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1. Management Summary 
Dieses Dokument beinhaltet eine umfassende Analyse der in [2] erhaltenen Messresultate. Das Do-
kument ist dabei in die folgenden Bereiche gegliedert: 

• Testcases Prioritäten (siehe Kapitel 5) 

• Testcases Affinität (siehe Kapitel 6) 

• Testcases Skalierung (siehe Kapitel 7) 

Im Bereich der Prioritäten (siehe Kapitel 5) wurde die Abbildung von Java Thread-Prioritäten auf Win-
dows XP Basisprioritäten ebenso untersucht wie deren Auswirkung auf das Scheduling-Verhalten. Wir 
konnten feststellen, dass die Abbildung linear erfolgt. Ausserdem überlappen sich die Bereiche zweier 
benachbarter Prozessprioritätsklassen. Weiter konnten wir beweisen, dass alleine die aus Prozesspri-
oritätsklasse und der Thread-Priorität abgeleitete Basispriorität für das Scheduling relevant ist. Das 
reine Prioritätsscheduling von Windows XP konnte ebenfalls durch die Simulation verschiedener Last-
stufen mit variierenden relativen Basisprioritäten bewiesen werden. Ein Thread mit niedriger Basispri-
orität bekommt nur dann Rechenzeit, wenn in einer höheren Basispriorität keine rechenbereiten 
Threads mehr vorhanden sind. 

Im Kapitel 6 werden die Auswirkungen der Definition von Affinitätsmasken analysiert. Die Ergebnisse 
zeigen klar, dass durch eine Affinitätsmaske verhindert werden kann, dass ein Prozess oder dessen 
Threads bestimmte CPUs verwenden. Dies vermindert aber in den allermeisten Fällen nur die maxi-
male Skalierung auf der Hardware. Das setzen eines „Ideal-Prozessor“ über die Windows API konnten 
wir auf Java-Ebene nicht testen. Dies wäre aber möglicherweise die bessere Methode als harte Affini-
täten da im Bedarfsfall trotzdem auf „nicht-ideale“ Prozessoren ausgewichen werden kann was bei 
einer gesetzten Affinitätsmaske nicht mehr möglich ist. 

Die restlichen Testcases befassen sich mit der Thread-Skalierung (siehe Kapitel 7). Wir konnten bele-
gen, dass Java-Threads unter Windows XP 1:1 auf Kernel-Threads abgebildet werden und somit eine 
parallele Abarbeitung auf mehreren Recheneinheiten durch den Betriebssystem-Scheduler möglich 
wird. Anschliessend wurde die Skalierung der Thread-Anzahl durch Messungen mit 1, 2, 8, 32, 128 
und 512 Threads jeweils mit einem oder zwei Prozessoren durchgeführt. Die Messungen haben ge-
zeigt, dass die Anwendung annähernd linear mit der Anzahl der Threads skaliert (ohne Synchronisie-
rung). Mit zugeschalteter Synchronisation konnte stieg offenbar der Verwaltungsaufwand was auf 
einem Single-CPU System zu einem Performance-Einbruch bei einer hohen Thread-Anzahl führte. 
Das Dual-CPU System zeigte sich davon deutlich weniger beeindruckt. Auf beiden Systemen liess 
sich durch Optimierung der Synchronisierung (lock partitioning / lock striping / CAS) die Skalierung 
wieder bis zur annähernden Linearität verbessern. 

Die Ergebnisse sprechen eine deutliche Sprache. Um parallele Hardware optimal nutzen zu können 
ist eine Verteilung von aufwändigen Berechnungen auf mehrere Threads unverzichtbar. Bei entspre-
chender Programmierung kann die Anzahl der Threads dabei auch ohne Performance-Einbrüche 
massiv höher liegen als die Anzahl verfügbarer CPUs. Hier ist allerdings eine durchdachte Architektur 
unabdingbar. Bei unglücklicher Verwendung von Locks kann schnell ein Teil der gewonnenen Perfor-
mance durch Blockierungen zunichte gemacht werden. Allgemein gilt aber, dass durch die Verwen-
dung von Threads auf Multi-CPU Systemen eine Vervielfachung der Rechenkapazität erreicht werden 
kann und auf Single-CPU Systemen kaum zu Nachteilen führt (bei geschickter Synchronisierung). 
Optimal ist hierbei natürlich eine Architektur, welche eine variable Anzahl Threads erlaubt um die An-
wendung optimal auf die Hardware anzupassen. 
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3. Dokumentinformationen 

3.1. Referenzierte Dokumente 

Tabelle 1 Referenzierte Dokumente 

Referenz Beschreibung 

[1] Basisanalyse 

[2] Software Test Document (STD) 

[3] Software Design Document (SDD) 

[4] Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1 

3.2. Definitionen und Abkürzungen 

Tabelle 2 Abkürzungen 

Abkürzung Beschreibung 

AMD Advanced Micro Devices 

API Application Programming Interface 

CAS Compare And Swap / Compare And Set 

CPU Central Prozessing Unit (Hauptprozessor) 

HDTV Hight Definition Television 

JOMP Java OpenMP 

TBB Thread Building Blocks 

3.3. Links 

Tabelle 3 Links 

Referenz Beschreibung 

[CODEANALYST] AMD CodeAnalyst: http://developer.amd.com/cawin.jsp

[PARALLELSKAL] Microsoft, Verwenden der Parallelität für Skalierbarkeit: 

http://www.microsoft.com/germany/msdn/library/net/ ↵ 

VerwendenDerParallelitaetFuerSkalierbarkeit.mspx

  2006-11-16 

http://developer.amd.com/cawin.jsp
http://www.microsoft.com/germany/msdn/library/net/VerwendenDerParallelitaetFuerSkalierbarkeit.mspx
http://www.microsoft.com/germany/msdn/library/net/VerwendenDerParallelitaetFuerSkalierbarkeit.mspx


Diplomarbeit  Seite 6 

4. Einleitung 
Dieses Dokument bietet Platz für Schlussfolgerungen, Interpretationen, weiterführende Erklärungen 
und in gewissen Fällen eventuell Spekulationen. Hierbei geht es im Wesentlichen um eine erweiterte 
Betrachtung der festgehaltenen Testresultate in [2]. 

Das Dokument ist nach den Haupteinflussbereichen der Priorität, Affinität und Skalierung gegliedert. 
Ziel ist es für jeden Bereich Aussagen über markante Messwerte und deren Einfluss auf die Praxis der 
parallelen Programmierung herauszuheben. Dabei wird versucht die Hintergründe der Messergebnis-
se zu beleuchten um die Zusammenhänge besser verstehen zu können. 

Wo dies möglich und sinnvoll ist werden entsprechende Empfehlungen zur Implementierung gegeben 
sowie Hinweise auf mögliche Probleme festgehalten. 

  2006-11-16 
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5. Testcases Prioritäten 
Die Testcases 3, 4, 5 und 6 geben einen Einblick in die Prioritätsverwaltung von Java Threads unter 
Windows XP. Die durchgeführten Tests legen die Wirkung der Java Thread-Prioritäten auf allen Ebe-
nen offen. Dies schliesst die Offenlegung der Abbildung von Java-Prioritäten auf Kernel-Prioritäten 
ebenso ein wie die Analyse des Programmverhaltens unter verschiedenen Prioritäts- und Laststufen. 

5.1. Interpretation Testcase 3 

Hier zeigt sich ein sehr interessantes Bild bei der Abbildung der Java Thread Prioritäten auf Win32 
Prioritäten. Wie in [1] (Kapitel 6) erwähnt veraltet Windows XP sieben Thread Prioritäten (IDLE, LO-
WEST, BELOW_NORMAL, NORMAL, ABOVE_NORMAL, HIGHEST, TIME_CRITICAL). Java verwendet ein 
Modell mit 10 Prioritätsstufen (1 bis 10). Diese werden aber nicht mathematisch auf die 7 Win32 
Thread Prioritäten abgebildet sondern nur auf deren 5. Dies führt dazu, dass mehrere Java-Prioritäten 
auf die gleiche Win32 Priorität abgebildet werden. So bekommen Threads mit der Java-Priorität 5 und 
6 dieselbe Win32 Basispriorität von 8. 

Des Weiteren heisst dies für Java Threads, dass die Prioritäten IDLE und TIME_CRITICAL nicht 
ausgewählt werden können. Der Bereich der damit erreichbaren Win32 Basisprioritäten erstreckt sich 
somit von 6 bis 10. Um höhere bzw. tiefere Werte erreichen zu können muss die Prioritätsklasse des 
Prozesses verändert werden. Mehr dazu unter Interpretation Testcase 4. 

5.2. Interpretation Testcase 4 

Tabelle 4 Bereich der Basisprioritäten in Abhängigkeit der Prozessprioritätsklasse 

Process priority Class Tiefste Basispriorität Höchste Basispriorität

IDLE_PRIORITY_CLASS 2 6

BELOW_NORMAL_PRIORITY_CLASS 4 8

NORMAL_PRIORITY_CLASS 6 10

ABOVE_NORMAL_PRIORITY_CLASS 8 12

HIGH_PRIORITY_CLASS 11 15

REALTIME_PRIORITY_CLASS 22 26

Der Bereich der Prozessprioritäten HIGH und REALTIME liegt überproportional über dem Bereich der 
anderen Prioritäten. Es ist keine Überlappung bei der Prozesspriorität REALTIME möglich. Somit kann 
kein Thread im Prozesskontext mit einer tieferen Priorität eine höhere Einstufung erreichen als ein 
Thread im Prozesskontext eines REALTIME Prozesses. 

Über die Java-API ist es nicht möglich die Prozessprioritäten zu beeinflussen. Diese wird also ohne 
Änderung von aussen auf NORMAL festgesetzt. Allerdings kann mittels der Thread-Priorität eine Basis-
Priorität erreicht werden, die der Standardpriorität von ABOVE_NORMAL bzw. BELOW_NORMAL ent-
spricht. Die Basispriorität kann im Bereich von 6 bis 10 angepasst werden. Die Basispriorität 6 ent-
spricht der Standardpriorität für Threads in einem Prozesskontext mit der Priorität BELOW_NORMAL. 
Die Basispriorität 10 entspricht der Standardpriorität für Threads in einem Prozesskontext mit der Prio-
rität ABOVE_NORMAL. 
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5.3. Interpretation Testcase 5 

Wie unter Interpretation Testcase 4 beschrieben gibt es aufgrund der Überschneidungen bei den Prio-
ritäten mehrere Möglichkeiten auf dieselbe Basispriorität zu kommen. Im Test wird das Verhalten ei-
nes Threads mit der Java-Priorität 5 im Kontext eines Prozesses mit der Prioritätsklasse NORMAL dem 
Verhalten eines Threads mit der Java Priorität 2 im Kontext eines Prozesses mit der Prioritätsklasse 
ABOVE_NORMAL gegenübergestellt. Beide Male resultiert eine effektive Basispriorität von 8. Siehe 
dazu auch die in Testcase 4 erstellte Prioritätstabelle. 

Der Versuch hat gezeigt, dass im Endeffekt nur die Basispriorität das Scheduling Verhalten  beein-
flusst. Threads eines Prozesses mit höherer Priority Class werden bei gleicher Basispriorität nicht 
bevorzugt behandelt. 

Für den Programmierer heisst dies, dass die Anhebung der Prozesspriorität nicht unbedingt in einer 
höheren Prioritätsstufe (Basispriorität) als die Threads eines Prozesses mit tieferer Prozesspriorität 
resultieren muss. Falls die Threads des Prozesses mit tieferer Prioritätsstufe die höchstmögliche Ba-
sispriorität besitzen kann diese durchaus höher sein als die Standardpriorität der Threads im Prozess-
kontext des höher priorisierten Prozesses. 

Schön zu sehen ist auch, dass die konsumierte CPU-Zeit bei allen Messungen konstant bleibt (unab-
hängig von der Laststufe). Dies erscheint auch logisch, da die CPU-Zeit nur die Anzahl „verbrauchter“ 
CPU-Zyklen widerspiegelt. Die Berechnung des Bildes ist immer gleich aufwändig und benötigt eine 
konstante Anzahl Prozessor-Zyklen. Abhängig von der Anzahl Kontextwechsel oder anfallendem Lo-
cking bzw. I/O Wait kann die CPU-Zeit leicht schwanken, sollte sich aber nicht im Bereich von Fakto-
ren ändern. 

5.4. Interpretation Testcase 6 

Hier wurden Vergleiche mit unterschiedlicher (resultierender) Basispriorität angestellt (bei gleich blei-
bender Prozess-Priorität). Die Versuche wurden jeweils mit der Basispriorität 6 bzw. 8 unter verschie-
denen Laststufen (keine Last, 1 Thread mit Basispriorität 8 sowie 2 Threads mit Basispriorität 8) 
durchgeführt. 

Windows arbeitet mit einem reinen Priority-Scheduling. Dies bedeutet, dass Threads einer tieferen 
Prioritätsstufe nur dann Rechenzeit bekommen, wenn kein Thread einer höheren Prioritätsstufe re-
chenbereit ist. 

Daraus resultiert, dass ohne Last in höheren Prioritätsstufen die gesamte Rechenzeit auch an tiefer 
priorisierte Threads verteilt wird. 

Die im Test verwendete Last besteht aus einem einzigen Calculator-Thread. Bei tiefer Last wird ein 
einziger Calculator Thread gestartet der sich auf einer CPU konzentriert. Somit bleibt die zweite CPU 
für die Java-Anwendung frei. Aus diesem Grund entspricht die Laufzeit einem Single-CPU Testlauf. 

Im Falle einer grossen Last (2 Calculator, 2 Threads) werden beide Threads auf die verfügbaren 
CPUs verteilt wobei keine Rechenzeit für die Berechnung mit tieferer Basispriorität zur Verfügung 
gestellt wird. Im Test wird der Java-Berechnung nur CPU Zeit zugewiesen wenn der Calculator-
Thread nicht rechenbereit ist (z.B. blockiert bei I/O Zugriffen). 

Bei höherer, relativer Priorität der Java-Berechnung bezogen auf die Last tritt genau der gegenteilige 
Fall ein. Die Calculator-Threads bekommen nur dann Rechenzeit, wenn die Threads der Java-
Berechnung nicht rechenbereit sind (z.B. blockiert durch I/O Operationen). 

  2006-11-16 



Diplomarbeit  Seite 9 

5.5. Empfehlungen 

Auf Ebene Java kann der Programmierer nur innerhalb der 10 Java Prioritäten Einfluss auf die Basis-
priorität nehmen. Generell eignen sich diese Prioritäten gut um innerhalb der eigenen Anwendung 
Priorisierungen vorzunehmen. Global gesehen ist der Einsatz aber schon deutlich eingeschränkt da 
die Einsatzumgebung auf einem Desktop-Rechner unbekannt ist. Das heisst, dass häufig weder die 
Anzahl weiterer Prozesse und Threads sowie deren Rechenzeit-Bedarf oder gar deren Prioritäten 
bekannt sind. 

Java arbeitet beispielsweise bereits automatisch mit verschiedenen Prioritäten. So haben Daemon 
Threads für interaktive Elemente wie die Ereignisverwaltung für GUIs bereits eine Java-Priorität von 6 
um eine schnelle Reaktion auf Benutzeraktionen zu erlauben. Leider belegt unser Prioritäts-Mapping 
aus Testcase 4, dass sowohl die Java Priorität 5 und 6 auf die selbe Basispriorität abgebildet werden. 
Deshalb scheint diese Konfiguration unter Windows keinen Einfluss zu zeigen. Unter Windows ist es 
also empfehlenswert aufwändige Berechnungen, welche die Reaktionsgeschwindigkeit des GUIs nicht 
beeinflussen sollen, in Threads mit der Java-Priorität von 4 oder geringer zu verlagern. Der Nachteil 
dieser Methode liegt dann natürlich darin, dass diese Threads die Basispriorität von 7 oder geringer 
bekommen und somit auch im Konkurrenzkampf mit anderen Anwendungen (Standard-Basispriorität: 
8) das Nachsehen haben. 

  2006-11-16 
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6. Testcases Affinität 
Testcase 7 befasst sich mit der manuellen Konfiguration einer Affinitätsmaske über ein externes Sys-
tem-Tool und deren Auswirkungen auf die Skalierung. Dabei werden die Auswirkungen sowohl mit als 
auch ohne simulierte externe Last analysiert. 

6.1. Interpretation Testcase 7 

Ohne Affinität können alle Threads auf alle verfügbaren CPUs verteilt werden. Das System (Windows 
XP) strebt eine gleichmässige Auslastung aller Rechnwerke an. Bei zwei CPUs und einem einzigen 
Thread bedeutet dies, dass Windows versucht auf beiden CPUs 50% der Berechnungen durchzufüh-
ren. Dabei wird der Threads von CPU zu CPU verschoben (Time-Slicing): 

 
Abbildung 1 Verteilung einer Single-Thread Anwendung auf zwei CPUs 

Die Abbildung wurde vom AMD CodeAnalyst [CODEANALYST] erstellt und zeigt die Verteilung einer 
Anwendung mit einem einzigen Thread auf zwei CPUs. Die daraus resultierende CPU-Gesamtlast 
beträgt 50%. Die Anwendung läuft dadurch genau so schnell wie wenn nur ein einziger CPU zur Ver-
fügung stehen würde. 

Bei gleich vielen Threads wie CPUs können alle CPUs ausgelastet werden: 

 
Abbildung 2 Verteilung von zwei Threads auf zwei CPUs 

Auch diese Abbildung wurde mit dem AMD CodeAnalyst erstellt und zeigt unsere Mandelbrot-
Applikation bei der Arbeit. Interessant ist hierbei insbesondere, dass der Windows Scheduler hier of-
fenbar trotzdem versucht jeden Thread auf jeder CPU auszuführen. Dies zeigt sich daran, dass die 
Threads offenbar zeitweilig ihre „Plätze“ tauschen und auf dem anderen CPU weiterarbeiten. Dies 
erklärt auch die massiv höhere Anzahl Kontextwechsel auf Multi-CPU/Multi-Core Systemen, die wir in 
Testcase 1 (siehe Kapitel 7.2) ermittelt haben. Trotzdem beträgt die CPU Gesamtlast hier zu jedem 
Zeitpunkt 100% da beide Prozessoren zu jedem Zeitpunkt mit Berechnungen beschäftigt sind. 

Beim setzen einer Prozessaffinität wird diese auch an die Threads weitervererbt. Durch die Affinität 
werden die Threads dieses Prozesses auf die ausgewählten CPUs konzentriert. Diese können nun 
nicht mehr auf einen nicht explizit zugewiesenen Prozessor wechseln. Dies bedeutet auch, dass ein 
Thread auf einer bereits ausgelasteten CPU nicht auf einen alternativen Prozessor ausweichen kann. 
Nur Threads ohne Affinität können durch den Scheduler beliebig auf andere CPUs verteilt werden. 
Dies belegt die nächste Grafik: 

 
Abbildung 3 2 Threads mit gesetzter CPU Affinität auf CPU0, ohne Last 

Die zwei rechnenden Threads der Mandelbrot Anwendung konkurrieren nun um CPU1, da durch die 
Affinitätsmaske der Wechsel auf CPU0 unterbunden wurde. Derselbe Effekt tritt ein, wenn die Anwen-
dung nicht alleine um CPU1 konkurriert. In Testcase 7 haben wir zusätzlich noch einen Calculator 
ohne Affinität laufen lassen. Dieser hat nun unserer Mandelbrot Applikation einzelne Zeitscheiben auf 
CPU1 weggenommen (obwohl CPU0 frei gewesen wäre). Erst die manuelle Festlegung der Affinität 
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des Calculators auf die freie CPU sorgte dafür, dass diese beide voll ausgelastet wurden und unsere 
Anwendung eine für sich alleine hatte. 

Durch die Definition von komplementären Affinitätsmasken lassen sich mehrere Prozesse auf unter-
schiedliche CPUs verteilen. Die Last kann so gezielt konzentriert werden. Dabei muss aber beachtet 
werden, dass weitere Prozesse (ohne bzw. mit der gleichen Affinitätsmaske) auch um die verfügbaren 
Prozessoren konkurrieren können. Ausserdem ist eine übliche Umgebung nicht dermassen über-
schaubar wie unsere Testumgebung. Die manuelle Festlegung der Affinitäten funktioniert nur dann so 
gut, wenn die laufenden Anwendungen und Threads bekannt sind. Dynamisch gestartete Dienste oder 
Anwendungen müssten dabei ihre Affinitätsmaske selber setzen oder sie müsste bei jedem start ma-
nuell neu gesetzt werden. Ausserdem ist so nur eine 100% Auslastung zu erreichen wenn beide An-
wendungen jeweils eine ganze CPU auslasten können. Würde der Calculator nur 20% der CPU-Zeit 
einer CPU benötigen, dann könnten auch die restlichen 80% nicht von der Mandelbrot Anwendung 
genutzt werden, da dieser der Wechsel aufgrund der Affinitätsmaske nicht mehr erlaubt ist. 

6.2. Emfehlungen 

Affinitätsmasken machen unserer Meinung nach nur ganz selten Sinn. Normalerweise nimmt man 
dem System dadurch lediglich die Möglichkeit das volle Potential der Hardware zu nutzen. In unserem 
Fall wurde die maximal verfügbare CPU-Leistung für unsere Mandelbrot-Applikation auf 50% einge-
schränkt. Dabei müssen diese 50% zusätzlich noch mit anderen Prozessen/Threads von anderen 
Applikationen geteilt werden. Im schlimmsten Fall kann es passieren, dass der zugewiesene Prozes-
sor ausgelastet ist und eine freie CPU aufgrund der Affinitätsmaske nicht genutzt werden kann. 

In diesem Rahmen möchten wir nochmals auf die in der Win32 API vorhandene Möglichkeit einen 
„Ideal-Processor“ zu definieren verweisen. Diese API ermöglich es dem Betriebssystem mitzuteilen 
auf welchem Prozessor die Applikation Idealerweise laufen soll. Ist die ideale CPU dabei gerade nicht 
verfügbar so wird die Anwendung aber auch auf einen „nicht-idealen“ (alternativen) Prozessor verla-
gert. Dies ist immer noch die bessere Möglichkeit als die Anwendung warten zu lassen. Frei nach dem 
Motto „eine langsame Ausführung ist besser als gar keine“. Die Möglichkeit einen idealen Prozessor 
zu definieren kann insbesondere bei NUMA (siehe Erklärung in [1]) Systemen einen Performance-
Zuwachs ergeben, da der ideale Prozessor auf solchen Systemen üblicherweise derjenige ist, auf 
dem die verwendeten Daten lokal verfügbar sind. Mangels der Unterstützung dieser API in Java konn-
ten wir dies nicht näher testen. Sinnvoll wäre hier ein Vergleich der Remote-Memory Zugriffe mit bzw. 
ohne gesetzte „Ideal-Processor“ Maske bei einer speicherintensiven Anwendung. Der AMD CodeAna-
lyst (siehe [CODEANALYST]) kann hier bei der Analyse helfen. In Abbildung 1 sind deutlich rote Mar-
kierungen zu erkennen. Diese markieren laut CodaAnalyst „Non-Local Memory Access“ und stellen 
somit ein Optimierungspotential dar. 
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7. Testcases Skalierung 
In diesem Kapitel werden die Testcases diskutiert, welche die direkte Analyse der Skalierung zum Ziel 
haben. In Testcase 2 werden die zur Thread-Skalierung notwendigen Analysen zur Abbildung von 
Java-Threads auf Kernel-Threads gemacht. Testcase 1 analysiert dann ob die Threads auch wirklich 
auf mehrere Prozessoren verteilt werden können. In Testcase 8 und 9 der Einfluss einer variierenden 
Anzahl Threads auf die Skalierung jeweils ohne Locking bzw. mit verschiedenen Locking-Techniken 
untersucht. 

7.1. Interpretation Testcase 2 

Die Ergebnisse dieser Testreihe sind eindeutig und belegen eine 1:1 Abbildung von Java-Threads auf 
Win32 Threads. Das heisst, dass für jeden Java-Thread ein entsprechendes äquivalent auf im Be-
triebssystem-Kernel existiert. Dass selbst bei null (0) selbst erzeugen Worker-Threads eine gewisse 
Anzahl Threads existieren (in unseren Beispiel 13) liegt an der internen Architektur. Auch das Haupt-
programm (main()) läuft innerhalb eines Threads ab. Die anderen Threads sind im Hintergrund lau-
fende Daemon-Threads wie beispielsweise die Garbage-Collection oder Threads zur GUI Ereignisbe-
handlung. Die Anzahl der Daemon-Threads kann von Anwendung zu Anwendung variieren. So kann 
die Verwendung von JVM Klassen zur Erzeugung weitere Daemon-Threads führen. Beispielsweise 
führt erst die Instanzierung von GUI-Klassen zur Erzeugung von Threads zur Ereignisbehandlung. 

Es ist aber ganz klar zu sehen, dass jeder erzeugte Java-Thread auch im Kernel abgebildet wird. Die 
Sun Java HotSpot VM 1.5 arbeitet hier also mit einer 1:1 Abbildung. Anhand der gleich bleibenden 
Prozess-ID (PID) kann auch erkannt werden, dass die Anwendung während des Tests nicht neu ge-
startet wurde. Die Threads wurden also zur Laufzeit erstellt. 

Offensichtlich scheint auch ein Grenzwert zu existieren. Auf unserem System (Windows XP Pro 32 
Bit, Sun HotSpot 1.5 VM, 4GB RAM) lag diese Grenze bei 7146 Threads. Jeder weitere Thread führte 
zu einer „Out of Memory Execption“ und zwar unabhängig von einem eventuell vorhandenen -Xmx 
Parameter um mehr maximalen Speicher für den Heap zu erlauben. 

7.2. Interpretation Testcase 1 

Die Berechnungsdauer liess sich auf unserem Multi-Prozessor System durch den Einsatz von zwei 
Threads auf die hälfte reduzieren. Eine Single-Threaded Anwendung hätte hier also nur maximal 50% 
der vorhandenen Rechenleistung genutzt. 

Auf den ersten Blick mag es verwirrend sein, dass die CPU-Zeit weder von der Anzahl Threads noch 
von der Anzahl CPUs abhängig ist und konstant bleibt. Dies ist aber nur logisch, da der Berechnungs-
aufwand für das gesamte Bild bei jedem Testdurchlauf identisch ist. Der Aufwand wird bei 2 CPUs 
und 2 oder mehr Threads lediglich auf zwei Rechenwerke verteilt. Die Zusammenhänge werden etwas 
klarer, wenn man die aktuell verbrauchte CPU-Zeit in einem Tool wie dem Task Manager oder dem 
Process Explorer anzeigt. Dort zählt die Spalte CPU-Zeit nämlich doppelt so schnell hoch bei zwei 
CPUs und zwei Threads. Pro Sekunde werden also 2 Sekunden CPU-Zeit „verbraucht“. 

Ein interessanter Aspekt ist auch die Anzahl der Kontextwechsel. Diese steigen nämlich auf unsererer 
2 CPU Maschine sprunghaft an und dies unabhängig davon ob 1 oder 2 Threads verwendet werden. 
Wie im Kapitel 6 erwähnt versucht Windows durch ständiges weiterreichen der Threads auf alle ver-
fügbaren CPUs eine gleichmässige Auslastung zu erreichen. Auf unserem System führt dies dazu, 
dass bei der Verwendung von nur einem einzigen Thread beide CPUs nahezu exakt 50% ausgelastet 
werden (resultierende Gesamtlast: 50%). Die andauernden CPU Sprünge führen zu der erhöhten 
Anzahl Kontextwechsel. 

Auch wir dachten zuerst, dass bei der Verwendung von 2 Threads die Kontextwechsel zurückgehen 
würden, da es kaum Sinn macht zwei rechenbereite Threads untereinander abzutauschen. Wie in 
Kapitel 6 aber ebenso zu sehen ist werden zwei Thread teilweise trotzdem untereinander ausge-
tauscht und laufen auf dem jeweils anderen CPU weiter. 
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Selbst nach längeren Online-Recherchen konnten wir noch keinen Kernel-Parameter finden um die-
ses Verhalten zu beeinflussen. Grundsätzlich scheint eine erhöhte Anzahl Kontextwechsel aber auch 
keinen merklichen Einfluss auf die Performance zu haben. Weder die Berechnungsdauer noch die 
benötigte CPU-Zeit steigen dadurch merklich an. Lediglich NUMA (siehe Erklärung in [1]) Systeme 
könnten durch dieses Verhalten negativ beeinflusst werden da so im Schnitt 50% der Speicherzugriffe 
auf Remote-Speicher durchgeführt werden müssen was zu einer erhöhten Buslast führen kann. 

7.3. Interpretation Testcase 8 

Testcase 8 hat gezeigt, dass bei Einzelprozessorsystemen die Anzahl Threads keine nennenswerte 
Rolle spielt sofern keine Synchronisation stattfinden muss. Die Berechnungszeit verändert sich zwi-
schen einem und 512 Threads kaum. Die Schwankungen gehen in der Messungenauigkeit unter. 

Bei zwei CPUs sieht das Resultat nicht viel anders aus. Weder die CPU Zeiten noch die Berech-
nungszeit verändern sich messbar. Lediglich zwischen der Konfiguration mit einem bzw. zwei Threads 
ist eine Halbierung der Berechnungszeit feststellbar. Dies liegt darin begründet, dass die Aufgabe nun 
auf beide Prozessoren verteilt wird. Die Gesamtauslastung steigt dabei von 50% (1 Thread, 1 CPU 
ausgelastet) auf 100% (2 Threads, 2 CPUs ausgelastet). Auch hier scheint der zusätzliche Verwal-
tungsaufwand von bis zu 512 Threads keinen nennenswerten Einfluss auf die Berechnungszeit zu 
haben. Zu beachten ist hierbei aber auch, dass die Messungen ohne Synchronisierungsaufwand ge-
macht wurden. Tests mit Synchronisierung folgen in Testcase 9 (siehe auch Kapitel 7.4). 

Die Frage wo hier die optimale Anzahl Threads liegt ist nicht einfach zu beantworten. In unserem Bei-
spiel können bereits zwei Threads beide CPUs voll auslasten. Sind diese aber beispielsweise teilwei-
se durch I/O Operationen blockiert kann es sinnvoll sein, dass die Anzahl Threads höher gewählt wird 
als die Anzahl CPUs. Dazu kann die folgende Formel aus [PARALLELSKAL] helfen: 

NumThreads = NumCPUs / (1 – BP) 

Wobei BP den Prozentsatz der Zeit darstellt in dem die Threads blockiert sind (Blocked-Percentage). 
Verbringen die Threads also 25% im blockierten Zustand so kann es bei einem 2 CPU System sinn-
voll sein 3 Threads (2/(1-0.25) = 2.66) einzusetzen. 

Leider ist diese Formel nur bedingt praxistauglich da einerseits der Prozentsatz der Blockierten Zeit 
häufig nicht so einfach vorhersehbar ist und andererseits der Grad der tatsächlich verfügbaren paralle-
len Einheiten nicht einbezogen wird. Bei HyperThreading CPUs stehen nicht alle Prozessorteile mehr-
fach zur Verfügung. Dies führt unter Umständen zu weiteren Blockierungen. Auch kann der Einsatz 
weiterer Threads die Speicherbandbreite weiter belasten und zu längerer Blockierung der Threads 
führen. 

Klar ist aber, dass durch fehlende Parallele Verarbeitung schlicht nur 1/AnzahlCPUs Prozent der 
verfügbaren Kapazität genutzt werden kann. Bei unserem 2 CPU System kann ohne Parallelisierung 
somit nur 50% der Gesamtleistung genutzt werden. 

Die oben stehende Formel bestätigt im umgekehrten Sinne auch, dass nie weniger Threads als CPUs 
verwendet werden sollten um eine optimale Skalierung zu erreichen (Angenommene Blockierung: 
0%). Dieser Fall entspricht auch ziemlich genau unserer Testreihe ohne Synchronisierung. 
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7.4. Interpretation Testcase 9 

7.4.1. Methodensynchronisation 

Hier haben wir wie in [3] beschrieben eine Methodensynchronisation verwendet um die Auswirkungen 
von langen Synchronisierungsbereichen zu zeigen. Der Nachteil liegt hier darin, dass nur ein Thread 
einen Pixel schreiben kann und alle anderen warten müssen bis der schreibende damit fertig ist. Da-
durch wird der Bereich der Synchronisation relativ lang und die Threads treten häufig in die Region ein 
und verlassen diese wieder (bei jedem Pixel einmal). Bei den über 700'000 Schreibzugriffen für ein 
gesamtes Bild (1016x718 Pixel) dürfte der Aufwand für das Locking spürbar werden. Zur Erinnerung 
hier nochmals die synchronisierte Methode (aus [3]): 

    public synchronized void setRGB(int startX, int startY, int w, 
                    int h, int[] rgbArray, int offset, int scansize) { 
        count++; 
        super.setRGB(startX, startY, w, h, rgbArray, offset, scansize); 
    } 

Listing 1 Methodensynchronisation 

Nachfolgend die Ergebnisse: 

Skalierung - 1 CPU/2 CPU  mit 1...n Threads (mit Synchronisation)
Methodensynchronisation

0.61

1.20

0.51

1.00

0.56 0.59 0.61

1.00 1.00

1.761.801.82

1.62

1.191.14
1.09

1.00
1.01
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1.30
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1 2 8 32 128 512
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Berechnungszeit (1 CPU) Berechnungszeit (2 CPU)
CPU-Zeit (1 CPU) CPU-Zeit (2 CPU)

 
Abbildung 4 Skalierung 1 CPU/2 CPU mit Methodensynchronisation 

Erstaunlich ist der unterschiedliche Verlauf zwischen 1 und 2 CPU Konfiguration. Auf dem Einzelpro-
zessorsystem zeigt sich das erwartete Verhalten. Je mehr Threads um den Lock konkurrieren (lock 
contention) umso mehr Verwaltungsaufwand fällt an. Dieser belastet die CPU zusätzlich und lässt 
sowohl die CPU-Zeit als auch die Berechnungszeit sprunghaft ansteigen. Auf der Dual-CPU Konfigu-
ration zeigt sich der Verlauf aber weitgehend unbeeindruckt vom zusätzlichen Aufwand und das ob-
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wohl hier eigentlich aufgrund der tatsächlich parallelen Verarbeitung häufiger konkurrierende Lock-
Anfragen zu erwarten sind. 

Eine eindeutige Erklärung dafür konnten wir leider noch nicht finden. Sicher ist aber, dass bei zwei 
Prozessoren die Wahrscheinlichkeit, dass ein Thread der den Lock gerade hält und unterbrochen 
wurde wieder Rechenzeit erhält, doppelt so hoch ist. Die Folgende Grafik zeigt den logischen Arbeits-
ablauf der Threads und das Scheduling: 

 
Abbildung 5 Thread-Abarbeitung 

Die Grafik zeigt ein simples Round-Robin Scheduling. Ist nur ein CPU verfügbar wird dieser jedem 
einzelnen Thread in Reihenfolge zugewiesen. Im ungünstigsten Fall wird der erste Thread im kriti-
schen Bereich unterbrochen und behält somit den Lock. Die folgenden Threads erhalten dann nach-
einander die Rechenzeit, werden aber spätestens beim Eintritt in den kritischen Bereich blockiert. Sind 
alle Threads durchlaufen bekommt der erste wieder einen Zeitschlitz. Verlässt dieser dann den kriti-
schen Bereich bis zum Ende des Zeitschlitzes nicht, so bekommen wieder alle Threads einen Zeit-
schlitz und dies nur um zu prüfen ob der Lock frei ist um dann gleich wieder zu blockieren. Angenom-
men wir arbeiten mit 512 Threads so wird in diesem Fall 511 Mal geprüft ohne, dass ein Thread wirk-
lich weiterkommen würde. 

Im Fall von 2 CPUs kann logisch von einer Zweiteilung der Threads ausgegangen werden. Ein Thread 
bekommt also durchschnittlich doppelt so häufig einen Zeitschlitz und verlässt den kritischen Bereich 
deshalb potentiell schneller. Dabei ist zu beachten, dass bei der vorliegenden Methodensynchronisa-
tion der kritische Bereich nicht wie die Threads in zwei logischen Gruppen gesehen werden können. 
Befindet sich einer der vier abgebildeten Threads im kritischen Bereich so ist dieser für die verblei-
benden drei Threads gesperrt. Das (ineffiziente) durchprobieren aller Threads ob sie den Lock be-
kommen können kann hier durch die Aufteilung auf zwei CPUs ebenfalls doppelt so schnell gesche-
hen was dazu führt, dass derjenige Thread, der den Lock hält, schneller weitermachen kann um den 
kritischen Bereich zu verlassen. 

Die Dauer für die ein Lock gehalten wird ist eine sehr kritische Grösse weil es die Wahrscheinlichkeit 
erhöht, dass dadurch andere Threads blockiert werden. 
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7.4.2. Lock paritioning 

Durch „lock partitioning“ und „lock striping“ (siehe [1]) wird versucht die Locks so aufzuteilen, dass 
verschiedene kritische Bereiche entstehen. In Abbildung 1 existiert nur ein Lock für alle kritische Be-
reiche was einem wechselseitigen Ausschluss zwischen allen Threads entspricht. In unserer Anwen-
dung wäre die Verwendung von zwei Locks für die obere und untere Bildhälfte denkbar. Somit wären 
durchschnittlich nur die hälfte der Threads von einem gesperrten Lock betroffen was einer Halbierung 
der Blockierungswahrscheinlichkeit entsprechen würde. Im Beispiel für die Objektsynchronisation sind 
wir noch einen Schritt weiter gegangen und haben einen separaten Lock für jeden einzelnen Pixel 
erstellt. In diesem Fall schützt jeder Lock nur einen einzelnen Pixel vor konkurrierendem Zugriff. Da 
nie zwei Threads gleichzeitig auf denselben Pixel schreiben schlägt eine Lock-Anforderung nie fehl. 
Anhand der Ergebnisse vermuten wir sogar, dass die Sun HotSpot VM 1.5 diesen Lock bei der Abar-
beitung sogar entfernt da er gar nicht benötigt wird. 

Allerdings haben wir sogar bei diesem „feinen“ Objektlocking einen globalen Lock eingebaut den die 
JVM nicht entfernen kann: Den gemeinsamen Zugriff auf eine Counter-Variable. Hier zur Erinnerung 
der verwendete Code: 

    public void setRGB(int startX, int startY, int w, int h, 
                       int[] rgbArray, int offset, int scansize) { 
        synchronized (this) { 
            count++; 
        } 
        synchronized (locks[startX][startY]) { 
            super.setRGB(startX, startY, w, h, rgbArray, 
                         offset, scansize); 
        } 
    } 

Listing 2 Code für feines Locking (Objektsynchronisation) 

Die Synchronisation auf das this Objekt ist „global“ und erlaubt auch nur einem einzigen Thread den 
Eintritt in diese Region (wie bei der Methodensynchronisation). Allerdings ist dieser Bereich deutlich 
kürzer als die Abarbeitung von super.setRGB() die bei der Methodensynchronisation ebenfalls 
innerhalb des globalen Sperrbereiches lag. Dies reduziert die Wahrscheinlichkeit, dass zwei Threads 
gleichzeitig diesen Lock versuchen zu erhalten, deutlich. 

Die Ergebnisse Sprechen für sich. Auf Single-CPU Systemen skaliert diese Art des Lockings deutlich 
besser. Selbst mit 512 Threads ist keine messbarere Verlängerung der Berechnungszeit mehr zu 
verzeichnen. Auf 2 Prozessoren zeigt diese Art der Synchronisation einen ähnlichen Verlauf wie die 
Methodensynchronisation. Die benötigte CPU Zeit steigt bis 512 Threads um 18% und der Skalie-
rungsfaktor Sinkt von knapp 2 auf 1.63. Offenbar ist die feine Synchronisation auf Single-CPU Syste-
men deutlich besser geeignet und führt auf Zweiprozessorsystemen zu keiner Verschlechterung. 

7.4.3. CAS 

Der letzte Test galt hier dem noch vorhandenen globalen Lock bei der Zähler-Inkrementierung. Diese 
wurde nun durch eine CAS (Lock-frei) ersetzt: 

    public void setRGB(int startX, int startY, int w, int h, 
                       int[] rgbArray, int offset, int scansize) { 
        // increment counter using a CAS method. 
        atomicCount.incrementAndGet(); 
        synchronized (locks[startX][startY]) { 
            super.setRGB(startX, startY, w, h, rgbArray, 
                         offset, scansize); 
        } 
    } 

Listing 3 Code für CAS 
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Die Methode entspricht der Methode für feines Locking. Alleine der globale Lock wird nicht verwendet 
(synchronized(this)). An deren Stelle tritt die incrementAndGet() Methode einer AtomicIn-
teger Klasse. Die Funktionsweise von CAS kann in [1] nachgelesen werden. 

Wie erwartet entspricht das Ergebnis auf einer Single-CPU Maschine dem Ergebnis für feines Lo-
cking. Weder CPU- noch Berechnungszeit ändern sich in Grössenordnungen die nicht als Messrau-
schen bezeichnet werden können. Auf einer Mehrprozessor-Maschine trat aber eine Reduktion der 
CPU-Zeit und damit auch eine Reduktion der Berechnungszeit bei einer grossen Anzahl Threads ein. 
Bei 512 Threads stellte sich sowohl mit Methoden- als auch Objektsynchronisation auf unserer 2-CPU 
Plattform eine Erhöhung der CPU-Zeit und daran gekoppelt eine Erhöhung der Berechnungszeit um 
rund 20% ein. Mit CAS lag die Erhöhung der CPU-Zeit bei 512 Threads bei niedrigen 5%. In dersel-
ben Grössenordnung veränderte sich die Berechnungszeit. 

CAS bietet hier also bei einer sehr hohen Anzahl Threads eine bessere Skalierung (rund 15% Vorteil). 

Zu bemerken ist hier allerdings, dass die Länge der CAS Methode auch hier entscheidend für die Effi-
zienz derselben ist. In unserem Beispiel besteht die Methode aus wenigen Codezeilen: 

public final int incrementAndGet() { 
    for (;;) { 
        int current = get(); 
        int next = current + 1; 
        if (compareAndSet(current, next)) 
            return next; 
    } 
} 

Listing 4 CAS incrementAndGet() Methode 

Eine Eigenschaft von CAS ist, dass der Algorithmus in einer Schleife durchlaufen wird. Dadurch wird 
der Thread nie blockiert. Allerdings kann der Thread die Methode nur beenden, wenn zwischen 
get() und compareAndSet() der Wert nicht durch einen anderen Thread verändert wird. Ansons-
ten muss die gesamte schleife erneut durchlaufen werden. Versuche mit unserer Testklasse haben 
gezeigt, dass dies bei unserer Architekture mit rund 700'000 Pixel-Schreibvorgängen nur wenige hun-
dert Mal vorkommt. Der Zusatzaufwand durch den Ein- und Austritt bei synchronisierten Bereichen 
scheint hier massiv höher zu liegen als die wenigen fehlgeschlagenen compareAndSet() Aufrufe. 

Sind die CAS Algorithmen aber länger, dann steigt die Wahrscheinlichkeit, dass zwischen get() und 
compareAndSet() der Wert durch einen anderen Thread verändert wurde. Dies führt zu häufigeren 
Neudurchläufen der der Schleife wobei natürlich je nach Komplexität auch entsprechend mehr CPU-
Zeit reinvestiert werden muss. 

In [4] wurden Vergleiche zwischen Java Synchronisierung und CAS durchgeführt. Dabei hat sich ge-
zeigt, dass bei geringer bis mittlerer lock contention (konkurrierende Zugriffe) CAS besser skaliert. Bei 
sehr hoher lock contention ist aber die Synchronisierung effizienter. Dies hängt damit zusammen, 
dass bei hoher lock contention und vielen Threads viele Neudurchläufe der CAS-Funktion anfallen. 
Bei der Synchronisierung fällt dabei „nur“ der Aufwand für die Lock Anfrage und Lock-Abgabe an. 

Bei unserem Beispiel ist der Aufwand für ein Neudurchlauf der incrementAndGet() Schleife deut-
lich geringer als die Lock-Prüfung beim fein granulierten Locking. 
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7.5. Empfehlungen 

Als Faustregel sollten alle aufwändigen Berechnungen nach Möglichkeit auf mindestens so viele 
Threads wie verfügbare CPUs verteilt werden. Dadurch lässt sich im Optimalfall eine Skalierung um 
den Faktor n erreichen. Wobei n der Anzahl physikalischer CPUs entsprich. Je nach Häufigkeit und 
Dauer von eventuellen Blockierungen kann auch eine höhere Anzahl den Skalierungsfaktor erhöhen. 
Die Gesamtanzahl sollte aber nicht beliebig gross sein. Einerseits beeinträchtigt dies effizientes Sche-
duling und erhöht die Wahrscheinlichkeit für die gegenseitige Blockierung. Andererseits existiert auch 
ein Grenzwert bei dem in unseren Versuchen eine OutOfMemoryException auftrat (auch bei genü-
gend freiem Speicher). Ein sauberes Applikations-Design mit einer definierten Anzahl von Threads 
(z.B. realisiert über Worker Pools) ist dringend zu empfehlen. 

Der Programmierer muss darauf achten, dass sich die Threads nicht gegenseitig blockieren und zwar 
im Sinne von Deadlocks und Synchronisierung. Insbesondere sollte keine unnötige Synchronisation 
verwendet werden. Synchronisierte Blöcke sollten so kurz wie möglich gehalten werden. 

CAS kann häufig dabei helfen den Synchronisierungsaufwand zu verringern. Da CAS Algorithmen 
aber schwerer zu implementieren sind wird in [4] sogar empfohlen dies den Experten zu überlassen. 
Allerdings kann  durch die Verwendung von CAS-Methoden wie diejenigen der Atomic* Klassen 
CAS verwendet werden ohne den Algorithmus selber implementieren zu müssen. In unserem Beispiel 
hat sich der Einsatz von AtomicInteger mit einer 15% besseren Skalierung bezahlt gemacht und 
für eine beinahe lineare Skalierung bis 512 Threads gesorgt. 

Die Objektsynchronisation stellt oft einen guten Kompromiss zwischen Methodensynchronisation und 
CAS dar. Der Entwickler sollte darauf achten, dass ein Lock-Objekt nach Möglichkeit für einen mög-
lichst kleinen Teil der Daten verwendet wird (lock partitioning / lock striping). Insbesondere sollte ver-
mieden werden ein Lock-Objekt für mehrere Datenobjekte, die nicht zusammen modifiziert werden, zu 
verwenden. 

Vorsicht: Benötigt eine Methode den Lock auf zwei unterschiedliche Objekte (was durch lock partitio-
ning nötig werden kann) besteht die Gefahr von Deadlocks! Beispiel: 

public void doSomething() { 
    synchronized(object1) { 
        synchronized(object2) { 
            object1.setValue(object2.getValue()); 
        } 
    } 
} 
public void doSomethingElse() { 
    synchronized(object2) { 
        synchronized(object1) { 
            System.out.println(obect1 + object 2); 
        } 
    } 
} 

Listing 5 Gefahr von Deadlocks bei verschachtelter Synchronisierung 

Angenommen ein Thread ruft die Methode doSomething() auf und diese wird vor dem zweiten 
synchronized() Block unterbrochen (hält also den Lock auf object1. Ein zweiter Thread ruft 
doSomethingElse() auf, bekommt den Lock auf object2 und wird dann ebenfalls unterbrochen 
weil er den Lock auf object1 nicht bekommen kann (wird von einem anderen Thread gehalten). Nun 
benötigt jeder Thread eine Ressource, die nur ein anderer Thread freigeben könnte. Die Threads be-
finden sich in einem Deadlock. 
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7.6. Interpretation Testcase 10 

JOMP bietet eine semi-automatische Parallelisierung an. Der Mandelbrot-Algorithmus lässt sich durch 
einfügen von JOMP Direktiven im Source-Code relativ einfach parallelisieren. Die Testergebnisse sind 
zunächst vielversprechend. JOMP erzeugt nach dem Setzen der korrekten Thread-Anzahl selbständig 
die benötigten Worker-Threads und verteilt die for Schleife in gleich grossen Teilen an die Worker. 
Die automatische Parallelisierung erzeugt keine messbar grössere CPU-Last als die manuelle Thread-
Verwaltung. 

Unsere Messungen haben wir ohne Locking durchgeführt um den Fokus auf die Effizienz der JOMP-
Implementierung zu legen. 

Die Ergebnisse sind vergleichbar mit den Messwerten der eigenen Thread-Behandlung und skaliert 
sowohl mit der Anzahl der Threads als auch auf 1 bzw. 2 CPUs in gleichem Masse wie die manuelle 
Implementierung. 

Auf den ersten Blick scheint JOMP also eine gute Alternative zu sein bestehende Programme ohne 
Multi-Thread Architektur zu parallelisieren ohne grössere Re-Designs in Angriff nehmen zu müssen. 

Die Praxis sieht aber leider etwas anders aus. Die JOMP Implementierung birgt (zumindest zum jetzi-
gen Zeitpunkt) noch einige Tücken. Beispielsweise mussten wir feststellen, dass der JOMP-Compiler 
nur dann fehlerfreien Java-Code aus den JOMP-Klassen generiert wenn der Konstruktor alle Parame-
ter in gleichnamige Klassenvariabeln schreibt. Werden die Parameter beispielsweise nur zur Erzeu-
gung von klasseninternen Objekten verwendet lässt sich die von JOMP erzeugte Java-Klasse auf-
grund von Kompilierungsfehlern nicht übersetzen. 

Auch beim Design der Applikation müssen unter Umständen Änderungen vorgenommen werden. So 
mussten wir beispielsweise sicherstellen, dass nur eine einzige Instanz der JOMP-generierten Klasse 
aktiv ist. Bei mehreren Instanzen treten JOMP-interne Thread Verwaltungs-Fehler auf (Exceptions). 

Beim Test ist uns dann aufgefallen, dass der Thread-Join am Ende der parallelen Region offenbar per 
Busy-Waiting realisiert wird. Somit bleibt die CPU-Last nach dem Ende der Berechnungen auf 100%. 
Diese Tatsache hat auch unsere CPU-Zeit Messungen etwas erschwert. Bei der Verwendung eines 
einzigen Threads tritt das „Problem“ nicht auf weil hier keine Verteilung und somit auch kein Join der 
Threads stattfindet. 

All diese Probleme könnten auch durch den Beta Status (wir haben Version 1.0 Beta verwendet) er-
klärbar sein. Zum jetzigen Zeitpunkt können wir JOMP aufgrund der erwähnten Probleme nicht emp-
fehlen. Insbesondere bietet die Java API bereits viele Möglichkeiten zur Parallelisierung wie bei-
spielsweise Worker Pools, Queues, Locks, Barrieren. Und Latches. Trotzdem gibt JOMP einen guten 
Einblick in die OpenMP Programmierung und wir können uns gut vorstellen, dass OpenMP eine einfa-
che und schnelle Art der Parallelisierung von C/C++ und Fortran Programmen anbietet. 

  2006-11-16 



Diplomarbeit  Seite 20 

8. Einsatzgebiete 
Nicht alle Anwendungen bieten dieselben Optimierungsmöglichkeiten und lassen sich so einfach pa-
rallel verarbeiten wie unsere Mandelbrot Testklasse. Da stellt sich natürlich die Frage wo sich dieser 
Aufwand lohnt und wo nicht. Die folgende Tabelle teilt die Anwendungen grob nach Interaktivität und 
Berechnungsdauer auf: 

Tabelle 5 Anforderungen an die Verarbeitungsgeschwindigkeit 

 Interaktiv Nicht interaktiv 

Lange Berechnungsdauer ++ + 

Kurze Berechnungsdauer - -- 

Unter den interaktiven Programmen sind dabei beispielsweise typische Desktop Anwendungen wie 
Office oder Bildbearbeitung zu verstehen. Zur Kategorie der nicht interaktiven Programme zählen im 
Hintergrund ablaufende Programme und Dienste. 

Es liegt in der Natur des Benutzers, dass er nicht gerne auf die Maschine wartet. Deshalb ist eine 
schnelle Bearbeitung insbesondere bei interaktiven Programmen sehr wichtig um flüssiges Arbeiten 
zu ermöglichen. Für nicht-interaktive Programme ist dies weniger wichtig, da diese problemlos auch 
über längere Zeit laufen dürfen. Wichtig ist bei dieser Unterscheidung, dass einige auf den ersten 
Blick nicht-interaktive Anwendungen wie Webserver aus Sicht des Benutzers interaktive Programme 
darstellen, da der Benutzer auf das Resultat warten muss. 

Trotzdem macht auch für nicht-interaktive Anwendungen eine Optimierung mit dem Fokus der paralle-
len Verarbeitung häufig sinn um die Effizienz der (teuren) Hardware zu verbessern. 

Bei kurzer Berechnungsdauer rechtfertigt eine Optimierung zur parallelen Verarbeitung häufig nicht 
den Aufwand. Beispielsweise macht es selten Sinn die Initialisierung einer Dialogbox parallel zu ver-
arbeiten. Hingegen macht es durchaus Sinn die Anwendung eines aufwändigen Filters einer Bildbear-
beitung zu verteilen da der Benutzer üblicherweise auf das Ergebnis warten muss bis er weiter arbei-
ten kann. 
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9. Allgemeine Bemerkungen 
Unsere Tests wurden natürlich auf einem Paradebeispiel für parallele Verarbeitung durchgeführt. Die 
Berechnung der Mandelbrot-Menge lässt sich ohne Reibungsverluste und völlig unabhängig auf meh-
rere CPUs oder gar auf mehrere Rechner verteilen. In der Praxis ist die leider nicht immer möglich. In 
den meisten Fällen können Aufgaben aber durch geschicktes Applikations-Design auf mehrere 
Threads verteilt werden. Im einfachsten Fall werden einfach die anfallenden Berechnungen nicht 
nacheinander sondern parallel verarbeitet. Dabei erschweren natürlich Abhängigkeiten diese Vertei-
lung. Generell zeigen unsere Messungen aber, dass die parallele Verarbeitung weit mehr Leistung 
bringt als durch die Synchronisation wieder aufgehoben wird. Immerhin lässt sich durch die Verteilung 
aufwändiger Berechnungen auf 2 CPUs im Optimalfall nahezu die doppelte Leistung erzielen. 

Ein weiterer, allgemeiner Pluspunkt für Multi-CPU/Multi-Core Systeme liegt darin, dass heutige Multi-
tasking Betriebssysteme selten nur ein einziges Programm ausführen. So steht unter Umständen 
selbst für ein Single-Threaded Programm mehr CPU-Leistung zur Verfügung als auf einem Multi-
CPU/Multi-Core System. Angenommen im Hintergrund läuft gerade die Festplatten-Defragmentierung 
oder ein Video-Encoder und im Vordergrund unsere Mandelbrot Berechnung mit nur einem Thread. In 
diesem Fall kann die Mandelbrot-Berechnung durch intelligentes Scheduling bis zu maximal 50% der 
zur Verfügung stehenden Ressourcen nutzen. Die restlichen 50% können dann von den anderen Pro-
grammen genutzt werden. 

Der Alltag auf den meisten Desktop-Rechnern sieht aus der Sicht einer CPU aber eher langweilig aus. 
Die meiste Zeit verbringt der Prozessor dabei „schlafend“. Also warum braucht man dann gleich zwei 
oder gar noch mehr wartende Prozessorkerne? Die Antwort ist einfach: Für den Fall in dem die Leis-
tung benötigt wird! Dabei zählen Microsoft Office Anwendungen sicher nicht zu diesen Killer-
Applikationen. Diese begnügen sich unter Windows XP auch gerne mit einer 1GHz CPU. Häufig wer-
den hier multimediale Anwendungen genannt doch wer hört schon gleichzeitig duzende MP3 Streams 
und sieht sich gleichzeitig einen Film in HDTV Qualität an? Selbst die Dekodierung eines MPEG2 
Datenstroms zur DVD-Wiedergabe erledigt ein 600MHz Prozessor ohne Murren. Bei HDTV sieht die 
Welt dann schon wieder etwas anders aus. Hier werden wirklich schnelle Prozessoren benötigt. Man 
darf sich hier aber zu Recht fragen, ob ein einzelner, schnellerer Prozessor nicht besser wäre als 
mehrere (eventuell langsamere). Die Antwort darauf liegt in den bereits in der Basisanalyse ([1]). Die 
physikalischen Grenzen der Taktratenerhöhung treiben die Herstellungskosten in die Höhe. Somit ist 
es günstiger mehrere Kerne anzubieten als die einzelnen Kerne noch höher zu takten. 

Um beim Beispiel HDTV-Decodierung zu bleiben würde bereits eine Trennung der Audio- und Video 
Decodierung eine gewisse Verteilung bringen. Da die Video-Decodierung dabei den Löwenanteil dar-
stellt bietet sich eine Parallelisierung des Video-Algorithmus ebenfalls an. Dies ist aber je nach Kom-
plexität des Algorithmus mit etwas Denksport verbunden. 

Ähnlich sieht die Situation bei Spielen aus. Die meisten aktuellen Titel arbeiten immer noch Single-
Threaded und laufen auf höher getakteten Single-Core CPUs somit schneller. Dies wird sich in ab-
sehbarer Zeit allerdings ändern. Neu angekündigte Titel werben bereits häufig mit dem Attribut „Multi-
Core Unterstützung“ und meinen dabei meist die Auslagerung von KI-, Sound- oder Grafik-
Berechnungen in eigenständige Threads. Das Attribut alleine sagt allerdings noch nichts über die Ska-
lierung und die Effizienz der Verteilung aus und müsste individuell getestet werden. 

Weitere Einsatzgebiete liegen natürlich im wissenschaftlichen Bereich. Anwendungen wie Maple, Ma-
thematica oder Matlab erfordern starke Rechenwerke. Es bleibt aber im Einzelfall abzuklären, ob die 
favorisierte Anwendung auf Multi-CPU/Multi-Core Umgebungen optimiert ist. 
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10. Abschliessende Bemerkungen 
Die Frage, ob man sich einen Multi-Core Prozessor kauft oder nicht wird sich in absehbarer Zeit gar 
nicht mehr stellen weil kaum mehr neue Single-Core Prozessoren auf den Markt kommen. Höchstens 
im Tiefpreis-Segment dürften diese noch einige Zeit zu bekommen sein. 

Wie wir mit unseren Simulationen unter Last beweisen konnten bietet ein Multi-Core/Multi-CPU Sys-
tem auch bei ohne Optimierung (Single-Threaded) einige Vorteile. Insbesondere wenn mehrere Pro-
gramme gleichzeitig CPU-Leistung benötigen. Dieser Fall hängt natürlich stark vom jeweiligen An-
wenderprofil ab. Nicht unbedeutend kann dabei auch die vom Betriebssystem erzeugte Last sein. 
Windows XP führt beispielsweise bei geringer Systembelastung automatisch Optimierungen wie In-
dexaktualisierungen oder Defragmentierungen durch. Bei Maschinen mit mehreren Prozessoren sind 
solche Optimierungen auch während der Benutzung ohne wesentliche Beeinträchtigung möglich so-
fern ein Prozessor nicht bzw. kaum genutzt wird. Zu beachten ist dabei aber die Last auf gemeinsam 
genutzten Ressourcen. Insbesondere die Festplatte ist hier zu nennen. Eine Defragmentierung im 
Hintergrund könnte die Festplattenleistung merklich beeinträchtigen was wiederum (ungewollt) das 
Vordergrundprogramm beeinflussen kann. 

Insgesamt kann man sagen, dass es nie verkehrt ist mehr Rechenleistung zum (fast) gleichen Preis 
zu bekommen. Allerdings sollte man die gebotene Rechenleistung nicht überbewerten und im Einzel-
fall abklären ob die verwendete Software davon profitiert. Im schlimmsten Fall kann die gewünschte 
Anwendung einen Dual-Core Prozessor nur zur hälfte ausnutzen. Hier sind also die Software-
Hersteller gefragt. In dieser Arbeit haben wir einige Optimierungen und Technologien vorgestellt, die 
den Entwicklern mächtige Werkzeuge zur Verteilung der Aufgaben in die Hand geben. Ob diese ge-
nutzt werden liegt allerdings in den Händen der Entwickler. 

Dass die vorgestellten Werkzeuge (insbesondere Java Threads unter Windows XP) sehr effizient ar-
beiten konnten wir eindrucksvoll nachweisen. Unsere Empfehlung lautet daher ganz klar die Optimie-
rung rechenintensiver Aufgaben auf die parallele Verteilung. Optimierungen mittels Techniken wie 
TBB oder OpenMP/JOMP können sehr gut dazu beitragen bestehenden Code zu parallelisieren. Der 
Einsatz von POSIX/Win32/Java Threads bedeutet häufig etwas mehr strukturelle Änderungen und 
unter Umständen ein Re-Design der Anwendung bzw. Anwendungsteilen. Beim Design neuer Anwen-
dungen sollte deshalb darauf geachtet werden, dass rechenintensive Teile parallel durch mehrere 
Recheneinheiten bearbeitet werden können. Nur so kann sichergestellt werden, dass die Bearbei-
tungszeit und somit die Wartezeit auf die Maschine so kurz wie möglich gehalten wird. 
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11. Glossar 
Tabelle 6 Glossar 

Begriff Beschreibung 

Affinität Bezeichnet die Zuordnung eines Prozesses/Threads zu physikalischen Recheneinhei-
ten. Durch die Definition einer Affinitätsmaske kann gesteuert werden auf welchen 
Recheneinheiten die Anwendung ausgeführt werden kann. 

Siehe Kapitel Error! Reference source not found.. 

AMD Advanced Micro Devices; Hersteller von Mikroprozessoren. 

API API (Application Programming Interface) defniert eine Schnittstelle zwischen verschie-
denen Software Systemen. Eine API definiert typischerweise eine Reihe von Metho-
den, Parametern, Datentypen und Datenfeldern. 

Berech-
nungszeit 

Real vergangene Zeit, die ein Prozess/Thread benötigt um eine Aufgabe zu erledigen. 
Dies schliesst die gesamte Verarbeitungsdauer der Aufgabe ein und entspricht der 
Wartezeit, die der Benutzer auf ein Ergebnis warten muss. 

Vergleiche auch mit „CPU-Zeit“. 

CAS Compare and Swap bzw. Compare and Set bezeichnet eine atomare (meist hardware-
unterstützte) Operation in der ein gespeicherter Wert mit dem vermuteten Wert vergli-
chen wird. Stimmt dieser überein, so wird ein neuer Wert gesetzt. Ansonsten wird 
nichts getan. CAS Funktionen erlauben Lock-freie Algorithmen. 

Siehe Kapitel 7.4.3. 

CPU Abkürzung für Central Processing Unit. Wird synonym für die deutsche Bezeichnung 
Hauptrpozessor bzw. Prozessor verwendet. 

CPU-Zeit Die Gesamtzeit, die von einem Prozess/Thread für die Ausführung in Anspruch ge-
nommen wird. Also die Gesamtzeit in der ein Prozess/Thread auf der Hardware ausge-
führt wird. 

Hinweis: Bei einem 2-Prozessor-System kann ein Programm mit einer Laufzeit von 10 
Sekunden durchaus 20 Sekunden CPU-Zeit „verbrauchen“ da die 10 Sekunden über 
zwei Threads auf beiden CPUs belegt werden. 

GUI Graphical User Interface; Bezeichnet die Darstellung der Benutzeroberfläche durch 
grafische Elemente wie Knöpfe, Symbole, Menüs und Zeichnungen. 

Hyper-
Threading 

Eine von Intel bei einigen Pentium 4 Modellen eingeführte Technologie zur verbesser-
ten Auslastung der internen Pipeline. HyperThreading stellt gegenüber dem Betriebs-
system einen zweiten (virtuellen) Prozessor zur Verfügung. Dieser ist aber physikalisch 
gar nicht vorhanden. Instruktionen an diesen Prozessor können die Auslastung der 
internen Rechen-Einheiten des Pentium 4 verbessern. 

JOMP Java-basierende Implementierung von OpenMP-Ähnlichen Direktiven zur Parallelisie-
rung. 

Siehe Kapitel 7.6. 

JVM Die Java Virtual Machine ist ein Interpreter für Java Bytecode. Die JVM ist dabei das 
Bindeglied zwischen Betriebssystem und den plattformunabhängigen Java Anwen-
dungen. 

NUMA Non-Uniform Memory Access (NUMA) bezeichnet eine Architektur in der jede Verar-
beitungseinheit lokalen Speicher besitzt und durch Kommunikation mit den anderen 
Verarbeitungseinheiten auch deren Speicher ansprechen kann. 
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Begriff Beschreibung 

Scheduling Bezeichnet die Tätigkeit des Betriebssystems beim Preemptiven Multitasking die Pro-
zessorzeit nach einem bestimmten Algorithmus den einzelnen Ausführungseinheiten 
zuzuweisen (auf Ebene Thread oder Prozess). 

TBB Intel Thread Building Blocks. Eine C++ Bibliothek die Methoden zur parallelen Verar-
beitung bereitstellt (Schleifenparalleisierung). 

Thread Ein leichtgewichtiger Prozess. Ein Thread teilt den Adressraum mit dem Prozess zu 
dem er gehört. Dadurch werden einerseits die Kommunikation und andererseits der 
Kontextwechsel beschleunigt. 

Siehe Kapitel 7. 
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