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1. Management Summary

Dieses Dokument beinhaltet eine umfassende Analyse der in [2] erhaltenen Messresultate. Das Do-
kument ist dabei in die folgenden Bereiche gegliedert:

e Testcases Prioritaten (siehe Kapitel 5)
e Testcases Affinitat (siehe Kapitel 6)
e Testcases Skalierung (siehe Kapitel 7)

Im Bereich der Prioritaten (siehe Kapitel 5) wurde die Abbildung von Java Thread-Prioritaten auf Win-
dows XP Basisprioritdten ebenso untersucht wie deren Auswirkung auf das Scheduling-Verhalten. Wir
konnten feststellen, dass die Abbildung linear erfolgt. Ausserdem Uberlappen sich die Bereiche zweier
benachbarter Prozessprioritatsklassen. Weiter konnten wir beweisen, dass alleine die aus Prozesspri-
oritétsklasse und der Thread-Prioritét abgeleitete Basisprioritat fir das Scheduling relevant ist. Das
reine Prioritatsscheduling von Windows XP konnte ebenfalls durch die Simulation verschiedener Last-
stufen mit variierenden relativen Basisprioritaten bewiesen werden. Ein Thread mit niedriger Basispri-
oritat bekommt nur dann Rechenzeit, wenn in einer hoéheren Basisprioritdt keine rechenbereiten
Threads mehr vorhanden sind.

Im Kapitel 6 werden die Auswirkungen der Definition von Affinitatsmasken analysiert. Die Ergebnisse
zeigen klar, dass durch eine Affinititsmaske verhindert werden kann, dass ein Prozess oder dessen
Threads bestimmte CPUs verwenden. Dies vermindert aber in den allermeisten Fallen nur die maxi-
male Skalierung auf der Hardware. Das setzen eines ,ldeal-Prozessor” tiber die Windows API konnten
wir auf Java-Ebene nicht testen. Dies wére aber moglicherweise die bessere Methode als harte Affini-
taten da im Bedarfsfall trotzdem auf ,nicht-ideale” Prozessoren ausgewichen werden kann was bei
einer gesetzten Affinitdtsmaske nicht mehr méglich ist.

Die restlichen Testcases befassen sich mit der Thread-Skalierung (siehe Kapitel 7). Wir konnten bele-
gen, dass Java-Threads unter Windows XP 1:1 auf Kernel-Threads abgebildet werden und somit eine
parallele Abarbeitung auf mehreren Recheneinheiten durch den Betriebssystem-Scheduler méglich
wird. Anschliessend wurde die Skalierung der Thread-Anzahl durch Messungen mit 1, 2, 8, 32, 128
und 512 Threads jeweils mit einem oder zwei Prozessoren durchgefuhrt. Die Messungen haben ge-
zeigt, dass die Anwendung anndhernd linear mit der Anzahl der Threads skaliert (ohne Synchronisie-
rung). Mit zugeschalteter Synchronisation konnte stieg offenbar der Verwaltungsaufwand was auf
einem Single-CPU System zu einem Performance-Einbruch bei einer hohen Thread-Anzahl fiihrte.
Das Dual-CPU System zeigte sich davon deutlich weniger beeindruckt. Auf beiden Systemen liess
sich durch Optimierung der Synchronisierung (lock partitioning / lock striping / CAS) die Skalierung
wieder bis zur annahernden Linearitéat verbessern.

Die Ergebnisse sprechen eine deutliche Sprache. Um parallele Hardware optimal nutzen zu kénnen
ist eine Verteilung von aufwandigen Berechnungen auf mehrere Threads unverzichtbar. Bei entspre-
chender Programmierung kann die Anzahl der Threads dabei auch ohne Performance-Einbriiche
massiv hoher liegen als die Anzahl verfiigbarer CPUs. Hier ist allerdings eine durchdachte Architektur
unabdingbar. Bei unglucklicher Verwendung von Locks kann schnell ein Teil der gewonnenen Perfor-
mance durch Blockierungen zunichte gemacht werden. Allgemein gilt aber, dass durch die Verwen-
dung von Threads auf Multi-CPU Systemen eine Vervielfachung der Rechenkapazitét erreicht werden
kann und auf Single-CPU Systemen kaum zu Nachteilen fuihrt (bei geschickter Synchronisierung).
Optimal ist hierbei natirlich eine Architektur, welche eine variable Anzahl Threads erlaubt um die An-
wendung optimal auf die Hardware anzupassen.
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3. Dokumentinformationen

3.1. Referenzierte Dokumente

Tabelle 1 Referenzierte Dokumente

Referenz

Beschreibung

(1]
(2]
(3]
(4]

Basisanalyse

Software Test Document (STD)

Software Design Document (SDD)

Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1

3.2. Definitionen und Abklrzungen

Tabelle 2 Abkiirzungen

Abkirzung Beschreibung

AMD Advanced Micro Devices

API Application Programming Interface

CAS Compare And Swap / Compare And Set
CPU Central Prozessing Unit (Hauptprozessor)
HDTV Hight Definition Television

JOMP Java OpenMP

TBB Thread Building Blocks

3.3. Links

Tabelle 3 Links

Referenz Beschreibung
[CODEANALYST] AMD CodeAnalyst: http://developer.amd.com/cawin.jsp
[PARALLELSKAL] Microsoft, Verwenden der Parallelitét fiir Skalierbarkeit:

http://www.microsoft.com/germany/msdn/library/net/ .|

VerwendenDerParallelitaetFuerSkalierbarkeit.mspx
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4. Einleitung

Dieses Dokument bietet Platz fur Schlussfolgerungen, Interpretationen, weiterfihrende Erklarungen
und in gewissen Fallen eventuell Spekulationen. Hierbei geht es im Wesentlichen um eine erweiterte
Betrachtung der festgehaltenen Testresultate in [2].

Das Dokument ist nach den Haupteinflussbereichen der Prioritat, Affinitat und Skalierung gegliedert.
Ziel ist es fur jeden Bereich Aussagen Uber markante Messwerte und deren Einfluss auf die Praxis der
parallelen Programmierung herauszuheben. Dabei wird versucht die Hintergriinde der Messergebnis-
se zu beleuchten um die Zusammenhange besser verstehen zu kénnen.

Wo dies moglich und sinnvoll ist werden entsprechende Empfehlungen zur Implementierung gegeben
sowie Hinweise auf mdgliche Probleme festgehalten.
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5. Testcases Prioritaten

Die Testcases 3, 4, 5 und 6 geben einen Einblick in die Prioritatsverwaltung von Java Threads unter
Windows XP. Die durchgefiihrten Tests legen die Wirkung der Java Thread-Prioritaten auf allen Ebe-
nen offen. Dies schliesst die Offenlegung der Abbildung von Java-Prioritdten auf Kernel-Prioritaten
ebenso ein wie die Analyse des Programmverhaltens unter verschiedenen Prioritats- und Laststufen.

5.1. Interpretation Testcase 3

Hier zeigt sich ein sehr interessantes Bild bei der Abbildung der Java Thread Prioritaten auf Win32
Prioritaten. Wie in [1] (Kapitel 6) erwahnt veraltet Windows XP sieben Thread Prioritaten (I1DLE, LO-
WEST, BELOW_NORMAL, NORMAL, ABOVE_NORMAL, HIGHEST, TIME_CRITICAL). Java verwendet ein
Modell mit 10 Prioritatsstufen (1 bis 10). Diese werden aber nicht mathematisch auf die 7 Win32
Thread Prioritaten abgebildet sondern nur auf deren 5. Dies fuhrt dazu, dass mehrere Java-Prioritaten
auf die gleiche Win32 Prioritat abgebildet werden. So bekommen Threads mit der Java-Prioritéat 5 und
6 dieselbe Win32 Basisprioritat von 8.

Des Weiteren heisst dies fiir Java Threads, dass die Prioritaten IDLE und TIME_CRITICAL nicht
ausgewahlt werden kénnen. Der Bereich der damit erreichbaren Win32 Basisprioritaten erstreckt sich
somit von 6 bis 10. Um hohere bzw. tiefere Werte erreichen zu kénnen muss die Prioritatsklasse des
Prozesses verandert werden. Mehr dazu unter Interpretation Testcase 4.

5.2. Interpretation Testcase 4

Tabelle 4 Bereich der Basisprioritaten in Abhangigkeit der Prozessprioritatsklasse

Process priority Class Tiefste Basisprioritat Hochste Basisprioritat
IDLE_PRIORITY_CLASS 2 6
BELOW_NORMAL_PRIORITY_CLASS 4 8
NORMAL_PRIORITY_CLASS 6 10
ABOVE_NORMAL_PRIORITY_CLASS 8 12
HIGH_PRIORITY_CLASS 11 15
REALTIME_PRIORITY_CLASS 22 26

Der Bereich der Prozessprioritditen HIGH und REALT IME liegt Gberproportional Giber dem Bereich der
anderen Prioritaten. Es ist keine Uberlappung bei der Prozessprioritat REALT IME mdglich. Somit kann
kein Thread im Prozesskontext mit einer tieferen Prioritdt eine hohere Einstufung erreichen als ein
Thread im Prozesskontext eines REALT IME Prozesses.

Uber die Java-API ist es nicht moglich die Prozessprioritaten zu beeinflussen. Diese wird also ohne
Anderung von aussen auf NORMAL festgesetzt. Allerdings kann mittels der Thread-Prioritat eine Basis-
Prioritét erreicht werden, die der Standardprioritat von ABOVE_NORMAL bzw. BELOW_NORMAL ent-
spricht. Die Basisprioritéat kann im Bereich von 6 bis 10 angepasst werden. Die Basisprioritat 6 ent-
spricht der Standardprioritat fir Threads in einem Prozesskontext mit der Prioritat BELOW_NORMAL.
Die Basisprioritat 10 entspricht der Standardprioritét fir Threads in einem Prozesskontext mit der Prio-
ritdt ABOVE_NORMAL.
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5.3. Interpretation Testcase 5

Wie unter Interpretation Testcase 4 beschrieben gibt es aufgrund der Uberschneidungen bei den Prio-
ritdten mehrere Mdglichkeiten auf dieselbe Basisprioritat zu kommen. Im Test wird das Verhalten ei-
nes Threads mit der Java-Prioritat 5 im Kontext eines Prozesses mit der Prioritatsklasse NORMAL dem
Verhalten eines Threads mit der Java Prioritdt 2 im Kontext eines Prozesses mit der Prioritatsklasse
ABOVE_NORMAL gegenubergestellt. Beide Male resultiert eine effektive Basisprioritdt von 8. Siehe
dazu auch die in Testcase 4 erstellte Prioritatstabelle.

Der Versuch hat gezeigt, dass im Endeffekt nur die Basisprioritdt das Scheduling Verhalten beein-
flusst. Threads eines Prozesses mit héherer Priority Class werden bei gleicher Basisprioritat nicht
bevorzugt behandelt.

Fir den Programmierer heisst dies, dass die Anhebung der Prozessprioritéat nicht unbedingt in einer
héheren Prioritatsstufe (Basisprioritat) als die Threads eines Prozesses mit tieferer Prozessprioritét
resultieren muss. Falls die Threads des Prozesses mit tieferer Prioritatsstufe die hdchstmégliche Ba-
sisprioritat besitzen kann diese durchaus héher sein als die Standardprioritéat der Threads im Prozess-
kontext des hoher priorisierten Prozesses.

Schén zu sehen ist auch, dass die konsumierte CPU-Zeit bei allen Messungen konstant bleibt (unab-
hangig von der Laststufe). Dies erscheint auch logisch, da die CPU-Zeit nur die Anzahl ,verbrauchter”
CPU-Zyklen widerspiegelt. Die Berechnung des Bildes ist immer gleich aufwandig und bendtigt eine
konstante Anzahl Prozessor-Zyklen. Abhangig von der Anzahl Kontextwechsel oder anfallendem Lo-
cking bzw. 1/0 Wait kann die CPU-Zeit leicht schwanken, sollte sich aber nicht im Bereich von Fakto-
ren andern.

5.4. Interpretation Testcase 6

Hier wurden Vergleiche mit unterschiedlicher (resultierender) Basisprioritat angestellt (bei gleich blei-
bender Prozess-Prioritat). Die Versuche wurden jeweils mit der Basisprioritat 6 bzw. 8 unter verschie-
denen Laststufen (keine Last, 1 Thread mit Basisprioritdt 8 sowie 2 Threads mit Basisprioritt 8)
durchgefuhrt.

Windows arbeitet mit einem reinen Priority-Scheduling. Dies bedeutet, dass Threads einer tieferen
Prioritatsstufe nur dann Rechenzeit bekommen, wenn kein Thread einer héheren Prioritatsstufe re-
chenbereit ist.

Daraus resultiert, dass ohne Last in hdheren Prioritatsstufen die gesamte Rechenzeit auch an tiefer
priorisierte Threads verteilt wird.

Die im Test verwendete Last besteht aus einem einzigen Calculator-Thread. Bei tiefer Last wird ein
einziger Calculator Thread gestartet der sich auf einer CPU konzentriert. Somit bleibt die zweite CPU
fur die Java-Anwendung frei. Aus diesem Grund entspricht die Laufzeit einem Single-CPU Testlauf.

Im Falle einer grossen Last (2 Calculator, 2 Threads) werden beide Threads auf die verfiigbaren
CPUs verteilt wobei keine Rechenzeit fiir die Berechnung mit tieferer Basisprioritat zur Verfligung
gestellt wird. Im Test wird der Java-Berechnung nur CPU Zeit zugewiesen wenn der Calculator-
Thread nicht rechenbereit ist (z.B. blockiert bei I/O Zugriffen).

Bei hoherer, relativer Prioritdt der Java-Berechnung bezogen auf die Last tritt genau der gegenteilige
Fall ein. Die Calculator-Threads bekommen nur dann Rechenzeit, wenn die Threads der Java-
Berechnung nicht rechenbereit sind (z.B. blockiert durch 1/O Operationen).

2006-11-16
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5.5. Empfehlungen

Auf Ebene Java kann der Programmierer nur innerhalb der 10 Java Prioritaten Einfluss auf die Basis-
prioritdt nehmen. Generell eignen sich diese Prioritaten gut um innerhalb der eigenen Anwendung
Priorisierungen vorzunehmen. Global gesehen ist der Einsatz aber schon deutlich eingeschrankt da
die Einsatzumgebung auf einem Desktop-Rechner unbekannt ist. Das heisst, dass haufig weder die
Anzahl weiterer Prozesse und Threads sowie deren Rechenzeit-Bedarf oder gar deren Prioritaten
bekannt sind.

Java arbeitet beispielsweise bereits automatisch mit verschiedenen Prioritaten. So haben Daemon
Threads fir interaktive Elemente wie die Ereignisverwaltung fiir GUIs bereits eine Java-Prioritt von 6
um eine schnelle Reaktion auf Benutzeraktionen zu erlauben. Leider belegt unser Prioritats-Mapping
aus Testcase 4, dass sowohl die Java Prioritdt 5 und 6 auf die selbe Basisprioritat abgebildet werden.
Deshalb scheint diese Konfiguration unter Windows keinen Einfluss zu zeigen. Unter Windows ist es
also empfehlenswert aufwandige Berechnungen, welche die Reaktionsgeschwindigkeit des GUIs nicht
beeinflussen sollen, in Threads mit der Java-Prioritat von 4 oder geringer zu verlagern. Der Nachteil
dieser Methode liegt dann natirlich darin, dass diese Threads die Basisprioritdt von 7 oder geringer
bekommen und somit auch im Konkurrenzkampf mit anderen Anwendungen (Standard-Basisprioritat:
8) das Nachsehen haben.

2006-11-16
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6. Testcases Affinitat

Testcase 7 befasst sich mit der manuellen Konfiguration einer Affinitatsmaske Uber ein externes Sys-
tem-Tool und deren Auswirkungen auf die Skalierung. Dabei werden die Auswirkungen sowohl mit als
auch ohne simulierte externe Last analysiert.

6.1. Interpretation Testcase 7

Ohne Affinitat kdbnnen alle Threads auf alle verfliigbaren CPUs verteilt werden. Das System (Windows
XP) strebt eine gleichméssige Auslastung aller Rechnwerke an. Bei zwei CPUs und einem einzigen
Thread bedeutet dies, dass Windows versucht auf beiden CPUs 50% der Berechnungen durchzufiih-
ren. Dabei wird der Threads von CPU zu CPU verschoben (Time-Slicing):

C:AWINDOWSvspstem32hcalc. exe

Abbildung 1 Verteilung einer Single-Thread Anwendung auf zwei CPUs

Die Abbildung wurde vom AMD CodeAnalyst [CODEANALYST] erstellt und zeigt die Verteilung einer
Anwendung mit einem einzigen Thread auf zwei CPUs. Die daraus resultierende CPU-Gesamtlast
betragt 50%. Die Anwendung lauft dadurch genau so schnell wie wenn nur ein einziger CPU zur Ver-
fugung stehen wiirde.

Bei gleich vielen Threads wie CPUs kdnnen alle CPUs ausgelastet werden:

7\

C:\javalj2ze‘bin\java_exe

AbBiIdung 2 Verteilung von zwei Threads auf zwei CPUs

Auch diese Abbildung wurde mit dem AMD CodeAnalyst erstellt und zeigt unsere Mandelbrot-
Applikation bei der Arbeit. Interessant ist hierbei insbesondere, dass der Windows Scheduler hier of-
fenbar trotzdem versucht jeden Thread auf jeder CPU auszufiihren. Dies zeigt sich daran, dass die
Threads offenbar zeitweilig ihre ,Platze* tauschen und auf dem anderen CPU weiterarbeiten. Dies
erklart auch die massiv héhere Anzahl Kontextwechsel auf Multi-CPU/Multi-Core Systemen, die wir in
Testcase 1 (siehe Kapitel 7.2) ermittelt haben. Trotzdem betragt die CPU Gesamtlast hier zu jedem
Zeitpunkt 100% da beide Prozessoren zu jedem Zeitpunkt mit Berechnungen beschéftigt sind.

Beim setzen einer Prozessaffinitat wird diese auch an die Threads weitervererbt. Durch die Affinitét
werden die Threads dieses Prozesses auf die ausgewahlten CPUs konzentriert. Diese kénnen nun
nicht mehr auf einen nicht explizit zugewiesenen Prozessor wechseln. Dies bedeutet auch, dass ein
Thread auf einer bereits ausgelasteten CPU nicht auf einen alternativen Prozessor ausweichen kann.
Nur Threads ohne Affinitdt kénnen durch den Scheduler beliebig auf andere CPUs verteilt werden.
Dies belegt die nachste Grafik:

C:\java\j2zetbin\java_exe

core (]

2908 care 0
u:u:ure'l! . I I ! ! ! . - - “ ._I
Abbildung 3 2 Threads mit gesetzter CPU Affinitat auf CPUO, ohne Last
Die zwei rechnenden Threads der Mandelbrot Anwendung konkurrieren nun um CPU1, da durch die
Affinitditsmaske der Wechsel auf CPUO unterbunden wurde. Derselbe Effekt tritt ein, wenn die Anwen-
dung nicht alleine um CPUL konkurriert. In Testcase 7 haben wir zusétzlich noch einen Calculator

ohne Affinitat laufen lassen. Dieser hat nun unserer Mandelbrot Applikation einzelne Zeitscheiben auf
CPU1 weggenommen (obwohl CPUO frei gewesen ware). Erst die manuelle Festlegung der Affinitat
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des Calculators auf die freie CPU sorgte dafiir, dass diese beide voll ausgelastet wurden und unsere
Anwendung eine fiir sich alleine hatte.

Durch die Definition von komplementaren Affinititsmasken lassen sich mehrere Prozesse auf unter-
schiedliche CPUs verteilen. Die Last kann so gezielt konzentriert werden. Dabei muss aber beachtet
werden, dass weitere Prozesse (ohne bzw. mit der gleichen Affinitdtsmaske) auch um die verfiigbaren
Prozessoren konkurrieren kdnnen. Ausserdem ist eine Ubliche Umgebung nicht dermassen Uber-
schaubar wie unsere Testumgebung. Die manuelle Festlegung der Affinitaten funktioniert nur dann so
gut, wenn die laufenden Anwendungen und Threads bekannt sind. Dynamisch gestartete Dienste oder
Anwendungen mussten dabei ihre Affinitditsmaske selber setzen oder sie musste bei jedem start ma-
nuell neu gesetzt werden. Ausserdem ist so nur eine 100% Auslastung zu erreichen wenn beide An-
wendungen jeweils eine ganze CPU auslasten kénnen. Wirde der Calculator nur 20% der CPU-Zeit
einer CPU bendtigen, dann kénnten auch die restlichen 80% nicht von der Mandelbrot Anwendung
genutzt werden, da dieser der Wechsel aufgrund der Affinitatsmaske nicht mehr erlaubt ist.

6.2. Emfehlungen

Affinitditsmasken machen unserer Meinung nach nur ganz selten Sinn. Normalerweise nimmt man
dem System dadurch lediglich die Mdglichkeit das volle Potential der Hardware zu nutzen. In unserem
Fall wurde die maximal verfigbare CPU-Leistung fir unsere Mandelbrot-Applikation auf 50% einge-
schréankt. Dabei mussen diese 50% zusatzlich noch mit anderen Prozessen/Threads von anderen
Applikationen geteilt werden. Im schlimmsten Fall kann es passieren, dass der zugewiesene Prozes-
sor ausgelastet ist und eine freie CPU aufgrund der Affinititsmaske nicht genutzt werden kann.

In diesem Rahmen mdéchten wir nochmals auf die in der Win32 API vorhandene Mdglichkeit einen
sldeal-Processor” zu definieren verweisen. Diese AP| ermdglich es dem Betriebssystem mitzuteilen
auf welchem Prozessor die Applikation Idealerweise laufen soll. Ist die ideale CPU dabei gerade nicht
verfugbar so wird die Anwendung aber auch auf einen ,nicht-idealen“ (alternativen) Prozessor verla-
gert. Dies ist immer noch die bessere Mdglichkeit als die Anwendung warten zu lassen. Frei nach dem
Motto ,eine langsame Ausfuihrung ist besser als gar keine®“. Die Mdglichkeit einen idealen Prozessor
zu definieren kann insbesondere bei NUMA (siehe Erklarung in [1]) Systemen einen Performance-
Zuwachs ergeben, da der ideale Prozessor auf solchen Systemen Ublicherweise derjenige ist, auf
dem die verwendeten Daten lokal verfiigbar sind. Mangels der Unterstiitzung dieser API in Java konn-
ten wir dies nicht naher testen. Sinnvoll ware hier ein Vergleich der Remote-Memory Zugriffe mit bzw.
ohne gesetzte ,ldeal-Processor’ Maske bei einer speicherintensiven Anwendung. Der AMD CodeAna-
lyst (siehe [CODEANALYST]) kann hier bei der Analyse helfen. In Abbildung 1 sind deutlich rote Mar-
kierungen zu erkennen. Diese markieren laut CodaAnalyst ,Non-Local Memory Access” und stellen
somit ein Optimierungspotential dar.

2006-11-16



Diplomarbeit Seite 12

7. Testcases Skalierung

In diesem Kapitel werden die Testcases diskutiert, welche die direkte Analyse der Skalierung zum Ziel
haben. In Testcase 2 werden die zur Thread-Skalierung notwendigen Analysen zur Abbildung von
Java-Threads auf Kernel-Threads gemacht. Testcase 1 analysiert dann ob die Threads auch wirklich
auf mehrere Prozessoren verteilt werden kdnnen. In Testcase 8 und 9 der Einfluss einer variierenden
Anzahl Threads auf die Skalierung jeweils ohne Locking bzw. mit verschiedenen Locking-Techniken
untersucht.

7.1. Interpretation Testcase 2

Die Ergebnisse dieser Testreihe sind eindeutig und belegen eine 1:1 Abbildung von Java-Threads auf
Win32 Threads. Das heisst, dass fur jeden Java-Thread ein entsprechendes aquivalent auf im Be-
triebssystem-Kernel existiert. Dass selbst bei null (0) selbst erzeugen Worker-Threads eine gewisse
Anzahl Threads existieren (in unseren Beispiel 13) liegt an der internen Architektur. Auch das Haupt-
programm (main()) lauft innerhalb eines Threads ab. Die anderen Threads sind im Hintergrund lau-
fende Daemon-Threads wie beispielsweise die Garbage-Collection oder Threads zur GUI Ereignisbe-
handlung. Die Anzahl der Daemon-Threads kann von Anwendung zu Anwendung variieren. So kann
die Verwendung von JVM Klassen zur Erzeugung weitere Daemon-Threads fuhren. Beispielsweise
fuhrt erst die Instanzierung von GUI-Klassen zur Erzeugung von Threads zur Ereignisbehandlung.

Es ist aber ganz klar zu sehen, dass jeder erzeugte Java-Thread auch im Kernel abgebildet wird. Die
Sun Java HotSpot VM 1.5 arbeitet hier also mit einer 1:1 Abbildung. Anhand der gleich bleibenden
Prozess-ID (PID) kann auch erkannt werden, dass die Anwendung wéhrend des Tests nicht neu ge-
startet wurde. Die Threads wurden also zur Laufzeit erstellt.

Offensichtlich scheint auch ein Grenzwert zu existieren. Auf unserem System (Windows XP Pro 32
Bit, Sun HotSpot 1.5 VM, 4GB RAM) lag diese Grenze bei 7146 Threads. Jeder weitere Thread fiihrte
zu einer ,Out of Memory Execption* und zwar unabhangig von einem eventuell vorhandenen —Xmx
Parameter um mehr maximalen Speicher fiir den Heap zu erlauben.

7.2. Interpretation Testcase 1

Die Berechnungsdauer liess sich auf unserem Multi-Prozessor System durch den Einsatz von zwei
Threads auf die halfte reduzieren. Eine Single-Threaded Anwendung hétte hier also hur maximal 50%
der vorhandenen Rechenleistung genutzt.

Auf den ersten Blick mag es verwirrend sein, dass die CPU-Zeit weder von der Anzahl Threads noch
von der Anzahl CPUs abhéangig ist und konstant bleibt. Dies ist aber nur logisch, da der Berechnungs-
aufwand fir das gesamte Bild bei jedem Testdurchlauf identisch ist. Der Aufwand wird bei 2 CPUs
und 2 oder mehr Threads lediglich auf zwei Rechenwerke verteilt. Die Zusammenhénge werden etwas
klarer, wenn man die aktuell verbrauchte CPU-Zeit in einem Tool wie dem Task Manager oder dem
Process Explorer anzeigt. Dort zahlt die Spalte CPU-Zeit namlich doppelt so schnell hoch bei zwei
CPUs und zwei Threads. Pro Sekunde werden also 2 Sekunden CPU-Zeit ,verbraucht®.

Ein interessanter Aspekt ist auch die Anzahl der Kontextwechsel. Diese steigen namlich auf unsererer
2 CPU Maschine sprunghaft an und dies unabhangig davon ob 1 oder 2 Threads verwendet werden.
Wie im Kapitel 6 erwahnt versucht Windows durch standiges weiterreichen der Threads auf alle ver-
fugbaren CPUs eine gleichméssige Auslastung zu erreichen. Auf unserem System fuhrt dies dazu,
dass bei der Verwendung von nur einem einzigen Thread beide CPUs nahezu exakt 50% ausgelastet
werden (resultierende Gesamtlast: 50%). Die andauernden CPU Spriinge filhren zu der erhéhten
Anzahl Kontextwechsel.

Auch wir dachten zuerst, dass bei der Verwendung von 2 Threads die Kontextwechsel zuriickgehen
wirden, da es kaum Sinn macht zwei rechenbereite Threads untereinander abzutauschen. Wie in
Kapitel 6 aber ebenso zu sehen ist werden zwei Thread teilweise trotzdem untereinander ausge-
tauscht und laufen auf dem jeweils anderen CPU weiter.
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Selbst nach langeren Online-Recherchen konnten wir noch keinen Kernel-Parameter finden um die-
ses Verhalten zu beeinflussen. Grundsatzlich scheint eine erhéhte Anzahl Kontextwechsel aber auch
keinen merklichen Einfluss auf die Performance zu haben. Weder die Berechnungsdauer noch die
bendtigte CPU-Zeit steigen dadurch merklich an. Lediglich NUMA (siehe Erklarung in [1]) Systeme
koénnten durch dieses Verhalten negativ beeinflusst werden da so im Schnitt 50% der Speicherzugriffe
auf Remote-Speicher durchgefiihrt werden miissen was zu einer erhéhten Buslast fihren kann.

7.3. Interpretation Testcase 8

Testcase 8 hat gezeigt, dass bei Einzelprozessorsystemen die Anzahl Threads keine nennenswerte
Rolle spielt sofern keine Synchronisation stattfinden muss. Die Berechnungszeit verandert sich zwi-
schen einem und 512 Threads kaum. Die Schwankungen gehen in der Messungenauigkeit unter.

Bei zwei CPUs sieht das Resultat nicht viel anders aus. Weder die CPU Zeiten noch die Berech-
nungszeit verandern sich messbar. Lediglich zwischen der Konfiguration mit einem bzw. zwei Threads
ist eine Halbierung der Berechnungszeit feststellbar. Dies liegt darin begriindet, dass die Aufgabe nun
auf beide Prozessoren verteilt wird. Die Gesamtauslastung steigt dabei von 50% (1 Thread, 1 CPU
ausgelastet) auf 100% (2 Threads, 2 CPUs ausgelastet). Auch hier scheint der zusatzliche Verwal-
tungsaufwand von bis zu 512 Threads keinen nennenswerten Einfluss auf die Berechnungszeit zu
haben. Zu beachten ist hierbei aber auch, dass die Messungen ohne Synchronisierungsaufwand ge-
macht wurden. Tests mit Synchronisierung folgen in Testcase 9 (siehe auch Kapitel 7.4).

Die Frage wo hier die optimale Anzahl Threads liegt ist nicht einfach zu beantworten. In unserem Bei-
spiel kdnnen bereits zwei Threads beide CPUs voll auslasten. Sind diese aber beispielsweise teilwei-
se durch I/O Operationen blockiert kann es sinnvoll sein, dass die Anzahl Threads héher gewahlt wird
als die Anzahl CPUs. Dazu kann die folgende Formel aus [PARALLELSKAL] helfen:

NumThreads = NumCPUs / (1 — BP)

Wobei BP den Prozentsatz der Zeit darstellt in dem die Threads blockiert sind (Blocked-Percentage).
Verbringen die Threads also 25% im blockierten Zustand so kann es bei einem 2 CPU System sinn-
voll sein 3 Threads (2/(1-0.25) = 2.66) einzusetzen.

Leider ist diese Formel nur bedingt praxistauglich da einerseits der Prozentsatz der Blockierten Zeit
haufig nicht so einfach vorhersehbar ist und andererseits der Grad der tatsachlich verfiigbaren paralle-
len Einheiten nicht einbezogen wird. Bei HyperThreading CPUs stehen nicht alle Prozessorteile mehr-
fach zur Verfugung. Dies fuhrt unter Umstéanden zu weiteren Blockierungen. Auch kann der Einsatz
weiterer Threads die Speicherbandbreite weiter belasten und zu langerer Blockierung der Threads
fuhren.

Klar ist aber, dass durch fehlende Parallele Verarbeitung schlicht nur 1/AnzahlCPUs Prozent der
verflgbaren Kapazitat genutzt werden kann. Bei unserem 2 CPU System kann ohne Parallelisierung
somit nur 50% der Gesamtleistung genutzt werden.

Die oben stehende Formel bestatigt im umgekehrten Sinne auch, dass nie weniger Threads als CPUs
verwendet werden sollten um eine optimale Skalierung zu erreichen (Angenommene Blockierung:
0%). Dieser Fall entspricht auch ziemlich genau unserer Testreihe ohne Synchronisierung.
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7.4. Interpretation Testcase 9

7.4.1. Methodensynchronisation

Hier haben wir wie in [3] beschrieben eine Methodensynchronisation verwendet um die Auswirkungen
von langen Synchronisierungsbereichen zu zeigen. Der Nachteil liegt hier darin, dass nur ein Thread
einen Pixel schreiben kann und alle anderen warten miissen bis der schreibende damit fertig ist. Da-
durch wird der Bereich der Synchronisation relativ lang und die Threads treten haufig in die Region ein
und verlassen diese wieder (bei jedem Pixel einmal). Bei den tber 700'000 Schreibzugriffen fir ein
gesamtes Bild (1016x718 Pixel) durfte der Aufwand fiir das Locking spirbar werden. Zur Erinnerung
hier nochmals die synchronisierte Methode (aus [3]):

public synchronized void setRGB(int startX, int startY, Int w,
int h, Int[] rgbArray, int offset, int scansize) {
count++;
super.setRGB(startX, startY, w, h, rgbArray, offset, scansize);

}

Listing 1 Methodensynchronisation

Nachfolgend die Ergebnisse:

Skalierung - 1 CPU/2 CPU mit 1...n Threads (mit Synchronisation)
Methodensynchronisation

1.80 A a1
/ 1.82 1.80 -

' 1.76
.

1.62

1.30 1.30
1.20

1.00 1.00
1.14 119

1.01 1.09
100 1.00
0.80 0.80
0.56 0.59 0.61

0.51
0.30 0.30
1 2 8 32 128 512
—— Berechnungszeit (1 CPU) —a— Berechnungszeit (2 CPU)
—m— CPU-Zeit (1 CPU) —A— CPU-Zeit (2 CPU)

Abbildung 4 Skalierung 1 CPU/2 CPU mit Methodensynchronisation

Erstaunlich ist der unterschiedliche Verlauf zwischen 1 und 2 CPU Konfiguration. Auf dem Einzelpro-
zessorsystem zeigt sich das erwartete Verhalten. Je mehr Threads um den Lock konkurrieren (lock
contention) umso mehr Verwaltungsaufwand fallt an. Dieser belastet die CPU zusatzlich und lasst
sowohl die CPU-Zeit als auch die Berechnungszeit sprunghaft ansteigen. Auf der Dual-CPU Konfigu-
ration zeigt sich der Verlauf aber weitgehend unbeeindruckt vom zusétzlichen Aufwand und das ob-
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wohl hier eigentlich aufgrund der tatsachlich parallelen Verarbeitung haufiger konkurrierende Lock-
Anfragen zu erwarten sind.

Eine eindeutige Erklarung daftr konnten wir leider noch nicht finden. Sicher ist aber, dass bei zwei
Prozessoren die Wahrscheinlichkeit, dass ein Thread der den Lock gerade halt und unterbrochen
wurde wieder Rechenzeit erhalt, doppelt so hoch ist. Die Folgende Grafik zeigt den logischen Arbeits-
ablauf der Threads und das Scheduling:

1CPU 2 CPUs
Worker . Worker .
Sonstige Sonstige
szt [ Berechnung szt [ Berechnung
Worker A Worker -
Sonstige Sonstige
jlihread [ Berechnung jlihread [ Berechnung
Worker : Worker ;
Sonstige Sonstige
jlihread Berechnung jlihread Berechnung
Worker ; Worker ;
Sonstige Sonstige
UliEze Berechnung UliEze Berechnung

Abbildung 5 Thread-Abarbeitung

Die Grafik zeigt ein simples Round-Robin Scheduling. Ist nur ein CPU verflgbar wird dieser jedem
einzelnen Thread in Reihenfolge zugewiesen. Im unginstigsten Fall wird der erste Thread im Kkriti-
schen Bereich unterbrochen und behélt somit den Lock. Die folgenden Threads erhalten dann nach-
einander die Rechenzeit, werden aber spéatestens beim Eintritt in den kritischen Bereich blockiert. Sind
alle Threads durchlaufen bekommt der erste wieder einen Zeitschlitz. Verlasst dieser dann den kriti-
schen Bereich bis zum Ende des Zeitschlitzes nicht, so bekommen wieder alle Threads einen Zeit-
schlitz und dies nur um zu prifen ob der Lock frei ist um dann gleich wieder zu blockieren. Angenom-
men wir arbeiten mit 512 Threads so wird in diesem Fall 511 Mal gepruft ohne, dass ein Thread wirk-
lich weiterkommen wiirde.

Im Fall von 2 CPUs kann logisch von einer Zweiteilung der Threads ausgegangen werden. Ein Thread
bekommt also durchschnittlich doppelt so haufig einen Zeitschlitz und verlasst den kritischen Bereich
deshalb potentiell schneller. Dabei ist zu beachten, dass bei der vorliegenden Methodensynchronisa-
tion der kritische Bereich nicht wie die Threads in zwei logischen Gruppen gesehen werden kdnnen.
Befindet sich einer der vier abgebildeten Threads im kritischen Bereich so ist dieser fur die verblei-
benden drei Threads gesperrt. Das (ineffiziente) durchprobieren aller Threads ob sie den Lock be-
kommen kénnen kann hier durch die Aufteilung auf zwei CPUs ebenfalls doppelt so schnell gesche-
hen was dazu fiihrt, dass derjenige Thread, der den Lock halt, schneller weitermachen kann um den
kritischen Bereich zu verlassen.

Die Dauer fir die ein Lock gehalten wird ist eine sehr kritische Grésse weil es die Wahrscheinlichkeit
erhoht, dass dadurch andere Threads blockiert werden.
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7.4.2. Lock paritioning

Durch ,lock partitioning” und ,lock striping” (siehe [1]) wird versucht die Locks so aufzuteilen, dass
verschiedene kritische Bereiche entstehen. In Abbildung 1 existiert nur ein Lock fur alle kritische Be-
reiche was einem wechselseitigen Ausschluss zwischen allen Threads entspricht. In unserer Anwen-
dung ware die Verwendung von zwei Locks fiir die obere und untere Bildhalfte denkbar. Somit waren
durchschnittlich nur die halfte der Threads von einem gesperrten Lock betroffen was einer Halbierung
der Blockierungswahrscheinlichkeit entsprechen wirde. Im Beispiel fur die Objektsynchronisation sind
wir noch einen Schritt weiter gegangen und haben einen separaten Lock fiur jeden einzelnen Pixel
erstellt. In diesem Fall schiitzt jeder Lock nur einen einzelnen Pixel vor konkurrierendem Zugriff. Da
nie zwei Threads gleichzeitig auf denselben Pixel schreiben schlagt eine Lock-Anforderung nie fehl.
Anhand der Ergebnisse vermuten wir sogar, dass die Sun HotSpot VM 1.5 diesen Lock bei der Abar-
beitung sogar entfernt da er gar nicht bendétigt wird.

Allerdings haben wir sogar bei diesem ,feinen“ Objektlocking einen globalen Lock eingebaut den die
JVM nicht entfernen kann: Den gemeinsamen Zugriff auf eine Counter-Variable. Hier zur Erinnerung
der verwendete Code:
public void setRGB(int startX, int startY, int w, int h,
int[] rgbArray, int offset, int scansize) {
synchronized (this) {
count++;
}

synchronized (locks[startX][startY]) {
super.setRGB(startX, startY, w, h, rgbArray,
offset, scansize);
}
}

Listing 2 Code fur feines Locking (Objektsynchronisation)

Die Synchronisation auf das this Objekt ist ,global“ und erlaubt auch nur einem einzigen Thread den
Eintritt in diese Region (wie bei der Methodensynchronisation). Allerdings ist dieser Bereich deutlich
kurzer als die Abarbeitung von super.setRGB() die bei der Methodensynchronisation ebenfalls
innerhalb des globalen Sperrbereiches lag. Dies reduziert die Wahrscheinlichkeit, dass zwei Threads
gleichzeitig diesen Lock versuchen zu erhalten, deutlich.

Die Ergebnisse Sprechen fiir sich. Auf Single-CPU Systemen skaliert diese Art des Lockings deutlich
besser. Selbst mit 512 Threads ist keine messbarere Verlangerung der Berechnungszeit mehr zu
verzeichnen. Auf 2 Prozessoren zeigt diese Art der Synchronisation einen &hnlichen Verlauf wie die
Methodensynchronisation. Die bendtigte CPU Zeit steigt bis 512 Threads um 18% und der Skalie-
rungsfaktor Sinkt von knapp 2 auf 1.63. Offenbar ist die feine Synchronisation auf Single-CPU Syste-
men deutlich besser geeignet und fuhrt auf Zweiprozessorsystemen zu keiner Verschlechterung.

7.4.3. CAS

Der letzte Test galt hier dem noch vorhandenen globalen Lock bei der Zahler-Inkrementierung. Diese
wurde nun durch eine CAS (Lock-frei) ersetzt:
public void setRGB(int startX, int startY, int w, int h,
int[] rgbArray, int offset, int scansize) {
// increment counter using a CAS method.
atomicCount. incrementAndGet();
synchronized (locks[startX][startY]) {
super.setRGB(startX, startY, w, h, rgbArray,
offset, scansize);
}
}

Listing 3 Code fur CAS
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Die Methode entspricht der Methode fiir feines Locking. Alleine der globale Lock wird nicht verwendet
(synchronized(this)). An deren Stelle tritt die incrementAndGet() Methode einer Atomicln-
teger Klasse. Die Funktionsweise von CAS kann in [1] nachgelesen werden.

Wie erwartet entspricht das Ergebnis auf einer Single-CPU Maschine dem Ergebnis fur feines Lo-
cking. Weder CPU- noch Berechnungszeit andern sich in Gréssenordnungen die nicht als Messrau-
schen bezeichnet werden kdnnen. Auf einer Mehrprozessor-Maschine trat aber eine Reduktion der
CPU-Zeit und damit auch eine Reduktion der Berechnungszeit bei einer grossen Anzahl Threads ein.
Bei 512 Threads stellte sich sowohl mit Methoden- als auch Objektsynchronisation auf unserer 2-CPU
Plattform eine Erhdhung der CPU-Zeit und daran gekoppelt eine Erh6hung der Berechnungszeit um
rund 20% ein. Mit CAS lag die Erhéhung der CPU-Zeit bei 512 Threads bei niedrigen 5%. In dersel-
ben Gréssenordnung veranderte sich die Berechnungszeit.

CAS hietet hier also bei einer sehr hohen Anzahl Threads eine bessere Skalierung (rund 15% Vorteil).

Zu bemerken ist hier allerdings, dass die Lange der CAS Methode auch hier entscheidend fur die Effi-
zienz derselben ist. In unserem Beispiel besteht die Methode aus wenigen Codezeilen:
public final int incrementAndGet() {
for (G3) {
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
return next;
}
by

Listing 4 CAS incrementAndGet() Methode

Eine Eigenschaft von CAS ist, dass der Algorithmus in einer Schleife durchlaufen wird. Dadurch wird
der Thread nie blockiert. Allerdings kann der Thread die Methode nur beenden, wenn zwischen
get() und compareAndSet() der Wert nicht durch einen anderen Thread verandert wird. Ansons-
ten muss die gesamte schleife erneut durchlaufen werden. Versuche mit unserer Testklasse haben
gezeigt, dass dies bei unserer Architekture mit rund 700'000 Pixel-Schreibvorgangen nur wenige hun-
dert Mal vorkommt. Der Zusatzaufwand durch den Ein- und Austritt bei synchronisierten Bereichen
scheint hier massiv héher zu liegen als die wenigen fehlgeschlagenen compareAndSet() Aufrufe.

Sind die CAS Algorithmen aber langer, dann steigt die Wahrscheinlichkeit, dass zwischen get() und
compareAndSet() der Wert durch einen anderen Thread veréandert wurde. Dies fuhrt zu haufigeren
Neudurchldufen der der Schleife wobei natirlich je nach Komplexitat auch entsprechend mehr CPU-
Zeit reinvestiert werden muss.

In [4] wurden Vergleiche zwischen Java Synchronisierung und CAS durchgefiihrt. Dabei hat sich ge-
zeigt, dass bei geringer bis mittlerer lock contention (konkurrierende Zugriffe) CAS besser skaliert. Bei
sehr hoher lock contention ist aber die Synchronisierung effizienter. Dies hangt damit zusammen,
dass bei hoher lock contention und vielen Threads viele Neudurchlaufe der CAS-Funktion anfallen.
Bei der Synchronisierung fallt dabei ,nur* der Aufwand fir die Lock Anfrage und Lock-Abgabe an.

Bei unserem Beispiel ist der Aufwand fiir ein Neudurchlauf der incrementAndGet() Schleife deut-
lich geringer als die Lock-Priifung beim fein granulierten Locking.
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7.5. Empfehlungen

Als Faustregel sollten alle aufwandigen Berechnungen nach Mdglichkeit auf mindestens so viele
Threads wie verfliigbare CPUs verteilt werden. Dadurch lasst sich im Optimalfall eine Skalierung um
den Faktor n erreichen. Wobei n der Anzahl physikalischer CPUs entsprich. Je nach Haufigkeit und
Dauer von eventuellen Blockierungen kann auch eine hdéhere Anzahl den Skalierungsfaktor erhéhen.
Die Gesamtanzahl sollte aber nicht beliebig gross sein. Einerseits beeintrachtigt dies effizientes Sche-
duling und erhéht die Wahrscheinlichkeit fir die gegenseitige Blockierung. Andererseits existiert auch
ein Grenzwert bei dem in unseren Versuchen eine OutOfMemoryException auftrat (auch bei genu-
gend freiem Speicher). Ein sauberes Applikations-Design mit einer definierten Anzahl von Threads
(z.B. realisiert Uber Worker Pools) ist dringend zu empfehlen.

Der Programmierer muss darauf achten, dass sich die Threads nicht gegenseitig blockieren und zwar
im Sinne von Deadlocks und Synchronisierung. Insbesondere sollte keine unnétige Synchronisation
verwendet werden. Synchronisierte Blocke sollten so kurz wie méglich gehalten werden.

CAS kann haufig dabei helfen den Synchronisierungsaufwand zu verringern. Da CAS Algorithmen
aber schwerer zu implementieren sind wird in [4] sogar empfohlen dies den Experten zu tberlassen.
Allerdings kann durch die Verwendung von CAS-Methoden wie diejenigen der Atomic™* Klassen
CAS verwendet werden ohne den Algorithmus selber implementieren zu missen. In unserem Beispiel
hat sich der Einsatz von Atomiclnteger mit einer 15% besseren Skalierung bezahlt gemacht und
fur eine beinahe lineare Skalierung bis 512 Threads gesorgt.

Die Objektsynchronisation stellt oft einen guten Kompromiss zwischen Methodensynchronisation und
CAS dar. Der Entwickler sollte darauf achten, dass ein Lock-Objekt nach Mdglichkeit fur einen mog-
lichst kleinen Teil der Daten verwendet wird (lock partitioning / lock striping). Insbesondere sollte ver-
mieden werden ein Lock-Objekt fir mehrere Datenobjekte, die nicht zusammen modifiziert werden, zu
verwenden.

Vorsicht: Benétigt eine Methode den Lock auf zwei unterschiedliche Objekte (was durch lock partitio-
ning notig werden kann) besteht die Gefahr von Deadlocks! Beispiel:
public void doSomething() {
synchronized(objectl) {
synchronized(object2) {
objectl.setValue(object2.getValue());
}

}

by
public void doSomethingElse() {
synchronized(object2) {
synchronized(objectl) {
System.out.printIn(obectl + object 2);
}

}
}

Listing 5 Gefahr von Deadlocks bei verschachtelter Synchronisierung

Angenommen ein Thread ruft die Methode doSomething() auf und diese wird vor dem zweiten
synchronized() Block unterbrochen (halt also den Lock auf objectl. Ein zweiter Thread ruft
doSomethingElse() auf, bekommt den Lock auf object2 und wird dann ebenfalls unterbrochen
weil er den Lock auf objectl nicht bekommen kann (wird von einem anderen Thread gehalten). Nun
benotigt jeder Thread eine Ressource, die nur ein anderer Thread freigeben kdénnte. Die Threads be-
finden sich in einem Deadlock.
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7.6. Interpretation Testcase 10

JOMP bietet eine semi-automatische Parallelisierung an. Der Mandelbrot-Algorithmus lasst sich durch
einfigen von JOMP Direktiven im Source-Code relativ einfach parallelisieren. Die Testergebnisse sind
zunéchst vielversprechend. JOMP erzeugt nach dem Setzen der korrekten Thread-Anzahl selbstandig
die bendtigten Worker-Threads und verteilt die for Schleife in gleich grossen Teilen an die Worker.
Die automatische Parallelisierung erzeugt keine messbar grossere CPU-Last als die manuelle Thread-
Verwaltung.

Unsere Messungen haben wir ohne Locking durchgefiihrt um den Fokus auf die Effizienz der JOMP-
Implementierung zu legen.

Die Ergebnisse sind vergleichbar mit den Messwerten der eigenen Thread-Behandlung und skaliert
sowohl mit der Anzahl der Threads als auch auf 1 bzw. 2 CPUs in gleichem Masse wie die manuelle
Implementierung.

Auf den ersten Blick scheint JOMP also eine gute Alternative zu sein bestehende Programme ohne
Multi-Thread Architektur zu parallelisieren ohne grissere Re-Designs in Angriff nehmen zu mussen.

Die Praxis sieht aber leider etwas anders aus. Die JOMP Implementierung birgt (zumindest zum jetzi-
gen Zeitpunkt) noch einige Tiicken. Beispielsweise mussten wir feststellen, dass der JOMP-Compiler
nur dann fehlerfreien Java-Code aus den JOMP-Klassen generiert wenn der Konstruktor alle Parame-
ter in gleichnamige Klassenvariabeln schreibt. Werden die Parameter beispielsweise nur zur Erzeu-
gung von klasseninternen Objekten verwendet lasst sich die von JOMP erzeugte Java-Klasse auf-
grund von Kompilierungsfehlern nicht Gbersetzen.

Auch beim Design der Applikation miissen unter Umstéanden Anderungen vorgenommen werden. So
mussten wir beispielsweise sicherstellen, dass nur eine einzige Instanz der JOMP-generierten Klasse
aktiv ist. Bei mehreren Instanzen treten JOMP-interne Thread Verwaltungs-Fehler auf (Exceptions).

Beim Test ist uns dann aufgefallen, dass der Thread-Join am Ende der parallelen Region offenbar per
Busy-Waiting realisiert wird. Somit bleibt die CPU-Last nach dem Ende der Berechnungen auf 100%.
Diese Tatsache hat auch unsere CPU-Zeit Messungen etwas erschwert. Bei der Verwendung eines
einzigen Threads tritt das ,Problem” nicht auf weil hier keine Verteilung und somit auch kein Join der
Threads stattfindet.

All diese Probleme kénnten auch durch den Beta Status (wir haben Version 1.0 Beta verwendet) er-
klarbar sein. Zum jetzigen Zeitpunkt kénnen wir JOMP aufgrund der erwéhnten Probleme nicht emp-
fehlen. Inshesondere bietet die Java API bereits viele Mdglichkeiten zur Parallelisierung wie bei-
spielsweise Worker Pools, Queues, Locks, Barrieren. Und Latches. Trotzdem gibt JOMP einen guten
Einblick in die OpenMP Programmierung und wir kdnnen uns gut vorstellen, dass OpenMP eine einfa-
che und schnelle Art der Parallelisierung von C/C++ und Fortran Programmen anbietet.
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8. Einsatzgebiete

Nicht alle Anwendungen bieten dieselben Optimierungsmaéglichkeiten und lassen sich so einfach pa-
rallel verarbeiten wie unsere Mandelbrot Testklasse. Da stellt sich nattrlich die Frage wo sich dieser
Aufwand lohnt und wo nicht. Die folgende Tabelle teilt die Anwendungen grob nach Interaktivitat und
Berechnungsdauer auf:

Tabelle 5 Anforderungen an die Verarbeitungsgeschwindigkeit

Interaktiv Nicht interaktiv

Lange Berechnungsdauer ++ +
Kurze Berechnungsdauer - --

Unter den interaktiven Programmen sind dabei beispielsweise typische Desktop Anwendungen wie
Office oder Bildbearbeitung zu verstehen. Zur Kategorie der nicht interaktiven Programme z&hlen im
Hintergrund ablaufende Programme und Dienste.

Es liegt in der Natur des Benutzers, dass er nicht gerne auf die Maschine wartet. Deshalb ist eine
schnelle Bearbeitung insbesondere bei interaktiven Programmen sehr wichtig um fliissiges Arbeiten
zu ermdglichen. Fir nicht-interaktive Programme ist dies weniger wichtig, da diese problemlos auch
Uber langere Zeit laufen dirfen. Wichtig ist bei dieser Unterscheidung, dass einige auf den ersten
Blick nicht-interaktive Anwendungen wie Webserver aus Sicht des Benutzers interaktive Programme
darstellen, da der Benutzer auf das Resultat warten muss.

Trotzdem macht auch fir nicht-interaktive Anwendungen eine Optimierung mit dem Fokus der paralle-
len Verarbeitung haufig sinn um die Effizienz der (teuren) Hardware zu verbessern.

Bei kurzer Berechnungsdauer rechtfertigt eine Optimierung zur parallelen Verarbeitung haufig nicht
den Aufwand. Beispielsweise macht es selten Sinn die Initialisierung einer Dialogbox parallel zu ver-
arbeiten. Hingegen macht es durchaus Sinn die Anwendung eines aufwandigen Filters einer Bildbear-
beitung zu verteilen da der Benutzer lblicherweise auf das Ergebnis warten muss bis er weiter arbei-
ten kann.
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9. Allgemeine Bemerkungen

Unsere Tests wurden natirlich auf einem Paradebeispiel fur parallele Verarbeitung durchgefiihrt. Die
Berechnung der Mandelbrot-Menge lasst sich ohne Reibungsverluste und véllig unabhéngig auf meh-
rere CPUs oder gar auf mehrere Rechner verteilen. In der Praxis ist die leider nicht immer mdglich. In
den meisten Fallen kénnen Aufgaben aber durch geschicktes Applikations-Design auf mehrere
Threads verteilt werden. Im einfachsten Fall werden einfach die anfallenden Berechnungen nicht
nacheinander sondern parallel verarbeitet. Dabei erschweren naturlich Abhangigkeiten diese Vertei-
lung. Generell zeigen unsere Messungen aber, dass die parallele Verarbeitung weit mehr Leistung
bringt als durch die Synchronisation wieder aufgehoben wird. Immerhin I&sst sich durch die Verteilung
aufwandiger Berechnungen auf 2 CPUs im Optimalfall nahezu die doppelte Leistung erzielen.

Ein weiterer, allgemeiner Pluspunkt fur Multi-CPU/Multi-Core Systeme liegt darin, dass heutige Multi-
tasking Betriebssysteme selten nur ein einziges Programm ausfiihren. So steht unter Umstanden
selbst fur ein Single-Threaded Programm mehr CPU-Leistung zur Verfligung als auf einem Multi-
CPU/Multi-Core System. Angenommen im Hintergrund lauft gerade die Festplatten-Defragmentierung
oder ein Video-Encoder und im Vordergrund unsere Mandelbrot Berechnung mit nur einem Thread. In
diesem Fall kann die Mandelbrot-Berechnung durch intelligentes Scheduling bis zu maximal 50% der
zur Verfugung stehenden Ressourcen nutzen. Die restlichen 50% kdnnen dann von den anderen Pro-
grammen genutzt werden.

Der Alltag auf den meisten Desktop-Rechnern sieht aus der Sicht einer CPU aber eher langweilig aus.
Die meiste Zeit verbringt der Prozessor dabei ,schlafend”. Also warum braucht man dann gleich zwei
oder gar noch mehr wartende Prozessorkerne? Die Antwort ist einfach: Fir den Fall in dem die Leis-
tung bendtigt wird! Dabei zahlen Microsoft Office Anwendungen sicher nicht zu diesen Killer-
Applikationen. Diese begniigen sich unter Windows XP auch gerne mit einer 1GHz CPU. Haufig wer-
den hier multimediale Anwendungen genannt doch wer hort schon gleichzeitig duzende MP3 Streams
und sieht sich gleichzeitig einen Film in HDTV Qualitat an? Selbst die Dekodierung eines MPEG2
Datenstroms zur DVD-Wiedergabe erledigt ein 600MHz Prozessor ohne Murren. Bei HDTV sieht die
Welt dann schon wieder etwas anders aus. Hier werden wirklich schnelle Prozessoren benétigt. Man
darf sich hier aber zu Recht fragen, ob ein einzelner, schnellerer Prozessor nicht besser wére als
mehrere (eventuell langsamere). Die Antwort darauf liegt in den bereits in der Basisanalyse ([1]). Die
physikalischen Grenzen der Taktratenerhéhung treiben die Herstellungskosten in die Hohe. Somit ist
es gunstiger mehrere Kerne anzubieten als die einzelnen Kerne noch héher zu takten.

Um beim Beispiel HDTV-Decodierung zu bleiben wiirde bereits eine Trennung der Audio- und Video
Decodierung eine gewisse Verteilung bringen. Da die Video-Decodierung dabei den Léwenanteil dar-
stellt bietet sich eine Parallelisierung des Video-Algorithmus ebenfalls an. Dies ist aber je nach Kom-
plexitat des Algorithmus mit etwas Denksport verbunden.

Ahnlich sieht die Situation bei Spielen aus. Die meisten aktuellen Titel arbeiten immer noch Single-
Threaded und laufen auf héher getakteten Single-Core CPUs somit schneller. Dies wird sich in ab-
sehbarer Zeit allerdings andern. Neu angekindigte Titel werben bereits haufig mit dem Attribut ,Multi-
Core Unterstitzung” und meinen dabei meist die Auslagerung von Kl-, Sound- oder Grafik-
Berechnungen in eigenstandige Threads. Das Attribut alleine sagt allerdings noch nichts Uber die Ska-
lierung und die Effizienz der Verteilung aus und misste individuell getestet werden.

Weitere Einsatzgebiete liegen nattrlich im wissenschaftlichen Bereich. Anwendungen wie Maple, Ma-
thematica oder Matlab erfordern starke Rechenwerke. Es bleibt aber im Einzelfall abzuklaren, ob die
favorisierte Anwendung auf Multi-CPU/Multi-Core Umgebungen optimiert ist.
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10. Abschliessende Bemerkungen

Die Frage, ob man sich einen Multi-Core Prozessor kauft oder nicht wird sich in absehbarer Zeit gar
nicht mehr stellen weil kaum mehr neue Single-Core Prozessoren auf den Markt kommen. Hdchstens
im Tiefpreis-Segment dirften diese noch einige Zeit zu bekommen sein.

Wie wir mit unseren Simulationen unter Last beweisen konnten bietet ein Multi-Core/Multi-CPU Sys-
tem auch bei ohne Optimierung (Single-Threaded) einige Vorteile. Insbesondere wenn mehrere Pro-
gramme gleichzeitig CPU-Leistung bendtigen. Dieser Fall hangt naturlich stark vom jeweiligen An-
wenderprofil ab. Nicht unbedeutend kann dabei auch die vom Betriebssystem erzeugte Last sein.
Windows XP fuhrt beispielsweise bei geringer Systembelastung automatisch Optimierungen wie In-
dexaktualisierungen oder Defragmentierungen durch. Bei Maschinen mit mehreren Prozessoren sind
solche Optimierungen auch wahrend der Benutzung ohne wesentliche Beeintrachtigung mdglich so-
fern ein Prozessor nicht bzw. kaum genutzt wird. Zu beachten ist dabei aber die Last auf gemeinsam
genutzten Ressourcen. Insbesondere die Festplatte ist hier zu nennen. Eine Defragmentierung im
Hintergrund kdnnte die Festplattenleistung merklich beeintrachtigen was wiederum (ungewollt) das
Vordergrundprogramm beeinflussen kann.

Insgesamt kann man sagen, dass es nie verkehrt ist mehr Rechenleistung zum (fast) gleichen Preis
zu bekommen. Allerdings sollte man die gebotene Rechenleistung nicht tiberbewerten und im Einzel-
fall abklaren ob die verwendete Software davon profitiert. Im schlimmsten Fall kann die gewiinschte
Anwendung einen Dual-Core Prozessor nur zur halfte ausnutzen. Hier sind also die Software-
Hersteller gefragt. In dieser Arbeit haben wir einige Optimierungen und Technologien vorgestellt, die
den Entwicklern machtige Werkzeuge zur Verteilung der Aufgaben in die Hand geben. Ob diese ge-
nutzt werden liegt allerdings in den Handen der Entwickler.

Dass die vorgestellten Werkzeuge (insbesondere Java Threads unter Windows XP) sehr effizient ar-
beiten konnten wir eindrucksvoll nachweisen. Unsere Empfehlung lautet daher ganz klar die Optimie-
rung rechenintensiver Aufgaben auf die parallele Verteilung. Optimierungen mittels Techniken wie
TBB oder OpenMP/JOMP kénnen sehr gut dazu beitragen bestehenden Code zu parallelisieren. Der
Einsatz von POSIX/Win32/Java Threads bedeutet haufig etwas mehr strukturelle Anderungen und
unter Umstanden ein Re-Design der Anwendung bzw. Anwendungsteilen. Beim Design neuer Anwen-
dungen sollte deshalb darauf geachtet werden, dass rechenintensive Teile parallel durch mehrere
Recheneinheiten bearbeitet werden kdnnen. Nur so kann sichergestellt werden, dass die Bearbei-
tungszeit und somit die Wartezeit auf die Maschine so kurz wie mdglich gehalten wird.
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11. Glossar

Tabelle 6 Glossar

Begriff Beschreibung

Affinitat Bezeichnet die Zuordnung eines Prozesses/Threads zu physikalischen Recheneinhei-
ten. Durch die Definition einer Affinitaitsmaske kann gesteuert werden auf welchen
Recheneinheiten die Anwendung ausgefihrt werden kann.

Siehe Kapitel Error! Reference source not found..
AMD Advanced Micro Devices; Hersteller von Mikroprozessoren.

API API (Application Programming Interface) defniert eine Schnittstelle zwischen verschie-
denen Software Systemen. Eine API definiert typischerweise eine Reihe von Metho-
den, Parametern, Datentypen und Datenfeldern.

Berech- Real vergangene Zeit, die ein Prozess/Thread bendtigt um eine Aufgabe zu erledigen.
nungszeit Dies schliesst die gesamte Verarbeitungsdauer der Aufgabe ein und entspricht der
Wartezeit, die der Benutzer auf ein Ergebnis warten muss.

Vergleiche auch mit ,CPU-Zeit".

CAS Compare and Swap bzw. Compare and Set bezeichnet eine atomare (meist hardware-
unterstitzte) Operation in der ein gespeicherter Wert mit dem vermuteten Wert vergli-
chen wird. Stimmt dieser Uberein, so wird ein neuer Wert gesetzt. Ansonsten wird
nichts getan. CAS Funktionen erlauben Lock-freie Algorithmen.

Siehe Kapitel 7.4.3.

CPU Abkirzung fir Central Processing Unit. Wird synonym fiir die deutsche Bezeichnung
Hauptrpozessor bzw. Prozessor verwendet.

CPU-Zeit Die Gesamtzeit, die von einem Prozess/Thread fur die Ausfiihrung in Anspruch ge-
nommen wird. Also die Gesamtzeit in der ein Prozess/Thread auf der Hardware ausge-
fuhrt wird.

Hinweis: Bei einem 2-Prozessor-System kann ein Programm mit einer Laufzeit von 10
Sekunden durchaus 20 Sekunden CPU-Zeit ,verbrauchen® da die 10 Sekunden uber
zwei Threads auf beiden CPUs belegt werden.

GUI Graphical User Interface; Bezeichnet die Darstellung der Benutzeroberfliche durch
grafische Elemente wie Kndpfe, Symbole, Meniis und Zeichnungen.

Hyper- Eine von Intel bei einigen Pentium 4 Modellen eingeflihrte Technologie zur verbesser-

Threading ten Auslastung der internen Pipeline. HyperThreading stellt gegeniiber dem Betriebs-
system einen zweiten (virtuellen) Prozessor zur Verfigung. Dieser ist aber physikalisch
gar nicht vorhanden. Instruktionen an diesen Prozessor kénnen die Auslastung der
internen Rechen-Einheiten des Pentium 4 verbessern.

JOMP Java-basierende Implementierung von OpenMP-Ahnlichen Direktiven zur Parallelisie-
rung.

Siehe Kapitel 7.6.

JVM Die Java Virtual Machine ist ein Interpreter flr Java Bytecode. Die JVM ist dabei das
Bindeglied zwischen Betriebssystem und den plattformunabhangigen Java Anwen-
dungen.

NUMA Non-Uniform Memory Access (NUMA) bezeichnet eine Architektur in der jede Verar-

beitungseinheit lokalen Speicher besitzt und durch Kommunikation mit den anderen
Verarbeitungseinheiten auch deren Speicher ansprechen kann.
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Begriff Beschreibung

Scheduling  Bezeichnet die Tatigkeit des Betriebssystems beim Preemptiven Multitasking die Pro-
zessorzeit nach einem bestimmten Algorithmus den einzelnen Ausfuhrungseinheiten
zuzuweisen (auf Ebene Thread oder Prozess).

TBB Intel Thread Building Blocks. Eine C++ Bibliothek die Methoden zur parallelen Verar-
beitung bereitstellt (Schleifenparalleisierung).

Thread Ein leichtgewichtiger Prozess. Ein Thread teilt den Adressraum mit dem Prozess zu
dem er gehort. Dadurch werden einerseits die Kommunikation und andererseits der
Kontextwechsel beschleunigt.

Siehe Kapitel 7.
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