und Multi-Prozessor- Muss
Architektur

{Z7} {T2} Nachweis Abbildung Java-Thread auf Win32-Thread Muss

{Z7} {T3} Nachweis Abbildung Java-Thread-Prioritat auf Win32-Thread-Prioritat Kann

{Z7} {T4} Analyse Systemverhalten bei Anderung Win32-Thread-Prioritét Kann
{7} {T5} Analyse Systemverhalten bei Festlegung einer Prozess-Affinitat Kann
{Z5} {T6} Analyse der Skalierung einer multithreaded Java-Applikation Muss
{Z5} {T7} Analyse Einfluss der Thread-Synchronisation auf die Skalierung Kann
{z16} {18} Analyse Anwendbarkeit und Effektivitat von JOMP Muss

2006-11-16

Diplomarbeit Seite 4

Die aus den Testzielen abgeleitete Spezifikation der Testklasse (siehe Kapitel 7) beinhaltet einen An-
forderungskatalog in 8 Punkten. Sie definieren die funktionalen- und logischen Anforderungen an die
Testklasse.

Tabelle 3 Anforderungskatalog an eine geeignete Testklasse

Beschreibung Typisierung
{R1.1} Sequenzieller Code Muss
{R1.2} Parallelisierbar Muss
{R1.3} Messbar Muss
{R1.4} Portierbar auf verschiedene Konzepte und Plattformen Muss
{R1.5} Nachvollziehbar, einfach, Gbersichtlich Muss
{R1.6} Reproduzierbarkeit Muss
{R2.1} Konkurrierender Datenzugriff Kann
{R2.2} Visualisierbarkeit Kann

Kapitel 8 beinhaltet die Evaluation einer geeigneten Testklasse anhand des Anforderungskataloges
inklusive technischer Analyse des Algorithmus. Die Berechnung der Mandelbrot Menge stellte sich
dabei als optimal heraus da sich alle Anforderungen mit diesem Algorithmus optimal abdecken lassen.

Basierend auf der ausgewahlten Testklasse wurde in Kapitel 9 ein Anwendungs-Design erstellt und
dokumentiert, welches eine bequeme Durchfiihrung der Testreihen erlaubt. Das Design beinhaltet
insbesondere die Lebenszyklus-Verwaltung der Threads sowie die Einbindung verschiedener Locking
Techniken und der JOMP Technologie.

2006-11-16

Diplomarbeit Seite 5

2. Inhaltsverzeichnis

1. MaNAgEMENT SUMIMAIY ...iiiiiiiiiiiiiee e ettt e e e e e ea e e e e et eet e s s e e e e eestaa i r e e e e e eeasba s e e eaeeeasbaaanseaeeeessnes 3
2. INNAITSVEIZEICINIS ..ot e e se e s e e e be e e sre e e snnee e 5
3. DOKUMENTINTOIMALIONEN ...t sre e e e e as 7
3.1. Referenzierte DOKUMENTEcoiiiiiie ittt ettt et e s st e e st e e e sabb e e e e snnneae s 7
3.2. Definitionen und ADKUIZUNGEN........cooiiiiiiei ittt e e et e e e s snbe e e e s sabeeee e 7
TR T I o] TP UURTPT PR 8
T e oY =] AU oL O PP PP OP PP PPPR O 9
4.1, ZWECK AES DOKUMENTIES.....ceiiutiiiieiiiiit ettt ettt ettt e e ekt e e st e e e s bb e e s annr e e e e annre e e e enneas 9
5. BEValUAtioN PlattfOrm.......oo it e e e 10
B HAITOWREIE ..ottt ettt ekttt skt e s bt e ek bt e et et e b et e shbe e e shb e e enb e e s bn e e snbe e e nnneenreeea 10
L 2 T (1T 0 L3Sy Y £S] (] PSR 12
LSRG T Y o] o] 17 o] o TS PPRR 12
LS T PR PRPTPTPRPRTN 13
SR 1= o] F= T | (= g =YY A0 g1 = o Vo S 14
L o o T (0 1= 1 S PP PP PUPRTTN 14
6.2, BEIIEDSSYSIEM ...ttt e st e e st b e e s aab e e e e e e nb e e e 15
(SRS Y o] o] 117 1 1 o] o NPT UURTPUPRTN 16
LI T Y LT UPUPPPPTPRPRTR 16
7. SPezifikation der TESTKIASSEueiii i 18
A% T = To (U1 =0 =T o £ PSSR 18
8. TESTKIASSE ...ttt e e e e e e e e e e e e e 20
8.1. BASISINFOIMALIONENooiiiiiiiieeeie ettt b e st e e sab e e sb e e e snbe e e nnneennneas 20
T B 1=V = TaTo (=1 o o 1Y, =T Vo 1= T SRR 20
RGN I 1= 2N o o 14 Ty 1 £ UPSET 22
8.4. Analyse des AIGOItNMUSuiiiiiiiie e e e s e e e e e e s e e snnreneeeaeeeeeannns 24
8.5, BEWEITUNGceeeiie ittt ettt e e e e e et e e e e e s e b e et e e e et e et e e e e e a e e e e eanne 25
Lo T Lo ¥ o] =T 0 =T 0 A =T 1 o Vo S 26
SN - (Y= B I 0 (=T U6 L SO OU PP PUPRP 26
LS 0 I I 1Y o To =) PP TT RPN 27

S Y T PR RT PRI 32
TR I T o] 1o T TSP TP PR R PRR PR 32

LS I I Yo 41 T SRR 34
S I I =1 T I Yo (1T PR 35

1S I €1 o] o 1= T3 o Tox (] o PSP 35

S I B = 1= 1S3 o Tod (] o SO 36
9.2.4. CAS (LOCK-FIBE)ueeiiieiiie e e i ettt e ettt e e e e e s e e e e e e s e st e e e e e e s s snsstbeeeeeeeeesaannnranneeeees 36

LS TR T [11V | PP 38
9.4, JOMP ATCRILEKIUNeeiiieiii ettt et e st e e e a bt e e s anbbe e e s annbe e e e enees 38

2006-11-16

Diplomarbeit Seite 6

9.4.1. Mandelbrot-Berechnung mit JOMPuuiiiiiiiiiiieie et ee e e e s 39
L0, GlOSSAN .tiiieiiiteee ettt etttk e e e e E et e e b et e e e R et e e e R nn et e s nn e e e nne e ne s 41
V=T =T To] oL T = PP PSP PPPPPRPP 43

11.1. TAbelleNVErZEICHNISociiiiiie e s snee e 43
11.2. AbbildUNGSVEIZEICANIS e e e e e s e e e e e e ann 43
5 TR o o = I 1 T £ PSR 44
IS I 1 g T 1= PR PP PTR 44

2006-11-16

Diplomarbeit

Seite 7

3. Dokumentinformationen

3.1. Referenzierte Dokumente

Tabelle 4 Referenzierte Dokumente

Referenz Beschreibung

[1] Basisanalyse

[2] Software Test Document (STD)

[3] Software Project Management Plan (SPMP)

3.2. Definitionen und Abklrzungen

Tabelle 5 Abklirzungen

Abklrzung Beschreibung

{R?} Requirement einer Testklasse
{T?} Zielsetzung geplanter Testumfang
{27} Projektzielsetzung SPMP

API Application Programming Interface
CAS Compare-and-swap

CMP Chip Multi Processing

CMT Chip Multi Threading

CvVsS Concurrent Versioning System
HW Hardware

JOMP Java OpenMP

JVM Java Virtual Machine

MPI Message Passing Interface

MvC Model View Control

SDD Software Design Document

SMP Symmetric Multi Processing

STD Software Test Document

TBB Thread Building Blocks

UMA Uniform Memory Architecture
UMA Uniform Memory Access

2006-11-16

Diplomarbeit Seite 8

3.3. Links

Tabelle 6 Links

Referenz Beschreibung

[FRAKTAL] Wikipedia, Fraktal: http://de.wikipedia.org/wiki/Fraktal

[JAVAMANDELBROT] Java Mandelbrot Fraktal Renderer: http://www.aasted.org/fractal/

[JOMP] EPCC, OpenMP-like directives for Java:
http://www.epcc.ed.ac.uk/research/jomp/

[MANDELBROT] Wikipedia, Mandelbrot-Menge: http://de.wikipedia.org/wiki/Mandelbrot-Menge

[OPENMP] OpenMP, Homepage: http://www.openmp.org/

2006-11-16

http://de.wikipedia.org/wiki/Fraktal
http://www.aasted.org/fractal/
http://www.epcc.ed.ac.uk/research/jomp/
http://de.wikipedia.org/wiki/Mandelbrot-Menge
http://www.openmp.org/

Diplomarbeit Seite 9

4. Einleitung

4.1. Zweck des Dokumentes

Ubergeordnete Zielsetzung dieses Software Design Documents (SDD) ist die Definition einer geeigne-
ten Testplattform. Auf dieser Plattform sollen mdgliche Testfélle definiert werden, welche die verschie-
denen Aspekte der Basisanalyse aufgreifen und konkret umsetzten. Ausgehend von dieser Plattform
und den Testféllen definiert dieses Dokument Testklassen, die eine Umsetzung verschiedener Kon-
zepte zulassen und in Bezug auf deren Skalierung getestet werden kénnen.

Die Evaluation der (Test)Plattform bestehend aus HW, Technologien, Konzepten und Standards ist
ebenfalls zentraler Bestandteil dieses Dokuments. Sie orientiert sich an den Einflussbereichen und
Technologien aus der Basisanalyse und beriicksichtigt dabei Faktoren wie die themenbezogene Fo-
kussierung der Diplomarbeit oder die (potenzielle) Wirkung von Aspekten auf die Skalierung.

Mit der Absicht vor der eigentlichen Definition und Implementierung von Testklassen den ,planned
scope” der ganzen Testphase abzugrenzen, werden in diesem Dokument auch konkrete Zielsetzung
und Betrachtungsbereiche definiert. Sie beschreiben, was Gegenstand der Testserie sein soll bzw.
welche Aspekte fokussiert werden sollen. Zielsetzungen und Betrachtungsbereiche im Testumfang
koénnen als ,,Guideline” betrachtet werden fir die Auswahl und Implementierung von Testklassen und
Konzepten. Weiter sind sie Ausgangspunkt fir die Erarbeitung der Testcases im STD ([2]).

Der SDD definiert mit Bezug auf die oben genannten Betrachtungsbereiche logisch- und technische
Anforderung an eine Testklasse. Die Evaluation einer oder mehrerer geeigneter Klassen/Funktionen
realisiert diese Requirements und bietet die Mdglichkeit, die oben definierten Zielsetzungen ber ent-
sprechende Testcases abzudecken.

Eine kritische Auseinandersetzung mit den ausgewahlten Testklassen zeigt Schlisselstellen im Code
in Bezug auf die Einflussbereiche der Skalierung. Sie soll das Verstandnis der ,Basisimplementierung”
fordern und zeigen wo Konzepte wie bspw. Java Threading, Locking oder CAS umgesetzt werden
kbénnen.

Der SDD in der vorliegenden Form definiert mit Anforderungen an die Testplattform, geplanten Ziel-
setzungen/Betrachtungsbereichen und Spezifikation/Umsetzung von Testklassen das eigentliche ,De-
sign“ des Testings. Die effektive Umsetzung erfolgt nachfolgend im STD.

2006-11-16

Diplomarbeit Seite 10

5. Evaluation Plattform

Die Plattform auf der die effektive Skalierung einer multithreaded Java-Applikation getestet bzw.
nachgewiesen werden soll muss nach der Basisanalyse nun festgelegt werden. Die Auswahl und De-
finition von Technologien, Konzepten und Standards die diese Gesamtplattform charakterisieren, er-
folgt wiederum auf den Layern Hardware, Betriebssystem, Applikation und JVM.

Ziel dieser Definition ist die Reproduzierbarkeit durchgefiihrter Testreihen. Die Nachvollziehbarkeit der
Testresultate und Schlussfolgerungen wird durch Transparenz in der verwendeten Plattform ebenfalls
sichergestellt. Die Evaluation wird aus der Basisanalyse abgeleitet und erfolgt in 3 Schritten:

Schritt 1; Technologien Basisanalyse

In Form einer Zusammenfassung definiert die Basisanalyse fiir jeden Layer Technologien, Konzepte
oder Standards mit direktem oder indirektem Einfluss auf die Aufgabenstellung (siehe Kapitel ,,Auswir-
kung auf die Aufgabenstellung). Sie bilden die themenbezogene Grundlage fur die Festlegung der
zukiinftigen Testplattform.

Schritt 2; Einfluss auf Skalierung

Die Einflussbereiche pro Thema werden auf deren Wirksamkeit analysiert und bewertet. Der Grad der
Beeinflussung auf die (mdgliche) Skalierung einer Applikation wird abgeschéatzt und entscheidet letzt-
endlich dartber, ob ein Einflussfaktor fir die Testplattform Relevanz hat oder nicht.

Schritt 3; Anforderung an Testplattform

Aus dem Subset der Faktoren die einen ,starken” Einfluss auf die Skalierung ausiiben, werden jene
ausgewahlt, die im Rahmen der Arbeit umgesetzt werden kénnen. Die Realisierbarkeit wird dabei
beeinflusst durch Rahmenbedingungen wie Aufgabenstellung, Zeit, Aussagekraft, Verfugbarkeit, etc.
Die ausgewahlten Faktoren bilden die Anforderungen an die zu realisierende Testplattform.

Punktuell werden auch Faktoren beriicksichtigt, die einen geringeren Einfluss auf die Skalierung aus-
Uben oder nur indirekt angewendet werden kénnen (beispielsweise Prioriat von Kernel-Level-
Threads). Sofern der Verlauf der Arbeit eine Umsetzung zulasst, werden sie in einzelnen Testféllen
mitbertcksichtigt bzw. eingearbeitet.

5.1. Hardware

Tabelle 7 Abgrenzung Hardware

Technologien Basisanalyse Einfluss auf Skalierung Anforderung an
Stark Schwach Testplattform

SMP SMP SMP

CMP CMP

CMT CMT

UMA UMA

NUMA NUMA

Skalar/Superskalar Skalar/Superskalar

Pipeline Pipeline

Begrindung Skalierung

Die technologischen Ansatze kdénnen grob differenziert werden in Technologien die eine Verteilung
von Prozessen/Instruktionen oder die Effizienz deren Verarbeitung fokussieren. Beide Bereiche er-

2006-11-16

Diplomarbeit Seite 11

maoglichen die Skalierung einer Anwendung indem die Instruktionen insgesamt schneller abgearbeitet
werden. Die effektive Verteilung steht fiir diese Arbeit aber im Vordergrund.

Starker Einfluss

Symmetric Multi Processing (SMP) mit 2 oder mehreren Prozessoren und Chip Multi Processing
(CMP) die Multi-Core Architektur mit physikalisch getrennten Kernen im gleichen Chip-Gehause er-
mdglichen die physische Verteilung von Prozessen und Threads. Mit mehreren zu Verfiigung stehen-
den Recheneinheiten bieten sie die Grundlage fur eine ,echte” Parallelisierung von multithreaded Ap-
plikationen. Die Chip Multi Threading-Technologie (CMT) unterstitzt die parallele Abarbeitung in dem
Sinne, dass pro Taktzyklus und Thread eine Instruktion gelesen werden kann.

Schwacher Einfluss

Uniform Memory Access (UMA) und Non-Uniform Memory Access (NUMA) Architekturen definieren
die Art und Geschwindigkeit von Speicherzugriff fir die jeweiligen CPUs. lhre charakteristischen Ei-
genschaften haben in Bezug auf die Cache-Synchronisierung primar Einfluss auf die Verarbeitungs-
geschwindigkeit von Prozessen/Instruktionen. Pipelines und Superskalare-Prozessoren fokussieren
die Auslastung eines Prozessors bzw. die Optimierung des Durchsatzes. Sie sind fiir die Skalierbar-
keit im Kontext der Aufgabestellung von geringerer Bedeutung.

Begriindung Testumgebung

Die Verfluigbarkeit von Hardware-Plattformen fiir diese Diplomarbeit ist limitiert. Urspriingliche Zielset-
zung war der Einsatz mehrerer Plattformen (SMP, CMP, CMT) um das Verhalten plattformuibergrei-
fend zu untersuchen. Fur die zukiinftige Testplattform steht aktuell eine SMP-Maschine zu Verfligung.
Referenzplattform bildet eine Single-CPU-Maschine.

Tabelle 8 Hardwareplattform

SMP-Maschine

Anzahl Prozessoren 2

Prozessor Typ AMD Opteron 2GHz
Anzahl physische Cores 1 (pro Prozessor)
Hyperthreading Nein

L1 Cache 128 kB

L2 Cache 1024 kB

L1 Data Cache 64 kB

L1 Instruction Cache 64 kB

AMDG64 Architektur Ja

Die Single-CPU Maschine kann durch die Angabe des /numprocs=1 Parameters in c:\boot. ini
simuliert werden. Dies bietet insbesondere den Vorteil, dass die Plattform (Hard-
ware/Hintergrundprozesse) vergleichbar ist. Die Messwerte sind also direkt miteinander vergleichbar.

2006-11-16

Diplomarbeit Seite 12

5.2. Betriebssystem

Tabelle 9 Abgrenzung Betriebssystem

Technologien Basisanalyse Einfluss auf Skalierung Anforderung an

Stark Schwach Testplattform
Designprinzip Designprinzip Designprinzip
Win32 Thread Win32 Thread Win32 Thread
Scheduling Scheduling Scheduling (Prioritaten)
Affinitat Affinitat Affinitat

Begriindung Skalierung

Der Fokus im Bereich Betriebssystem lag auf der Art und Weise wie Prozesse und Threads unter
Windows XP verwaltet bzw. auf Systemressourcen verteilt werden. Die Skalierung auf Layer Betriebs-
system umfasst daher die Themenbereiche Threads (als Designprinzip), Win32 Thread, Scheduling
und die Affinitat.

Starker Einfluss

Die Verwendung von Threads als Design-Prinzip ist gegeben um tberhaupt eine Verteilung auf ver-
schiedene Kerne zu ermdglichen. Da Windows XP mit dem Win32 Thread einen Kernel-Level-Thread
implementiert, ist die Verteilung auf Level Betriebssystem realisierbar und nachvollziehbar. Diese 1:1-
Abbildung eines Java-Threads auf einen Win32 Thread wird Uber die entsprechende JVM-
Implementierung sichergestellt.

Schwacher Einfluss

Das ,priority-driven“-Scheduling unter Windows XP erfolgt auf Level Threads und ist gesteuert ber
die Basis-Prioritat dieser Threads. Der Festlegung von Prioritdten kommt in diesem Zusammenhang
eine grosse Bedeutung zu. Sie kann tUber die Win32-API direkt, vom Java-Entwickler aber nur indirekt
Uber die Prioritat der Java-Threads beeinflusst werden. Weiter besteht die Mdglichkeit mit Systemtools
Prioritaten zur Laufzeit zu andern um die Auswirkung auf die Skalierung zu untersuchen.

Die Affinitat, eine explizite Zuordnung von Prozess und Prozessor kann unter Windows XP auf Level
Prozess oder Threads erfolgen. Sie ist wiederum Uber die Win32-API oder entsprechende System-
tools steuerbar. Die indirekte Einflussnahme und die Tatsache, dass die Funktionen der Win32-API in
dieser Arbeit nicht genutzt werden, filhren zu dieser Klassifikation.

Begriindung Testumgebung

Das Designprinzip Thread soll dahingehend umgesetzt werden, dass mit der Auswahl der ,richtigen*
JVM die 1:1-Abbildung (Java- auf Win32-Thread) sichergestellt ist. Die Wirkung von Thread-
Prioritaten auf Level Java soll in Kombination mit manueller Anderung durch Systemtools ebenfalls
untersucht werden. Es soll weiter gezeigt werden, wie die Affinitat Uber Systemtools beeinflussbar ist
und welche Wirkungen daraus resultieren.

5.3. Applikation

Tabelle 10 Abgrenzung Applikation

Technologien Basisanalyse Einfluss auf Skalierung Anforderung an

Stark Schwach Testplattform

2006-11-16

Diplomarbeit Seite 13

POSIX Threads POSIX Threads (OpenMP)
OpenMP OpenMP

TBB TBB

MPI MPI

Begrindung Skalierung

Techniken und Standards welche die Parallelitdt unterstitzen oder aus diesem Themenbereich her-
aus entwickelt wurden gibt es einige. Die Basisanalyse hat mit POSIX Threads, OpenMP, TBB oder
MPI aktuelle Themen aufgezeigt. Sie haben alle in Bezug auf die Skalierung eine sehr grosse Bedeu-
tung, fir die weiterfihrende Analyse sind sie allerdings weniger wichtig.

Begrindung Testumgebung

Im Rahmen der Aufgabenstellung interessiert priméar die Umsetzung eines Konzeptes auf Basis einer
Java-Umgebung. Hiermit scheiden alle Verfahren ausser OpenMP aus, das in Form des JOMP Pro-
jekt fur Java umgesetzt wurde.

5.4. JVM

Tabelle 11 Abgrenzung JVM

Technologien Basisanalyse Einfluss auf Skalierung Anforderung an
Stark Schwach Testplattform

Java Threading Java Threading Java Threading

JOMP JOMP JOMP

JVM Optimierung JVM Optimierung

Begrindung Skalierung

Der Java-Entwickler besitzt mit der Java-API ein hilfreiches Interface fiir die parallele Programmie-
rung. Threads sind integraler Bestandteil dieser API die implizit Funktionalitat fur die Verwaltung und
Synchronisation von Threads bietet. Weiter besteht die Moglichkeit tber Parameter das Verhalten der
JVM zu beeinflussen. Letzteres ist aber eher als Feintuning zu verstehen.

Starker Einfluss

Der Umfang der Java-APIl in Bezug auf Threads und Synchronisierung von Threads soll fur die Imp-
lementierung voll ausgeschopft werden. Basis bilden hier die verfligbaren Packages aus Java-5.

JOMP st die spezifische Umsetzung vom OpenMP-Standard auf Java und dient der semi-
automatischen Parallelisierung von Java-Anwendungen. Es ist ein Werkzeug der Parallelisierung de-
ren Wirksamkeit getestet werden soll.

Schwacher Einfluss

Die Optimierung der JVM in Bereichen wie JIT-Compiler oder Garbage Collection ist als Feintuning zu
verstehen und wird die Skalierung nicht im Bereich von Faktoren beeinflussen. Sie wird darum fur
Implementierung und Test sekundaren Charakter haben.

Begrindung Testumgebung

Schwerpunkt und Zielsetzung der Arbeit ist u.a. die Implementierung in Java. Die Verwendung von
Java-Threads aus der Java-API ist dadurch gegeben. Weiter bietet sich die JOMP Implementierung
als (zukinftigen) Standard fir diesen Themenbereich geradezu an. Die Anwendbarkeit soll im prakti-
schen Test ebenfalls gepriift werden.

2006-11-16

Diplomarbeit Seite 14

6. Geplanter Testumfang

Die Skalierung einer Applikation kann auf verschiedenen Ebenen wie beispielsweise Hardware, Be-
triebssystem oder JVM betrachtet bzw. beeinflusst werden. Mégliche (realisierbare) Einflussbereiche
innerhalb dieser Ebenen im Zusammenhang mit der Fokussierung von Java und der vorliegenden
Arbeit sind begrenzt und wurden im Kapitel 5 ,Evaluation Plattform* definiert. Die daraus resultierende
~restumgebung” legt dabei die Plattform fest, mit der die nachfolgend beschriebenen Testbereiche
untersucht werden sollen.

Der geplante Testumfang mit Zielsetzungen und Betrachtungsbereichen konkretisiert die unter ,Eva-
luation Plattform“ getétigte Abgrenzung. Die Zielsetzungen definieren dabei, was in der jeweiligen
Ebene untersucht werden soll um eine Aussage Uber die Skalierung machen zu kdnnen. Eine Zielset-
zung fokussiert den Einfluss dieser Ebene oder ein Teilbereich aus dieser Ebene (Technologien, Kon-
zepte, Standards) auf die Skalierung einer Applikation. Die Zielsetzungen {T?} sind jeweils einer Pro-
jektzielsetzung {Z?} aus dem SPMP (Kapitel 4.1; Ziele und Prioritaten) logisch zugeordnet.

Der oder die Betrachtungsbereiche einer Zielsetzung verfeinern diese weiter und geben Hinweise
welche Bereiche fokussiert werden missen um die Zielsetzungen entsprechend umzusetzen. Zielset-
zungen und zugehdrige Betrachtungsbereiche sind die Basis fur die Auswahl und Implementierung
von geeigneten Testklassen.

Fur alle Betrachtungsbereiche und ausgewahlten Testklassen werden im STD Testcases abgeleitet
sowie Testparameter (Performance-Indikatoren) und Testtools definiert.

6.1. Hardware

Eine oder mehrere Testklassen werden auf einer Multi-Prozessor-Architektur (hier SMP) ausgeflhrt
um die Verteilung von Threads bzw. die Skalierung zu untersuchen. Der Grad der Skalierung wird
durch eine Referenzmessung auf einer Single-Prozessor-Architektur ermittelt.

Tabelle 12 Zielsetzung Hardware

SPMP # Zielsetzung Hardware Kat.

{z19} {T1} Feststellung Grad der Skalierung zwischen Single- und Multi-Prozessor- Muss
Architektur

Tabelle 13 Betrachtungsbereiche Hardware

Betrachtungsbereiche Hardware Kat.

{T1.1} Testklasse(n) auf Single Prozessor Maschine

Eine oder mehrere Testklassen (Single-Threaded; 1 Thread) soll(en) auf einer Muss
Single-Prozessor-Architektur ausgefiihrt werden um dabei Berechnungszeit und
Ressourcenbedarf zu ermitteln

Eine oder mehrere Testklassen (Multi-Threaded; 2 Threads) soll(en) auf einer Muss
Single-Prozessor-Architektur ausgefihrt werden um dabei Berechnungszeit und
Ressourcenbedarf zu ermitteln

{T1.2} Testklasse(n) auf Multi Prozessor Maschine (SMP)

Eine oder mehrere Testklassen (Single-Threaded; 1 Thread) soll(en) auf einer Muss
Multi-Prozessor-Architektur ausgefiihrt werden um dabei Berechnungszeit und
Ressourcenbedarf zu ermitteln

Eine oder mehrere Testklassen (Multi-Threaded; 2 Threads) soll(en) auf einer Muss
Single-Prozessor-Architektur ausgefiihrt werden um dabei Berechnungszeit und

2006-11-16

Diplomarbeit

Seite 15

(T1.3}

Ressourcenbedarf zu ermitteln
Direkter Vergleich der Plattformen

Darstellung der Leistungsindikatoren beider Plattformen. Berechnung des Ska-
lierungs-Faktors auf Basis Single-Threads

Darstellung der Leistungsindikatoren beider Plattformen. Berechnung des Ska-
lierungs-Faktors auf Basis Multi-Threads

6.2. Betriebssystem

Muss

Muss

Im Bereich Betriebssystem muss der Nachweis erbracht werden, wie Java-Threads auf Win32-
Threads durch die JVM abgebildet werden. Dieser Nachweis schliesst die Prioritdt von Threads mit
ein, weil Scheduling-Entscheidungen unter Windows durch diese Grosse beeinflusst werden. Das
Systemverhalten in Bezug auf die Skalierung kann dann durch direkte oder indirekte Anderung von
Prioritaten untersucht werden. Die manuelle Zuweisung eines Prozessors auf Level Prozess oder
Thread (Affinitat) und deren Auswirkung kann ebenfalls getestet werden.

Tabelle 14 Zielsetzungen Betriebssystem

SPMP # Zielsetzungen Betriebssystem Kat.
{7} {T2} Nachweis Abbildung Java-Thread auf Win32-Thread Muss
{Z7} {T3} Nachweis Abbildung Java-Thread-Prioritat auf Win32-Thread-Prioritat Kann
{7} {T4} Analyse Systemverhalten bei Anderung Win32-Thread-Prioritét Kann
{Z7} {T5} Analyse Systemverhalten bei Festlegung einer Prozess-Affinitat Kann
Tabelle 15 Betrachtungsbereiche Betriebssystem
Betrachtungsbereiche Betriebssystem Kat.
{T2.1} JVM-Implementierung
Evaluation einer JVM mit Native-Thread-Unterstiitzung (gemass Spezifikation) Muss
{T2.2} Testklasse und Nachweisverfahren
Definition geeignete(s) Testklasse und Verfahren um Abbildung von Java- auf Muss
Win32-Thread sichtbar/nachvollziehbar zu machen
{T2.3} Nachweis Thread-Abbildung
Ausfiihren ein oder mehrerer Testklasse(n) um Thread-Abbildung durch die JVM Muss
im Betriebssystem sichtbar zu machen
{T3.1} Default Prioritéat Java- und Win32-Thread
Java Default-Prioritat und deren Abbildung auf die Win32-Thread-Prioritat analy- Kann
sieren und dokumentieren
{T3.2} Anderung Java (Default)Prioritat
(Default)Prioritéat eines Java-Threads dynamisch andern und deren Abbildung Kann
auf die Win32-Thread-Prioritat analysiert und dokumentieren
{T3.3} Prioritatsbereich Java
Abbildung Prioritdtsbereich Java-Thread (1...5...10) auf den Prioritdtsbereich Kann

2006-11-16

Diplomarbeit

Seite 16

eines Win32-Thread analysieren und dokumentieren
{T4.1} Systemverhalten mit direkter Anderung Prioritét

Direkte Anderung der Win32-Thread-Prioritat (Systemtools) und deren Auswir-
kung auf die Skalierung analysieren

{T4.2} Systemverhalten mit indirekter Anderung Prioritét

Indirekte Anderung der Win32-Thread-Prioritat (Java-Thread) und deren Auswir-
kung auf die Skalierung analysieren

{T5.1} Systemverhalten mit Festlegung Thread-Affinitat

Direkte Festlegung einer Thread-Affinitat (Systemtools) und deren Auswirkung
auf die Skalierung analysieren

{T5.2} Systemverhalten mit Festlegung Prozess-Affinitat

Direkte Festlegung einer Prozess-Affinitat (Systemtools) und deren Auswirkung
auf die Skalierung analysieren

6.3. Applikation

Kann

Kann

Kann

Kann

Auf applikatorischer Ebene erfolgen direkt keine Implementierung und Tests. Der OpenMP-Standard
als Werkzeug der parallelen Programmierung wird auf Ebene JVM Uber die Betrachtung von JOMP

berucksichtigt.

6.4. JVM:

Im Bereich der Java Virtual Machine (JVM) soll die Java-API mit ihren Packages und Funktionen dazu
benutzt werden um multithreaded Java-Applikationen zu schreiben und auszufiihren. Dabei soll der
mdgliche Einfluss der Synchronisation mehrerer Threads genauer untersucht werden. Die Anwend-

barkeit und Skalierung einer JOMP-Anwendung soll hier ebenfalls Teil der Analyse sein.
Tabelle 16 Zielsetzungen JVM

Zielsetzungen JVM Kat.
{Z5} {T6} Analyse der Skalierung einer multithreaded Java-Applikation Muss
{Z5} {T7} Analyse Einfluss der Thread-Synchronisation auf die Skalierung Kann
{z16} {18} Analyse Anwendbarkeit und Effektivitat von JOMP Muss
Tabelle 17 Betrachtungsbereiche JVM
Betrachtungsbereiche JVM Kat.
{6.1} Testklasse(n) mit n Threads auf n-Prozessor-Architektur
Eine oder mehrere Testklassen mit n Threads sollen auf einer Multi-Prozessor- Muss
Architektur ausgefiihrt werden um dabei Laufzeit, Ressourcenbedarf und Verwal-
tungsaufwand zu ermitteln
Gleiche Testklasse(n) mit n Threads sollen auf einer Single-Prozessor-Architektur Muss

ausgefuhrt werden um dabei Laufzeit, Ressourcenbedarf und Verwaltungsauf-
wand zu ermitteln

2006-11-16

Diplomarbeit Seite 17

{6.2} Testklasse(n) mit m Threads auf n-Prozessor-Architektur (fir m>>n)
Eine oder mehrere Testklassen mit m>>n Threads sollen auf einer Multi- Muss
Prozessor-Architektur ausgefuhrt werden um dabei Laufzeit, Ressourcenbedarf
und Verwaltungsaufwand zu ermitteln
Gleiche Testklasse(n) mit m>>n Threads sollen auf einer Single-Prozessor- Muss
Architektur ausgefiihrt werden um dabei Laufzeit, Ressourcenbedarf und Verwal-
tungsaufwand zu ermitteln

{7.1} Einfluss der Methoden-Synchronisation auf Skalierung
Testklasse(n) mit n...m Threads, gemeinsamen Speicherbereich und Methoden- Kann
Synchronisation sollen unter Einfluss von klein bis grossem ,lock contention* auf
einer Multi-Prozessor-Architektur ausgefiihrt werden. Dabei sollen Laufzeit, Res-
sourcenbedarf und Verwaltungsaufwand ermittelt werden.

{7.2} Einfluss der Objekt-Synchronisation auf Skalierung
Testklasse(n) mit n..m Threads, gemeinsamen Speicherbereich und Objekt- Kann
Synchronisation sollen unter Einfluss von klein bis grossem ,lock contention” auf
einer Multi-Prozessor-Architektur ausgefiihrt werden. Dabei sollen Laufzeit, Res-
sourcenbedarf und Verwaltungsaufwand ermittelt werden.

{7.3} Einfluss der CAS-Methoden auf Skalierung
Testklasse(n) mit n...m Threads, gemeinsamen Speicherbereich und Lockfreien- Kann
Synchronisation (CAS) sollen auf einer Multi-Prozessor-Architektur ausgefuhrt
werden. Dabei sollen Laufzeit, Ressourcenbedarf und Verwaltungsaufwand ermit-
telt werden.

{8.1} Parallelisierung durch JOMP
Wirkung der JOMP-Parallelisierung unter Verwendung verschiedener, variabler Muss

Thread-Konfigurationen (Attribut).

2006-11-16

Diplomarbeit Seite 18

7. Spezifikation der Testklasse

Um unsere Skalierungs-Tests und Implementierungen machen zu kénnen benétigen wir eine Test-
klasse oder eine Test-Anwendung. Dieses Kapitel definiert welche Anforderungen eine entsprechende
Anwendung haben muss. Die Spezifikation dient spéater (siehe Kapitel 8) zur Bewertung méglicher
Kandidaten.

7.1. Requirements

Die Requirements kénnen grob in kann- und muss-Requirements aufgeteilt werden:

Beschreibung Typisierung
{R1.1} Sequenzieller Code Muss
{R1.2} Parallelisierbar Muss
{R1.3} Messbar Muss
{R1.4} Portierbar auf verschiedene Konzepte und Plattformen Muss
{R1.5} Nachvollziehbar, einfach, tbersichtlich Muss
{R1.6} Reproduzierbarkeit Muss
{R2.1} Konkurrierender Datenzugriff Kann
{R2.2} Visualisierbarkeit Kann

Nachfolgend werden die Requirements noch etwas genauer erlautert.

Requirement {R1.1}, Sequenzieller Code

Um eine Aussage uber die Moglichkeiten der Parallelisierung machen zu kdnnen muss der Aus-
gangszustand ein sequenziell ablaufendes Programm sein. Dies erlaubt auch eine Aussage daruber,
wie sich ein parallelisierter Code gegenuber einem sequenziellen Code verhalt.

Requirement {R1.2}, Parallelisierbar
Der Code muss natirlich erlauben ihn vollumfanglich oder in Teilen parallel ablaufen zu lassen. Ins-
besondere Schleifen sind dazu sehr gut geeignet.

Requirement {R1.3}, Messbar

Der ausgewahlte Code sollte eine Mindestlaufzeit aufweisen. Dies soll insbesondere die Messunge-
nauigkeit relativieren. Die Laufzeit sollte zwischen 30 Sekunden und 5 Minuten betragen. Léangere
Laufzeiten sind auch denkbar aber fir unsere Zwecke kaum von Interesse da wir uns erhoffen Lauf-
zeitverbesserungen im Faktoren- und nicht im Prozentbereich zu erreichen.

Requirement {R1.4}, Portierbar auf verschiedene Konzepte und Plattformen

Der Ausgewéhlte Code muss auf die ausgewahlten Techniken und auf die ausgewdahlten Plattformen
portierbar sein. Das bedeutet, dass der Code sowohl mit Java Threads als auch mit JOMP implemen-
tierbar ist und auf allen zur Verfligung stehenden Testplattformen laufen muss.

Requirement {R1.5}, Nachvollziehbar, einfach, Ubersichtlich

Der ausgewahlte Code muss mdglichst einfach strukturiert sein um ihn schnell erklaren und verstehen
zu kénnen. Dazu muss der Umfang des Kernalgorithmus auf weniger als 100 Zeilen Code implemen-
tiert werden kdnnen.

2006-11-16

Diplomarbeit Seite 19

Requirement {R1.6}, Reproduzierbarkeit

Der Code muss reproduzierbare Ergebnisse liefern. Das heisst, dass die gemessene Laufzeit mog-
lichst kleine Schwankungen aufweisen soll. Die Schwankungen missen bei mehreren Durchlaufen
unter gleichen Testbedingungen im Bereich unter 10% liegen.

Requirement {R2.1}, Konkurrierender Datenzugriff

Hiermit ist die so genannte ,lock contention’ gemeint. Um den Einfluss von konkurrierenden, synchro-
nisierten Speicherzugriffen zu simulieren muss der Code auf gemeinsame Datenfelder zugreifen. Da
der Einfluss verschiedener Locking-Technologien nicht im Hauptfokus der Arbeit liegt ist dieses Requi-
rement optional.

Requirement {R2.2}, Visualisierbarkeit

Nackte Zahlen und Laufzeiten sind zwar aussagekréftig, aber sehr trocken zu lesen. Im Optimalfall ist
die Arbeitsgeschwindigkeit der Anwendung 1:1 verfolgbar.

2006-11-16

Diplomarbeit Seite 20

8. Testklasse

Dieses Kapitel dient zur Dokumentation der ausgewahlten Testklassen inklusive Quelltexte und weite-
re Fragmente. Die Testklassen werden nach den Spezifikationen aus Kapitel 7 ausgewahlt. Die aus-
gewahlte Klasse (bzw. die ausgewéhlten Klassen) wird dann in Kapitel 9 ausgearbeitet (parallelisiert).

8.1. Basisinformationen

Der Fokus liegt hier auf der parallelen Verarbeitung mit dem gewiinschten Nebeneffekt der Visualisie-
rung. Daher liegt es nahe sich im Bereich der Computergrafik umzusehen. Nach kurzer Recherche
stellen sich Fraktale als besonders geeignet heraus. Insbesondere die Visualisierung ist damit sehr
schon zu sehen; weshalb diese Grafiken auch unter dem Oberbegriff der Computer-Kunst zusam-
mengefasst werden.

Fraktale haben ausserdem die fiir uns angenehme Eigenschaft, dass sie sich meist beliebig komplex
berechnen lassen. Da zu diesem Zeitpunkt die zur Verfligung stehende Testplattform (insbesondere
die Hardware) noch nicht eindeutig feststeht dirfte sich diese Eigenschaft als sehr nitzlich erweisen.
Eine Berechnung, die auf unseren Laptops Minuten dauert kdnnte ansonsten auf der Testplattform
innert Sekunden erledigt sein was meistens mit einer grossen Messungenauigkeit einhergeht.

Weiterfiihrende Informationen:
e Wikipedia, Fraktal: [FRAKTAL]

8.2. Die Mandelbrot Menge

Wie einleitend erwéahnt eigenen sich Fraktale mit hoher Wahrscheinlichkeit am besten fir unser Vor-
haben. Hier bietet sich die klassische Mandelbrotmenge an (siehe auch [MANDELBROT]). Die Menge
wird wegen ihrer Form auch gerne Apfelménnchen genannt:

Abbildung 1 Mandelbrot-Menge (Apfelm&nnchen)

Die Farbgebung kann dabei frei an die persdnlichen Vorlieben angepasst werden. Eine weitere wichti-
ge Eigenschaft ist, dass die Menge rekursiv berechnet wird und sich Teile davon beliebig vergréssern
lassen. Je nach gewahlter Rekursionstiefe werden dabei mehr Details sichtbar:

2006-11-16

Diplomarbeit Seite 21

AT S
Abbildung 2 Vergrésserung der Mandelbrot Menge
Das Bild zeigt eine Vergrosserung des schwarzen Kreises auf der linken Seite.

Positiv zu erwdhnen ist hier auch die Mdglichkeit einzelne Bildteile komplett losgeldsst voneinander zu
berechnen. Diese Eigenschaft ist ideal fur eine parallele Verarbeitung. Dadurch ist im Optimalfall
Uberhaupt keine Synchronisierung der Prozesse/Threads noétig. Mdchte man das Ergebnis aber
visualisieren so muss zumindest in einen gemeinsamen Bildspeicher geschrieben werden.

Auf die mathematischen Grundlagen méchten wir innerhalb dieser Arbeit nicht ndher eingehen. Auch
der verwendete Code stammt aus Drittquellen und wird angepasst um eine parellele Verarbeitung zu
ermoglichen.

In diesem Kapitel wird die ausgewahlte Testklasse dokumentiert (in unveranderter Originalfassung).

2006-11-16

Diplomarbeit Seite 22

8.3. Der Algorithmus

Der Algorithmus ist im Internet in verschiedensten Implementierungen zu finden. Eine davon haben
wir uns rausgesucht und werden diese fiir unsere Arbeit verwenden. Der urspriingliche Code stammt
aus [JAVAMANDELBROT].

Die Berechnung kann mit folgendem Codefragment beschrieben werden:
public void run() {
double dx width / sizex;
double dy = height / sizey;

double z = startx , zi = starty;
done = false;

System.out.printIn('Calculating...");
for (int x = 0 ; X < sizex ; x++) {
zi = starty;
int it;
for (inty =0 ; y < sizey ; y++) {
if ((it =mandelbrotTest(z, zi)) = -1) {
// In the mandelbrot set.
raster.setPixel (x,y, (int[]) colors[it]);

} else {
// Not in the mandelbrot set
raster.setPixel (x,y,black);

}
zi += dy;

}
it (&x%5) == 0) {
parent.repaint();

}

z += dx;

}

done = true;

System.out.printin('Done!);

}

Listing 1 Mandelbrot Basisalgorithmus

Es wird also hauptsachlich fir jeden Pixel die Methode mandelbrotTest(z, zi) ausgefihrt. Der
Ruckgabewert dieser Methode entspricht der Anzahl Iterationen (oder -1, falls die maximale Anzahl
Uberschritten wurde). Die errechnete Iterationszahl wird dann als Index fur ein Array von Farben ver-
wendet. Im Beispielcode wird dieses Array statisch initialisiert und bietet 200 Farben (was exakt der
maximalen Iterationstiefe im Originalcode entspricht).
public int mandelbrotTest(double a, double bi) {
// System.out.printIn(""Testing ("'+ a + "," + bi + ")");

double atmp, btmp;
int number 0
z

double z = 0, i = 0;

2006-11-16

Diplomarbeit Seite 23

while ((number = 200) && (comp_magnitude(z,zi) < 2)) {

number++;
atmp = comp_mult_real(z,zi,z,zi);
btmp = comp_mult _imag(z,zi,z,zi);

z = atmp;
zi = btmp;
z += a;

zi += bi;

}

if (number == 200) {
// System.out.printIn(*Part of the Mandelbrot set!"');

return -1;

} else {
// System.out.print(* " + number);
return number;

}
}

Listing 2 Mandelbrot Test Methode

Diese Funktion wiederum verwendet einzig die externen Methoden comp_magnitude(),
comp_mult_real () und comp_mult_imag(Q)

Diese sind wie folgt definiert:

public static double comp_mult real(double a, double b,
double c, double d) {

return (a * c) - (b * d);
}

public static double comp_mult _imag(double a, double b,
double c, double d) {

return (a * d) + (b * ¢©);
}

public static double comp_magnitude(double a, double b) {
return Math.sqgrt(a * a + b * b);
}

Listing 3 Mandelbrot Hilfsmethoden

Die Initialisierung der Farben wird hier nicht abgebildet, da es sich um eine statische Liste (Hard-
Coded) handelt. Fur unsere Zwecke lasst sich der Code relativ einfach erweitern und flexibilisieren.
Wir werden zu einem in Kapitel 8 auf die Modifikationen der eigenen Implementierung eingehen.

Den gesamten Code ist auf der Webseite unter [JAVAMANDELBROT] einsehbar und wird auch im
CVS Repository abgelegt um die Nachvollziehbarkeit zu gewahrleisten.

Weiterfilhrende Informationen:
e Java Mandelbrot Fraktal Renderer: [JAVAMANDELBROT)]

2006-11-16

Diplomarbeit Seite 24

8.4. Analyse des Algorithmus

Die in der Hauptschleife (siehe Listing 1) verwendeten Methoden und Daten sind bereits alle lokal.
Dies erleichtert die Parallelisierung sehr. Auf den ersten Blick kdnnte man meinen die Variabeln z und
zi hangen jeweils vom vorherigen Schleifendurchgang ab. Dies ist aber nicht so, da diese nur jeweils
um eine Einheit inkrementiert werden. Aus diesem Grund ist es deshalb ebenso mdglich den Wert von
z und zi einer ausgewahlten lteration direkt zu bestimmen (z = startx + x * dx sowie zi =
starty + y * dy).

Weiter wird auf die gemeinsamen Objekte raster und colors zugegriffen. Das colors Objekt wird
dabei nur lesend verwendet und besteht aus einem statischen Array, welches die Farben fiir die Itera-
tionsstufen beinhaltet. Hier braucht also nicht synchronisiert zu werden. Das Objekt raster wird da-
gegen schreibend verwendet. Allerdings wird ein Pixel (der per x- und y-Koordinate definiert ist) nie
zweimal beschrieben. Somit braucht hier auch nicht synchronisiert zu werden.

Im unglicklichsten Fall wiirde hier die Methode raster.setPixel() Uber ein einziges Objekt synchroni-
siert sein. In diesem Fall wiirde nach jeder Berechnung eines Pixels versucht den Lock zu bekommen.
Dies wirde sich vermutlich massiv auf die parallele Verarbeitung auswirken da hohe ,lock contention’
(siehe [1]) zu beflirchten ware.

Im Optimalfall wirde das verwendete Bild-Objekt einen eigenen Lock pro Pixel verwenden. Dieser
wirde dann nur von einem einzigen Thread verwendet und wiirde die Konkrrenzierung (lock contenti-
on) der einzelnen Locks verringern.

Teilt man das Bild in Kacheln oder Streifen auf (lock coarsening/lock striping, siehe [1]) so wéaren auch
Mischformen denkbar ohne gleich pro Pixel einen eigenen Lock zur Verfugung zu stellen. Man kdnnte
das Bild in mehrere Blocke aufteilen und fur jeden Block einen eigenen Lock verwenden. Dies wirde
die Wahrscheinlichkeit fur eine konkurrierende Lock-Anfrage senken. Im Optimalfall wiirden gleich
viele Lock-Objekte wie Threads zur Verfiigung stehen und diese exakt die Teile des Bildes ,schitzen®,
die von einem Thread bearbeitet werden.

Eine weitere Mdglichkeit ware die Verwendung von Compare-and-Swap (CAS) (siehe [1]) Algorith-
men. Ware jeder Pixel durch einen CAS-Algorithmus geschitzt wirde der Aufwand fiir das Locking
entfallen. Da anzunehmen ist, dass jeder Pixel nur einmal beschrieben wird dirfte diese Implementie-
rung sogar sehr effizient sein, da jeder Schreibvorgang erfolgreich ware.

Wir werden beide Mdglichkeiten und deren Auswirkungen in Kapitel 9 beleuchten.

2006-11-16

Diplomarbeit Seite 25

8.5. Bewertung

Die ausgewahlte Testklasse soll nun anhand der Requirements (siehe Kapitel 7.1) bewertet werden.

Beschreibung

{R1.1} Sequenzieller Code:
Die ausgewahlte Testklasse ist nicht bereits parallelisiert und arbeitet in der Referenzimple-
mentation mit nur einem Verarbeitungs-Thread.

{R1.2} Parallelisierbar:
Aufgrund der Analyse (siehe Kapitel 8.4) ist anzunehmen, dass sich der Algorithmus sehr gut
parallel umsetzen lasst.

{R1.3} Messbar:
Die Berechnungsdauer eines kompletten Bildes bei fest definierten Parametern I&sst sich
messen. Die Dauer der Berechnung lasst sich durch variable Iterationstiefen fast beliebig
wahlen. Somit ist die Messbarkeit gegeben.

{R1.4} Portierbar auf verschiedene Konzepte und Plattformen:
Durch die Implementierung in Java ist der Code Plattformunabh&angig. Sowohl auf Hardware-
wie auch auf Software-Ebene. Der Algorithmus lasst sich sowohl mit Java Threads als auch
mit anderen Techniken parallelisieren.

{R1.5} Nachvollziehbar, einfach, Ubersichtlich:
Der Basisalgorithmus besteht im Wesentlichen aus zwei verschachtelten for-Schliefen. Die
Berechnung der Iterationen (mandelbrotTest()) ist einfach nachvollziehbar, kann aber fur
das Verstandnis komplett abstrahiert betrachtet werden. Diese Eigenschaften sorgen fiir eine
sehr einfach erklarbare Codebasis.

{R1.6} Reproduzierbarkeit:
In Tests hat sich gezeigt, dass die Berechnung bei mehreren Durchlaufen praktisch immer
gleich lange dauert. Um die geforderte Messungenauigkeit einzuhalten muss lediglich die
Wahl einer geeigneten lterationstiefe getroffen werden.

{R2.1} Konkurrierender Datenzugriff:
Wie in Kapitel 8.4 erwéahnt existiert kaum ,lock contention’. Diese kann aber klnstlich* er-
zeugt werden um die Auswirkungen zu eruieren. Somit kann auch diese Anforderung im
Bedarfsfall abgedeckt werden.

{R2.2} Visualisierbarkeit:

Fraktale eignen sich sehr gut zur Visualisierung. Die berechneten Pixel lassen sich direkt am
Monitor darstellen um den Fortschritt der Berechnung direkt mitverfolgen zu kénnen.

Damit erflllt der ausgesuchte Code alle Anforderungen. Einzig die Anforderung {R2.1} wird nicht di-
rekt vom Referenzcode erfillt. Diese lasst sich aber simulieren was sich auch als Vorteil herausstellen
kann, da wir versuchen werden den Einfluss verschiedener Locking-Mechanismen einander gegen-
Uberzustellen. Dann ware es schlecht, wenn der Algorithmus bereits eine bestimmte Methode zwin-
gend vorschreiben wirde.

2006-11-16

Diplomarbeit Seite 26

9. Implementierung

In diesem Kapitel werden die implementierten, parallelen Klassen dokumentiert. Hierbei werden die
wichtigsten Code-Fragmente kurz erklart und das Anwendungs-Design offengelegt.

9.1. Java Threads

Diese Implementierung basiert vollstandig auf den Basisklassen der Java API (Version 1.5). Dabei
werden die Klassen gemass dem MVC (Model View Control) Konzept unterteilt:

Control

Abbildung 3 MVC Klassenstruktur

Die schematische Darstellung der internen Architektur sieht wie folgt aus:

GUI

Bildgrésse Bild zeichnen

[T > Controller

Ergebnisse

| Calculator
Auftrag Interface
A
Benchmark | Job _ Start Barrier
Manager - (BenchmarkJob) | (CyclicBarrier)
Jobverteilung
(BenchmarkJob) - .
| | Finish Barrier
(CyclicBarrier)
Worker Worker Worker

Abbildung 4 Architektur der Implementierung

Einzelne Komponenten werden nachfolgend etwas genauer erklart. Der gesamte Source Code ist Tell
der Arbeit und wird mit den Dokumenten zusammen abgegeben. Die technische Dokumentation auf
Source Ebene wird mittels JavaDoc realisiert. Die entsprechenden Dokumentationen sind ebenfalls
Teil dieser Arbeit und werden ebenfalls mit den Dokumenten zusammen abgegeben.

2006-11-16

Diplomarbeit Seite 27

9.1.1. Model

Zum Modell gehért dabei die eigentliche Berechnung sowie die Thread Verwaltung. Wobei man sich
bei Letzterer auch Uber die Zugehorigkeit zum Controller streiten kénnte. Im weiteren Sinne gehoéren
die abgeleiteten BufferedImage Klassen dazu. Die relevanten Klassen und Code-Fragmente wer-
den nachfolgend kurz erklart.

Benchmark Manager

Die Thread-Verwaltung tbernimmt hier der so genannte Benchmark Manager. Dieser erzeugt und
verwaltet die gewiinschte Anzahl Worker Threads. Die Besonderheit hier ist, dass die Threads wéh-
rend der gesamten Laufzeit des Programmes bestehen bleiben. Das heisst, dass diese Worker sich
nach beendeter Arbeit nicht beenden und neu erzeugt werden missen. Dazu holen sich die Worker
ihre Arbeiten aus einer blockierende Queue (genannt jobs).

Dieses Vorgehen ist notwendig um die Last auf den einzelnen Threads besser iberwachen zu kon-
nen. Wiirden sich die Threads nach der Berechnung beenden, so waren diese auch im Betriebssys-
tem verschwunden. Wir méchten aber die Thread-Prioritaten fir jeden einzelnen Thread konfigurieren
kénnen und diese Abbildung auch auf der Ebene des Betriebssystems nachvollziehen kénnen. Dies
geht nur, wenn die Threads Uber die gesamte Laufzeit des Programms existieren.

Hier eine Liste der wichtigsten Methoden der BenchmarkManager Klasse:

Tabelle 18 BenchmarkManager Methoden

Methode Beschreibung

setWorkerNumber() Setzt die neue Anzahl von Worker Threads. Falls mehr Worker bereits exis-
tieren, dann werden spater erzeugte Threads beendet. Falls die neue Anzahl
aber grosser ist, dann werden einfach weitere Threads erstellt. Bestehende
Threads bleiben in jedem Fall erhalten.

setJob() Stoppt alle Worker Threads und erstellt einen neuen Aurtrag. Dieser wird
von den laufenden Threads abgeholt und bearbeitet.

Die Klasse BenchmarkManager beinhaltet ausserdem die privaten Klasse BenchmarkJob. Diese
wird als ,,Container” verwendet um eine Job-Definition in der Queue abzulegen.

Die zwei weiteren privaten Klassen StartCal lback und StopCallbacl werden ebenfalls per
BenchmarkJob in der queue an die Worker tibergeben. Hier allerdings verpackt in eine CyclicBar-
rier. Die exakte Messung der Berechnungsdauer schliesst die Verteilung der Jobs und den damit
verbundenen Aufwand nicht ein. Deshalb warten die Threads vor dem Start an einer Barriere (Cyc-
licBarrier). Sind alle Threads an dieser Barriere angekommen wird die Barriere getffnet und
gleichzeitig eine ,Callback“-Methode aufgerufen. Beim Start ist dies die run() Methode der Start-
Callback Klasse. Diese speichert lediglich die Startzeit mittels System_nanoTime(). Am Ende
warten wieder alle Threads an der ndchsten Barriere. Erst wenn alle Threads fertig sind wird diese
durch den letzten eintreffenden Thread gedffnet. Dadurch wird die Callback-Methode aufgerufen und
dadurch die Laufzeit ermittelt. Dadurch wird sichergestellt, dass die Laufzeit der gesamten Zeit vom
Start aller Threads bis zur Terminierung des letzten Threads beinhaltet.

Die Threads beenden sich aber nach der Berechnung nicht sondern holen sich den nachsten Job von
der Queue ab.

2006-11-16

Diplomarbeit

Seite 28

Worker Threads

Die grundsatzliche Arbeitsweise der Worker Threads ist im folgenden Bild schematisch dargestellt:

Benchmark
Manager

Jobverteilung
(BenchmarkJob)

Worker
4> .
Calculation
58 8%
= = = =
5 Worker 3 &
> m m - mnm
£ 2 Calculation <2
® © = O
- > c >
CXe) e)
Worker
4> .
Calculation
Zeitmessung Zeitmessung
(Start) (Ende)

Abbildung 5 Worker Threads Schema

Die Threads bekommen als ihre Auftrage vom Benchmark Manager. Sie starten aber nicht direkt mit
der Berechnung sondern warten an einer Barriere. Erst wenn alle Threads an der Barriere angekom-
men sind wird diese freigegeben und alle Workers kdnnen gleichzeitig mit der Arbeit beginnen.
Gleichzeitig sorgt die Barriere fur die Messung des Startzeitpunktes. Diese Architektur erlaubt die
Isolation der Messung des Berechnungsaufwandes. Weder das Thread Setup noch andere Aufgaben
haben somit einen Einfluss auf die Messung.

Nach Abschluss der Berechnungen warten die Threads wieder an einer Barriere. Erst wenn alle
Threads ihre Arbeit beendet haben wird die Zeit gemessen und die Laufzeit berechnet. Danach keh-
ren die Threads wieder zu ihrem Ursprungszustand zurtick und warten auf weitere Auftrage.

Der wichtigste Teil der Worker-Threads ist die run() Methode. Diese wird hier kurz erklart:

@Override

public void run(Q) {

while (lislInterrupted()) {
try {

// get a job from the queue

BenchmarkJob job = jobQueue.take();

synchronized (this) {
cancelProcessing.set(false);
this.startBarrier = job.getStartBarrier();
this.finishBarrier = job.getFinishBarrier();
this.currentJob = job.getCalculator();

}

// releasing the latch

if (YcancelProcessing.-get()) {
this.startBarrier.await();

by

// do calculation
currentJob.run();

// wait until all threads finished

if (lcancelProcessing.get()) {
System.out.printIn("'Thread " + this.getName()
+ " done (Priority " + this.getPriority() + ")');

2006-11-16

Diplomarbeit Seite 29

this.finishBarrier.await();

}

} catch (InterruptedException e) {
// System.out.printin("Interrupted while waiting");
this.interrupt();
} catch (BrokenBarrierException e) {
// System.out.println("Warning: Barrier broken.');
// do nothing, just start over
}
b
System.out._printIn("'Thread ™ + this.getName() + ™ done!™);
by

Listing 4 run() Methode der Worker Threads

Wie bereits in [1] erwéhnt handelt es sich bei der run() Methode um die Methode, die beim Start des
Threads ausgefuhrt wird. In diesem Fall besteht die Methode im Wesentlichen aus vier Teilen:

1.
2.
3.
4.

Abholung des Jobs von der Queue.
Warten an der Barriere (bis alle Threads bereit sind).
Ausfiihren der Berechnung.

Warten an einer weiteren Barriere bis alle Threads die Berechnung ausgeftihrt haben.

Dann beginnt die Schleife wieder von vorne. Die Schleife [auft so lange bis die interrupt() Metho-
de des Threads aufgerufen wird und somit die Priifmethode isInterrupted() den wert true zu-
riickgibt.

Die Threads kdnnen also so lange fir die Berechnung verwendet werden bis sie absichtlich abgebro-
chen werden.

Die verteilten Arbeitspakete verarbeiten Objekte vom Typ CalculatoriInterface. Dies ermdglicht
die Benutzung der Architektur auch fur andere Berechnungen.

2006-11-16

Diplomarbeit Seite 30

Fraktalberechnung

Auch die Klasse zur Berechnung des Fraktals wurde aktualisiert. Diese wurde erweitert um eine belie-
bige (konfigurierbare) Rekursionstiefe zu erlauben. Dazu musste die statische Definition der Farbta-
bellen-Berechnung einer dynamischen Methode weichen. Die Berechnung wurde durch ein Lock-
Objekt synchronisiert um eine Parameter-Veranderung wahrend Berechnung zu verhindern. Um die
Berechnung (welche sehr lange dauern kann) abzubrechen wurden bei beiden, verschachtelten
Schleifen Abbruchkriterien eingefligt. Somit lasst sich durch das Setzen eines AtomicBoolean Wer-
tes die Berechnung zum jeweils nachsten Schleifendurchgang abbrechen.

Die dazu bendétigte run() Methode sieht nun folgendermassen aus (leicht gekdirzt):
/**
* Main Mandelbrot calculation routine. Calculates the image.
*/
public void run() {
// some parameters are not allowed to be changed during
// calculation these are prtected by the calculationLock
synchronized (calculationLock) {
// calculate render area in Mandelbrot set
double mandelbrotRenderX = this.mandelbrotCoordinates.x
+ (this.mandelbrotCoordinates.width /
this.image.getWidth() * (this.imageRenderArea.x + 1));
double mandelbrotRenderY = this.mandelbrotCoordinates.y
+ (this.mandelbrotCoordinates.height
/ this._image.getHeight() *
(this.imageRenderArea.y + 1));
double mandelbrotRenderWidth =
this.mandelbrotCoordinates.width /
this.image.getWidth() *
this. imageRenderArea.width;
double mandelbrotRenderHeight =
this.mandelbrotCoordinates.height /
this.image.getHeight() *
this. imageRenderArea.height;

// calculate mandelbrot distances from pixel to pixel
double distanceX = mandelbrotRenderWidth

/ this.imageRenderArea.width;
double distanceY = mandelbrotRenderHeight

/ this.imageRenderArea.height;

double z = mandelbrotRenderX, zi = mandelbrotRenderY;
int iterations = 0O;
double colorspacing = (numColors - 1) /

(double) maxlteration;

for (int x = this.imageRenderArea.x; X <
this. imageRenderArea.x
+ this.imageRenderArea.width
&& linterruptCalculation.get(); x++) {
zi = mandelbrotRenderY;
for (int y = this.imageRenderArea.y; y <
this. imageRenderArea.y
+ this.imageRenderArea.height
&& linterruptCalculation.get(); y++) {
if ((iterations = mandelbrotTest(z, zi)) 1= -1) {
// part of the mandelbrot set
// get color index to use
int colorlndex = (int) (colorspacing *
iterations);
// write pixel

2006-11-16

Diplomarbeit

image.setRGB(x, y, ((int[])
colors[colorindex])[0]);
} else {
// not part of the Mandelbrot set

// set RGB value - use this method because
// unsnychronized and does not use locking
image.-setRGB(x, y, 1, 1, colorNotPart, 0, 1);

by
// notify controller

if (x% 50 == 0) {

Controller._getinstance() -drawlmage(image);

}

zi += distanceY;

}

z += distanceX;

3

// worker finished - draw final image
Controller._getinstance() -drawlmage(image);

be
Listing 5 Angepasste Berechnungsmethode

Die verwendeten Farben werden mit folgendem Algorithmus berechnet:
/**
* Generates all colors and stores them in an array
*/

static {

byte redlnc;
byte greenlnc;
byte bluelnc;
int redvValue = 0;
int greenValue =
int bluevalue = 0;
for (byte i = 1; i < 8; i++) {

// red value

redinc = O;

ifT ((((7 - 1) & O0x4) == Ox0) && ((i & O0x4) == 0x4)) {

redinc = 1;

0;

redvalue = -1;
} else if ((((i - 1) & 0x4) == 0x4) && ((i & 0x4) == 0x0)) {
redinc = -1;

redValue = 256;

by

// green value

greeninc = 0;

if ((((7 - 1) & Ox2) == Ox0) && ((1 & Ox2) == 0x2)) {
greenlnc = 1;

greenValue -1;
} else if ((((F - 1) & Ox2) == Ox2) && ((1 & 0x2) == 0x0)) {
greeninc = -1;

greenValue=256;

// blue value

bluelnc = 0;

if ((((0 - 1) & Ox1) == 0x0) && ((i & Ox1) == 0x1)) {
bluelnc = 1;
bluevValue = -1;

} else if ((((- 1) & Ox1) == Ox1) && ((i & 0x1) == 0x0)) {
bluelnc = -1;
blueValue=256;

2006-11-16

Diplomarbeit Seite 32

}

// calculate transition states
for (char j = 0; j < 256; j++) {
int[] color = new int[1];
color[0] = (redvalue += redInc) << 16
| (greenValue += greenlnc) << 8
| (bluevValue += bluelnc);
colors[(i - 1) * 256 + j] = color;

be
Listing 6 Farb-Berechnung

9.1.2. View

Das GUI basiert auf den Java-Swing Klassen und verwendet keine zusatzlichen Hilfsmittel. Im We-
sentlichen beschrankt es sich darauf dem Controller die Benutzereingaben weiterzureichen oder um-
gekehrt die vom Controller benétigten Bildschirmausgaben zu machen.

Die Klassen brauchen hier nicht weiter erklart zu werden.

9.1.3. Control

Der Controller ist der zentrale Dreh- und Angelpunkt der Anwendung. Die Controll ler Klasse ist als
Singleton implementiert. Von ihr existiert nur eine einzige Instanz. Diese Instanz kann durch die stati-
sche getlnstance() Methode von jeder Komponente abgeholt werden. Dies macht es Uberfliissig
jeder Klasse die Referenz auf den Controller zu tibergeben.

Neben einer Reihe von get* Methoden bietet der Controller vile set* Methoden um den Status der
Anwendung zu beeinflussen. Diese werden insbesondere vom GUI (View) verwendet um die vom
Benutzer definierten Optionen zu aktivieren. Es folgt eine Liste der wichtigsten Methoden:

Tabelle 19 Controller Methoden

Methode Beschreibung

initQ Hiermit wird der Controller erstmalig initialisiert. Diese Methode wird
nur von der main() Methode aufgerufen.

drawlmage() Diese Methode zeichnet das als Parameter tibergebene Bild im GUI.
Diese Methode wird von den Model-Klassen aufgerufen wenn Daten
zur Verfligung stehen.

get*() Uber diese Methoden kann der aktuelle Status der Anwendung abge-
fragt werden. Dies Umfasst beispielsweise die aktuellen Koordinaten
im Mandelbrot-Bereich oder die Anzahl aktiver Threads.

interruptCalculation() Mittels dieser Methode kann eine laufende Berechnung abgebrochen

werden.

quitQ Threads Anwendung beenden.

restartCalculation() Neu-Start der Berechnung mit den aktuellen Initialdaten.

set*() Setzen verschiedenster Parameter (Anzahl Threads, Koordinaten,
Bildgrosse...)

Die Implementation der einzelnen Methoden ist hier nicht besonders wichtig da der Controller die an-
gefragten Aktionen hauptsachlich direkt an die betroffenen Objekte weiterleitet. So fuhrt ein setNum-

2006-11-16

Diplomarbeit Seite 33

Workers() zum Aufruf von setWorkersNumber () der Klasse BenchmarkManager (siehe Kapitel 0).
Somit beinhaltet der Controller keine aufwandige Programmlogik oder Algorithmen. Der Gesamte
Code ist natirlich im Umfang der Arbeit enthalten.

2006-11-16

Diplomarbeit Seite 34

9.2. Locking

Hier werden die relevanten Code-Stellen beschrieben um das Locking-Verhalten zu beeinflussen. Wie
in der Analyse (siehe Kapitel 8.4) erwahnt liegt der beste Ansatzpunkt dafiir beim Bild. Jeder Thread
schreibt die Pixel direkt per setPixel() Methode in das Bild. Diese Methode ist in der Referen-
zimplementation des in BufferedImage verwendeten Rasters zwar nicht ,Thread safe” (also auch
nicht synchronisiert) aber da jeder Pixel nur von einem Thread geschrieben wird ist dies hier kein
Problem. Wir werden an diesem Punkt ansetzen um verschiedene Locking-Verfahren zu testen. Der
Einfachheit halber haben wir die setPixel() Methode Ubrigens durch den Aufruf der setRGB()
Methode direkt aus der BufferedImage Klasse ersetzt.

Um verschiedene Locking-Mechanismen auf der Ebene der BufferedlImage Klasse testen zu kon-
nen haben wir diese abgeleitet und eine Klasse mit dem Namen Countinglmage erstellt. Diese bie-
tet zusatzlich noch eine Methode getCount() welche einen Zahlerstand zurtickgibt. Wir haben die-
sen Zahler eingefiigt weil wir festgestellt haben, dass selbst bei einer Methodensynchronisation von
setRGB() kein Lock gesetzt wird. Wir vermuten, dass die Sun HotSpot VM 1.5 hier optimiert und
feststellt, dass ein Lock hier nicht nétig ist. Doch dazu mehr in Kapitel 0.

Die Klassenstruktur sieht nun schematisch wie folgt aus:

Bufferedimage

Countinglmage

LockinglmageCoarse LockinglmageFine NonLockinglmage

Abbildung 6 Schematische Klassenstruktur, Countinglmage

Die Klasse Countinglmage verwendet den folgenden Code:

public class Countinglmage extends Bufferedimage {
public int count = O;

public Countinglmage(int width, int height, int imageType) {
super(width, height, imageType);
}

public synchronized int getCount() {
return count;
}

}
Listing 7 Countinglmage Implementierung

Da der Controller zentral fir die Erstellung der Bilder zustandig ist kann dieser frei zwischen den Imp-
lementierungen wahlen und erlaubt somit flexibel die Wahl des Locking-Mechanismus bei jedem Test-
durchgang.

Die Implemntierung der von Countinglmage abgeleiteten Klassen wird nachfolgend kurz erklart.

2006-11-16

Diplomarbeit Seite 35

9.2.1. Kein Locking

Hier wird die Klasse NonLockinglmage verwendet. Diese besteht quasi nur aus einer Wrapper-
Klasse und wurder der Fairness wegen erstellt. Fairness deswegen, weil die Inkrementierung der
count Variable selbst auch CPU-Zeit verbraucht und ein dieser Aufwand bei allen Implementierungen
anfallen soll. Ansonsten waren die Ergebnisse méglicherweise nicht miteinander vergleichbar.
public class NonLockinglmage extends Countinglmage {
public NonLockinglmage(int width, int height, int imageType) {
super(width, height, imageType);

public void setRGB(int startX, int startY, int w, int h,
int[] rgbArray, int offset, int scansize) {
count++;
super.setRGB(startX, startY, w, h, rgbArray, offset, scansize);
}
by

Listing 8 NonLockinglmage Implementierung

Ein wichtiger Hinweis sei hier aber noch angefiigt: Diese Klasse ist NICHT Thread-Safe. Das bedeu-
tet, dass der parallele Zugriff hier fir inkonsistente Daten sorgen kann. Der Grund liegt nicht in der
unsynchronisierten super .setRGB() Methode sondern im count++ Ausdruck. Dieser kdnnte auch
als count = count + 1 geschrieben werden. Dies verdeutlicht, dass der Wert von count zuerst
ausgelesen wird, dann inkrementiert und anschliessend wieder zuriick geschrieben wird. Findet nun
irgendwo zwischen auslesen und speichern ein Kontextwechsel statt wo ein anderer Thread den In-
halt von count veréndert, dann wird beim Zurlickschreiben der Wert iberschrieben. Deshalb kann
(und wird mit hoher wahrscheinlichkeit) count nach mehreren hunderttausend parallelen Zugriffen auf
setRGB() (einmal pro Pixel) einen falschen Wert beinhalten.

Da wir diesen Wert aber nicht wirklich benétigen ist dieses Problem zu vernachlassigen.

9.2.2. Grobes Locking

Unter grobem Locking versteht man die Verwendung eines Locks fiir weite Code-Teile. Der Nachteil
liegt darin, dass die entsprechenden Code-Teile fir alle anderen Threads fir eine entsprechend lange
Zeit blockiert bleiben. In unserem Flll ist die setRGB() Methode sehr kurz. Daflir wird sie entspre-
chend haufig aufgerufen. Bei der Methodensynchronisation werden entsprechend haufig viele Lock-
Wechsel und Blockierungen stattfinden.

Wir ersetzen die von BufferedlImage zur Verfliigung gestellte setRGB() Methode. Dazu leiten wir
von der Klasse Countinglmage ab (welche ihrerseits von BufferedImage abgeleitet ist) und tber-
schreiben die Methode. Hinweis: BufferedImage bietet bereits eine synchronisierte setRGB() Me-
thode. Diese zu verwenden ware aber fiir unsere Einsatzzwecke zu unflexibel und wiirde ausserdem
die Anpassung der Berechnungsklasse bedingen was wir mit einer erweiterten, eigenen Klasse ele-
gant umgehen kénnen.

Hier der Code fir die LockinglImageCoarse Klasse:

public class LockinglmageCoarse extends Countinglmage {
public LockinglmageCoarse(int width, int height, int imageType) {
super(width, height, imageType);
}

public synchronized void setRGB(int startX, int startY, Int w,
int h, Int[] rgbArray, int offset, int scansize) {
count++;
super.setRGB(startX, startY, w, h, rgbArray, offset, scansize);

2006-11-16

Diplomarbeit Seite 36

Listing 9 LockinglmageCoarse Implementierung

Hier liegt auch der Grund fir unsere zusatzliche count Variable. Wir haben festgestellt, dass eine
einfache Methodensynchronisation Gberhaupt keinen Effekt auf die Performance hatte. Dies war auf
den ersten Blick sehr unlogisch. Wir vermuten, dass durch interne JVM Optimierungen dieser Lock
einfach herausoptimiert wird da die JVM feststellen kann, dass in Wirklichkeit gar kein Lock notig ist.

Um diese Optimierung zu verunmdglichen findet nun ein Zugriff auf die count Variable statt. Dieser
muss in jedem Fall synchronisiert werden. Die Entfernung dieses Locks durch Optimierung ware viel
schwerer (wenn auch nicht unmaéglich) und wird offenbar von der JVM nicht durchgefiihrt. Die Testre-
sultate werden dies wohl untermauern kénnen.

9.2.3. Feines Locking

Auch hier wird die setRGB() Methode Uberschrieben und durch eine mit Locking ersetzt:

public class LockinglmageFine extends Countinglmage {
public LockinglmageFine(int width, int height, int imageType) {
super(width, height, imageType);
// create locks
locks = new Object[width][height];
for (int row = 0; row < height; row++) {
for (int column = 0; column < width; column++) {
locks[column][row] = new Object();
}

}

public void setRGB(int startX, int startY, int w, int h,
int[] rgbArray, int offset, int scansize) {
synchronized (this) {
count++;
}

synchronized (locks[startX][startY]) {
super.setRGB(startX, startY, w, h, rgbArray,
offset, scansize);

}
}

Listing 10 LockinglmageFine Implementierung

Auch hier wird synchronisiert. Allerdings wird fir jeden Pixel ein eigenes Lock-Objekt zur Verfligung
gestellt. Lock-contention wiirde hier also nur auftreten wenn zwei Threads gleichzeitig auf einen iden-
tischen Pixel zugreifen wirden. Da jeder Pixel nur einmal beschrieben wird dirfte dieser Fall nie ein-
treten. Den Aufwand zur Uberpriifung des Locks muss aber trotzdem gemacht werden. Ob dieser von
der JVM ebenfalls wegoptimiert werden kann oder wissen wir zum jetzigen Zeitpunkt noch nicht.

Dieser Code-Teil beinhaltet noch einen weiteren Lock auf die this Referenz. Dieser schiitzt den ge-
meinsamen Zugriff auf die count Variable. Die Besonderheit liegt hier darin, dass der synchronisierte
Bereich extrem kurz ist und somit die Wahrscheinlichkeit fiir Lock-contention sinkt. Der Code zur In-
krementierung der Variable dirfte innerhalb weniger CPU-Befehle erledigt sein.

9.2.4. CAS (Lock-Free)

Um die Vergleichbarkeit der Resultate zu gewéahrleisten baut diese Locking-Klasse auf der fiir feines
Locking (siehe Listing 10 LockinglmageFine Implementierung) auf. Einzig der synchronisierte Block
fur die Inkrementierung des Zahlers wird nicht mehr durch einen Objekt-Lock sondern durch eine
CAS-Methode implementiert. Zu diesem Zweck wird die AtomiclInteger Klasse verwendet. Diese

2006-11-16

Diplomarbeit Seite 37

bietet eine Lock-freie incrementAndGet() Methode, die mittels CAS Funktion implementiert wurde.
Der verwendete Code sieht folgendermassen aus:

public class LockinglmageCAS extends Countinglmage {

/** Array of objects used to lock each pixel */

private Object[][]1 locks;

/**

* Use an atomic integer as a counter. This one provides a CAS
* method which is lock-free.

*/

private Atomiclnteger atomicCount = new Atomiclnteger(0);

/**
* @see ch.skybeam.mandelbrot.model . lock.Countinglmage#getCount()
*/
@Override
public synchronized int getCount() {
return atomicCount.get();
be

public LockinglmageCAS(int width, int height, int imageType) {
super(width, height, imageType);
// create locks
locks = new Object[width][height];
for (int row = 0; row < height; row++) {
for (int column = 0; column < width; column++) {
locks[column][row] = new Object();
}

}

@Override
public void setRGB(int startX, int startY, int w, int h,
int[] rgbArray, int offset, int scansize) {

// increment counter using a CAS method.

atomicCount. incrementAndGet();

synchronized (locks[startX][startY]) {

super.setRGB(startX, startY, w, h, rgbArray,
offset, scansize);

}
}

Abbildung 7 LockinglmageCAS Implementierung

Die Impementierung der CAS-Methode incrementAndGet() sieht folgendermassen aus:

public final int incrementAndGet() {
for (57 {
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
return next;
be
by

Abbildung 8 compareAndGet Implementierung

2006-11-16

Diplomarbeit Seite 38

9.3. JOMP

Bei JOMP (siehe auch [JOMP]) handelt es sich um eine Implementierung der OpenMP direktiven fir
Java. Die Implementierung unterscheidet sich aber in der Umsetzung von der Referenz-Spezifikation.
In Java Ubernimmt nicht der Java-Compiler die Umsetzung mittels Compiler-Direktiven sondern ein
Pre-Compiler. Dieser Ubersetzt die JOMP-Klassen (Dateiendung .jomp) in Java Klassen (Dateiendun
.Jjava). Die generierten Java-Klassen kénnen dann mit dem normalen Java Coompiler Ubersetzt wer-
den. Auch in weiteren Details unterscheidet sich die Implementation. Einige Direktiven werden nicht
unterstitzt und gemass Dokumentation werden die Threads nicht am Anfang generiert und existieren
dann wahrend des ganzen Programmablaufes sondern werden erst zur Laufzeit erzeugt und gleich
wieder beendet.

Wir wollen hier untersuchen in wie fern sich die Mandelbrot-Berechnung mit JOMP parallelisieren
lasst. Der Vorteil dieser Methode liegt insbesondere darin, dass die Architektur der Applikation meist
nicht gedndert werden muss um einige Teile/Schleifen parallel ablaufen zu lassen.

Ein weiter Nachteil der JOMP-Implementierung scheint die manuelle Konfiguration zu sein. Da lber
die Java-API die aktuelle CPU-Anzahl nicht abgefragt werden kann muss diese dem Programm mitge-
teilt werden. Entweder zur Laufzeit oder per -Djomp . threads=n Parameter beim Start der Anwen-
dung.

Weiterfiilhrende Informationen:
e OpenMP, Homepage: [OPENMP]
e EPCC, OpenMP-like directives for Java: [JOMP]

9.4. JOMP Architektur

Der Entwicklungsprozess bei der Entwicklung von JOMP-Programmen ist im folgenden Bild schema-
tisch dargestellt:

Java JOMP JOMP Java Java
Source Source Source Source Bytecode
Klasse .JOMP In .jomp JOMP Java
» Direktiven > . .
erstellen e umbenennen Precompiling Compiler
einfugen

Abbildung 9 Schematische JOMP Entwicklung

Meistens wird zuerst der Java-Sourcecode erstellt. Haufig ist dieser aber schon in Form einer seriellen
Verarbeitung vorhanden, der nun parallelisiert werden soll. Im bestehenden Java-Code werden jetzt
JOMP-Direktiven (einfache Kommentare) eingefiigt. Die daraus entstehende Datei kdnnte in der Re-
gel immer noch mit dem Java-Compiler Ubersetzt werden. Dieser wirde aber die JOMP Direktiven
ignorieren und wie gewohnt ein Single-Threaded Programm erzeugen. Um diesen erweiterten Sour-
cecode als JOMP Programm zu kennzeichnen wird die Datei von . java in . jomp umbenannt. Diese
Dateien kdénnen dann mit dem JOMP-Compiler in eine neue Java-Sourcecode-Datei konvertiert wer-
den. Diese generierten Sourcen verwenden dann erweiterte Konstrukte um die Arbeit auf Threads
aufzuteilen. Die generierten Sourcen lassen sich dann wieder mit einem beliebigen Java-Compiler in
Bytecode Ubersetzen der auf einer normalen JVM lauft.

Da die JOMP Source-Dateien lediglich JOMP-Kommentare enthalten lassen sich diese bei Bedarf
sogar ohne JOMP mit dem Java-Compiler Ubersetzen. Dabei werden die JOMP-Direktiven einfach
ignoriert.

Die Ubersetzung einer JOMP-Klasse geschieht mit folgendem Aufruf:

2006-11-16

Diplomarbeit Seite 39

java -cp jompl.0Ob.jar jomp.compiler.Jomp <Klasse>
Listing 11 Ubersetzung einer JOMP-Klasse

Der Ausdruck <Klasse> braucht dabei natirlich durch die entsprechende JOMP-Klasse ersetzt zu
werden. Die Endung . jomp wird nicht angegeben. Der —cp Parameter wurde nur der Vollstandigkeit
halber angeben, da das jompl.0b. jar Java Archiv sowohl den Compiler als auch die Laufzeitklas-
sen enthalt. Dieselbe JAR Datei muss ubrigens auch bei der Programmausfiihrung im Classpath zu
finden sein, da dort die von JOMP verwendeten Klassen liegen.

Beim Start der Applikation braucht dann noch per Parameter mitgeteilt zu werden, auf wie viele
Threads die Aufgabe verteilt werden soll:

java -Djomp.threads=n <Klasse>
Listing 12 Start einer JOMP-Applikation

Hier unterscheidet sich JOMP einmal mehr von der C/C++/Fortran Implementierung. Dort werden
standardméssig so viele Threads wie CPUs erzeugt. Bei Java ist dies nicht mdglich, da einer Java-
Anwendung die Anzahl physikalischer Prozessoren nicht bekannt ist. Deshalb muss dieser Parameter
entweder beim Start oder zur Laufzeit gesetzt werden. JOMP bietet dafiir aber auch eine dynamische
Anpassung der Thread-Anzahl.

Bei Tests hat sich gezeigt, dass die Implementation noch einige Schwachstellen aufweisst. Insbeson-
dere treten bei der parallelen Anwendung von JOMP und eigenen Java-Threads Probleme in Form
von Exceptions auf. Weitere Probleme betreffen die Implementierung. Doch dazu mehr im Kapitel
9.4.1.

9.4.1. Mandelbrot-Berechnung mit JOMP

Um JOMP fir die zentrale Berechnung der Mandelbrotmenge verwenden zu kdnnen haben wir die
bestehende Klasse MandelbrotCalculator erweitert und die Berechnungs-Schleife (doppelt-
verschachtelte for Schleife) tiberschrieben.

Die Uberarbeitete Methode sieht nun folgendermassen aus (leicht gekirzt):

public void run(Q) {
double mandelbrotRenderX = this.mandelbrotCoordinates.x
+ (this.mandelbrotCoordinates.width / this.image.getWidth()
* (this.imageRenderArea.x + 1));
double mandelbrotRenderY = this_mandelbrotCoordinates.y
4 (this.mandelbrotCoordinates.height /
this.image.getHeight() * (this.imageRenderArea.y + 1));
double mandelbrotRenderWidth = this.mandelbrotCoordinates.width
/ this.image.getWidth() * this.imageRenderArea.width;
double mandelbrotRenderHeight = this.mandelbrotCoordinates.height
/ this.image.getHeight() * this.imageRenderArea.height;

// calculate mandelbrot distances from pixel to pixel
double distanceX = mandelbrotRenderWidth /

this. imageRenderArea.width;
double distanceY = mandelbrotRenderHeight /

this. imageRenderArea.height;

double z = mandelbrotRenderX, zi = mandelbrotRenderY;
int iterations = 0;
double colorspacing = (numColors - 1) / (double) maxlteration;

// omp parallel for shared(distanceX, distanceY, mandelbrotRenderX,
mandelbrotRenderY) private(z, zi, iterations)
for (int x = imageRenderArea.x; X < iImageRenderArea.Xx
+ imageRenderArea.width; x++) {
z = mandelbrotRenderX + (distanceX * ((x - imageRenderArea.x) +

1));

2006-11-16

Diplomarbeit

Seite 40

}

}

zi = mandelbrotRenderY;
for (int y = imageRenderArea.y; y < imageRenderArea.y
+ imageRenderArea.height; y++) {

zi = mandelbrotRenderY + ((y - imageRenderArea.y)) *

distanceY;
if ((iterations = mandelbrotTest(z, zi)) 1= -1) {
// part of the mandelbrot set
// get color index to use

int colorIndex = (int) (colorspacing * iterations);

// write pixel
image
.SetRGB(x, vy, 1, 1,

((int[1) colors[colorindex]), 0, 1);

} else {
// not part of the Mandelbrot set

// set RGB value - use this method because it"s

// unsnychronized and does not use locking
image.setRGB(x, y, 1, 1, colorNotPart, 0, 1);

ks
// notify controller

if (x % 50 ==0) {
Controller.getinstance() -drawlmage(image);
}

}

Controller._getinstance() -drawlmage(image);

Listing 13 JOMP Implementierung der MandelbrotCalculator Klasse

Hier wurde sehr wenig geandert. Lediglich die omp parallel for Direktive vor der ersten Schleife
eingeflgt. Ausserdem wurde die inkrementelle Berechnung von z und zi durch eine absolute ersetzt.
Damit braucht diese nicht synchronisiert zu werden was den Programmfluss bzw. die parallele Verar-
beitung einschranken wirde.

Eine JOMP Besonderheit war, dass alle Parameter des Konstruktors in gleichnamige Datenfelder
(Klassenvariabeln) geschrieben werden missen. Ansonsten wiesen die generierten Java-Quelldateien
(nach der Generierung durch den JOMP-Compiler) Fehler auf. Deshalb musste in unserem Beispiel
noch der Konstruktor Giberschrieben werden:

public class MandelbrotCalculatorJOMP extends MandelbrotCalculator {
private double mandelbrotX = O;
private double mandelbrotY = O;
private double mandelbrotWidth = O;
private Rectangle renderArea;
public MandelbrotCalculatorJOMP(Bufferedlmage image, Rectangle

L1

}

renderArea, double mandelbrotX, double mandelbrotY,
double mandelbrotWidth, int maxlteration) {
super(image, renderArea, mandelbrotX, mandelbrotY,
mandelbrotWidth, maxlteration);
this.mandelbrotX mandelbrotX;
this.mandelbrotY = mandelbrotY;
this.mandelbrotWidth = mandelbrotWidth;
this.renderArea = renderArea;

Listing 14 Uberschriebener Konstruktor

2006-11-16

Diplomarbeit

Seite 41

10. Glossar
Tabelle 20 Glossar

Begriff Beschreibung

Affinitat Bezeichnet die Zuordnung eines Prozesses/Threads zu physikalischen Recheneinhei-
ten. Durch die Definition einer Affinitaitsmaske kann gesteuert werden auf welchen
Recheneinheiten die Anwendung ausgefihrt werden kann.

Siehe Kapitel 5.2.

CAS Compare and Swap bzw. Compare and Set bezeichnet eine atomare (meist hardware-
unterstitzte) Operation in der ein gespeicherter Wert mit dem vermuteten Wert vergli-
chen wird. Stimmt dieser Uberein, so wird ein neuer Wert gesetzt. Ansonsten wird
nichts getan. CAS Funktionen erlauben Lock-freie Algorithmen.

CMP Chip Multi Processing (CMP) bezeichnet einen Chip, der in der Lage ist mehrere Pro-
zesse gleichzeitig abzuarbeiten. Dies passiert aber auf einem Chip und nicht auf meh-
reren Prozessoren.

Siehe Kapitel 5.1.

CMT Chip Multi Threading (CMT) ist eine Technologie bei der ein Prozessor bei jedem
Taktzyklus n Instruktionen (je eine pro n-Threads) einlesen kann.

Siehe Kapitel 5.1.

CPU Abkurzung fur Central Processing Unit. Wird synonym flr die deutsche Bezeichnung
Hauptrpozessor bzw. Prozessor verwendet.

CvVvs Concurrent Versioning System; Ein System zur Versionierung von Dateien (vorzugs-
weise Source-Code). CVS erlaubt die konkurrierende Arbeit an Quelltexten ohne diese
fur den exklusiven Zugriff zu sperren.

JVM Die Java Virtual Machine ist ein Interpreter fir Java Bytecode. Die JVM ist dabei das
Bindeglied zwischen Betriebssystem und den plattformunabhéngigen Java Anwen-
dungen.

MPI Das Message Passing Interface (MPI) wird zum Nachrichtenaustausch (Inter-Process-
Communication, IPC) verwendet. Dabei kann MPI transparent sowohl auf einem loka-
len Rechner als auch verteilt im Netzwerk verwendet werden.

Siehe Kapitel 5.3.

NUMA Non-Uniform Memory Access (NUMA) bezeichnet eine Architektur in der jede Verar-
beitungseinheit lokalen Speicher besitzt und durch Kommunikation mit den anderen
Verarbeitungseinheiten auch deren Speicher ansprechen kann.

Siehe Kapitel 5.1.

OpenMP Eine Spezifikation der APl zur Parallelisierung von Programmen. OpenMP definiert
Compiler-Direktiven damit ein Compiler den bestehenden Code parallelisieren kann.
Siehe Kapitel 5.3.

Pipelining Bezeichnet die Abarbeitung einer Instruktion in vereinfachten Teilschritten. Dadurch
kann die folgende Instruktion bereits eingelesen werden sobald die vorhergehende die
nachste Stufe erreicht hat.

Siehe Kapitel 5.1.
Scheduling Bezeichnet die Téatigkeit des Betriebssystems beim Preemptiven Multitasking die Pro-

zessorzeit nach einem bestimmten Algorithmus den einzelnen Ausfuhrungseinheiten
zuzuweisen (auf Ebene Thread oder Prozess).

2006-11-16

Diplomarbeit

Seite 42

Begriff Beschreibung

Skalar Ein Prozessor in Skalarem Design verarbeitet immer nur eine Instruktion gleichzeitig.
Siehe Kapitel 5.1.

SMP Symmetric Multi Processing (SMP) bezeichnet die Verarbeitung mit parallel arbeiten-
den Einheiten wobei jede Einheit gleichberechtigt behandelt wird.

Siehe Kapitel 5.1.

Superskalar Ein Prozssor in superskalarem Design versucht mittels Dispatcher alle Recheneinhei-
ten gleichzeitig auszulasten.
Siehe Kapitel 5.1.

TBB Intel Thread Building Blocks. Eine C++ Bibliothek die Methoden zur parallelen Verar-
beitung bereitstellt (Schleifenparalleisierung).
Siehe Kapitel 5.3.

Thread Ein leichtgewichtiger Prozess. Ein Thread teilt den Adressraum mit dem Prozess zu
dem er gehort. Dadurch werden einerseits die Kommunikation und andererseits der
Kontextwechsel beschleunigt.

UMA Uniform Memory Access (UMA) bezeichnet eine Architektur in der alle Verarbeitungs-

einheiten Uber ein gemeinsames Bussystem auf den Speicher zugreifen.
Siehe Kapitel 5.1.

2006-11-16

Diplomarbeit Seite 43

11. Verzeichnisse

11.1. Tabellenverzeichnis

Tabelle 1 Abgrenzung der EinfluSSDEreiChe.cooiiiii e 3
Tabelle 2 UDEISICHE TESIZIEIEcviviieieieiiieti ettt ettt se st e e s sesbe s ese s ese e 3
Tabelle 3 Anforderungskatalog an eine geeignete TeStKIaSSEeceeiviiiiiiiiiiiiiiiiei e 4
Tabelle 4 Referenzierte DOKUMENTE.ooiiiii it 7
LIz L= TSI R AN o] (0 | 748] o =T o R PUERPRt 7
TADEIIE B LINKS .ttt ettt b e e s b et e s bt eaR e e b et e b r e s re e e nnr e e e e e nnreas 8
Tabelle 7 ADGrenzung HArAWATE...........coiiiiiiiiiiiiiei e e e s e s e e e e e e s e st e e e e e e s e e santreaeeeeeeesenanns 10
Tabelle 8 HardwareplattfOrm ... e e e s e e e e e s e e nnnreer e e e e e e s e annns 11
Tabelle 9 Abgrenzung BetrieDSSYSIEM......ccii i e e e reer e e e e e e e nanes 12
Tabelle 10 Abgrenzung APPIKALION........oiiee i e e s e e e e e s e s rreeeeeeennnnes 12
Tabelle 11 ADGreNZUNG JVIM ...ttt ettt e s st e e s s bn e e e snnneeas 13
Tabelle 12 ZielSetZUNG HAIOWAIE...........eii ittt e e s e e saneee s 14
Tabelle 13 Betrachtungsbereiche HardWareoocueiiiiiiiiii e 14
Tabelle 14 Zielsetzungen BetriEhSSYSIEIM...........uiiiiiiiiiiiieeie e a e e 15
Tabelle 15 Betrachtungsbereiche BetriebSSYStEmMoo.ueiiiiiiiii e 15
Tabelle 16 ZIielSEtZUNGEN JVIM ... ettt et e e e et e e e e e e s e e sanbbeeeeeaaeeeaaanns 16
Tabelle 17 BetrachtungshereiChe JVM ... 16
Tabelle 18 BenchmarkManager MethOUENuviiii oo e e 27
Tabelle 19 Controller MEtNOUENciiiiiie e 32
TADEIIE 20 GIOSSA ...ttt ettt ar et nn et 41

11.2. Abbildungsverzeichnis

Abbildung 1 Mandelbrot-Menge (ApfelmMaNNCHEN)............uiiiiiii e 20
Abbildung 2 Vergrésserung der Mandelbrot MENQEvveiieieiiiiicieieee e ee e e e 21
AbbIlduNg 3 MVC KIaSSENSIIUKLUTeeiiiieeiieiiiiieeee e s s e e e e s s e e e e e e e s s st e e e e e e s e s sannrnneeneeeesennnes 26
Abbildung 4 Architektur der IMPIEMENLIEIUNGuviiie e e e e e e e e e ennnes 26
Abbildung 5 Worker Threads SCREMI@c.uuiiiiiiiiiie et 28
Abbildung 6 Schematische Klassenstruktur, CountingIMmagec.ocueeeriiiiiiiiiiiiee e 34
Abbildung 7 LockinglmageCAS IMpPlementierUNG.........ocueeeiiieiaei it e e e e e eanes 37
Abbildung 8 compareAndGet IMPIEMENTIEIUNGccoiiiiiiiiiiiiiiei e e e e e e e anes 37
Abbildung 9 Schematische JOMP ENtWICKIUNGcoiiiiiiiiiiiiiiei e 38

2006-11-16

Diplomarbeit Seite 44

11.3. Code Listings

Listing 1 Mandelbrot BasiSalgOritiMUS...........ooii it ee e e e 22
Listing 2 Mandelbrot TeSt MethOdeoo e 23
Listing 3 Mandelbrot HilfSMethodencooo e 23
Listing 4 run() Methode der Worker Threadsuueeeieiiiiiiiiiiiece e e et re e e e 29
Listing 5 Angepasste Berechnungsmethode.............coovioiiiiiiiiiiiic e 31
S T aTo ISR =T o B 2 T=T = Tod o 01U] o TR 32
Listing 7 Countinglmage IMplemeNnti€rUNQg.............uuuiiiieeeii e r e e e e e e e e e s srnrareeeeeees 34
Listing 8 NonLockingimage Implementi€rUNguuveeeeeiiiiiiiiiiie e ee e e e e e s e e e e e s e snnrerereeeeee s 35
Listing 9 LockinglmageCoarse IMplemMENtIEIUNGcuieeiiiiiiriiieiie e e e et e e e e e e s s s e e e e e e s s snnvnrereeeaee s 36
Listing 10 LockinglmageFine IMplementi@rUNg.........c.oouriieiiiiieiiiiee et 36
Listing 11 Ubersetzung €iNer JOMP-KIASSE..........ccceveveiiriiietiiiereeiesesieesseeste s ssesessess st sssesase s 39
Listing 12 Start einer JOMP-APPIKALION.uiiiiiiiiiie e 39
Listing 13 JOMP Implementierung der MandelbrotCalculator KIasse............oooouiiieeiiiiiniiiiiiiiieeeeee 40
Listing 14 Uberschriebener KONSIIUKLONc.couiieieieeeeeeeecte e eteete ettt e et ete ettt eaeeee s e eseanas 40

11.4. Index

Abkurzungen........ccccco...... 7 JVM 13, 14, 15, 41 Portierbar 18
AFfiNitat ... 41 LiNKS v 8 Rahmenbedingungen.... 10
Algorithmus 22 lock contention.............. 19 Realisierbarkeit.............. 10
Analyse.......ccocvevnnnenn. 24 Locking......ooovuvviiieennnnnnn, 34 Referenzen 7
Bewertung 25 CAS....os 36 Reproduzierbarkeit........ 19
Apfelménnchen.............. 20 Fein ..o, 36 Requirements 18
Applikationccceeee.e. 12 Grob ..o, 35 Scheduling 12,41
Betrachtungsbereiche... 14 [T I 35 SDD ..ot 9
Betriebssystem.............. 12 Mandelbrotcccee.... 20 Sequenziell.........coeee.... 18
CAS ..o 9, 36, 41 Messbar.......cccoocevieeennnen. 18 Skalar......c.coceveeeenne 10, 42
CMP....ooeie 10, 11, 41 Model ...cooeeevviiiiiieeeeee, 27 Skalierungcccccveeeennn. 10
CMT .o 10, 11, 41 MPIL o 13,41 SMP....cceeee. 10, 11, 14, 42
Control....ccceeevvvieeeeiienn, 32 MVC..oriiiiiiiiieeeeen 26 Spezifikation 18
CPU ... 41 Nachvollziehbar............. 18 STD e 14
CVS 41 NUMA ... 11,41 Superskalar-.............. 10, 42
Definitionen..........ccccc...... 7 OpenMP................ 8, 13,41 TBB .o, 13,42
Fraktalberechnung........ 30 Parallelisierbar............... 18 Technologien 10
Hardwareccuveeee. 10 Pipeline.........cccovvveeneeenn. 10 Testklasse.........ccccuvneee. 20
Implementierung............ 26 Pipeliningcccocoveeeeenn. 41 Testplattform 9,10
JOMP...ovevevieeiiiiiie, 38, 39 Plattform........ccccceeeeeennn. 10 Testumfang

2006-11-16

Diplomarbeit Seite 45
Applikation................... 16 Testumfang VIEW oot 32
Betriebssystem............ 15 IJVM e, 16 Visualisierbarkeit........... 19

Testumfang 914 Thread......ccooooeeeeeennn. 12,42 Zielsetzungen 14
Hardware...........c......... 14 UMA ..., 10,11, 42

2006-11-16

	1. Management Summary
	2. Inhaltsverzeichnis
	3. Dokumentinformationen
	3.1. Referenzierte Dokumente
	3.2. Definitionen und Abkürzungen
	3.3. Links

	4. Einleitung
	4.1. Zweck des Dokumentes

	5. Evaluation Plattform
	5.1. Hardware
	5.2. Betriebssystem
	5.3. Applikation
	5.4. JVM

	6. Geplanter Testumfang
	6.1. Hardware
	6.2. Betriebssystem
	6.3. Applikation
	6.4. JVM:

	7. Spezifikation der Testklasse
	7.1. Requirements

	8. Testklasse
	8.1. Basisinformationen
	8.2. Die Mandelbrot Menge
	8.3. Der Algorithmus
	8.4. Analyse des Algorithmus
	8.5. Bewertung

	9. Implementierung
	9.1. Java Threads
	9.1.1. Model
	9.1.2. View
	9.1.3. Control

	9.2. Locking
	9.2.1. Kein Locking
	9.2.2. Grobes Locking
	9.2.3. Feines Locking
	9.2.4. CAS (Lock-Free)

	9.3. JOMP
	9.4. JOMP Architektur
	9.4.1. Mandelbrot-Berechnung mit JOMP

	10. Glossar
	11. Verzeichnisse
	11.1. Tabellenverzeichnis
	Abbildungsverzeichnis
	Code Listings
	Index

