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1. Management Summary

Die vorliegende Basisanalyse legt den Grundstein der Diplomarbeit ,Java-Thread-Skalierung®. Sie
reprasentiert das notwendige Basiswissen aus dem Themenbereich ,Skalierung von multithreaded
Applikationen“ und vermittelt dem Leser spezifische Aspekte, welche diese beeinflussen.

Gestlitzt auf eine layerorientierte Vorgehensweise ist dieses Dokument gegliedert in die Themenbe-
reiche Hardware, Betriebssystem, Applikation und Java-Virtual-Machine. Fiir jeden Bereich wurden
Hintergrundinformationen rechechiert und in komprimierter Form dokumentiert. Faktoren die einen
direkten oder indirekten Einfluss auf den weiteren Verlauf dieser Diplomarbeit haben, sind im Ab-
schluss jedes Themenbereichs aufgefiihrt. Sie werden entsprechend ihrer Bedeutung in die nachfol-
genden Phasen ,Evaluation“ sowie ,Umsetzung/Implementation” eingearbeitet.

Die Skalierung eines Systems beschreibt die Eigenschaft, durch verdndern von Systemressourcen
wie bspw. CPU die Leistung gezielt zu veréandern. Hierbei kann vertikale von horizontaler Skalierung
unterschieden werden. Die Basisanalyse beschrankt sich auf die Untersuchung der vertikalen Varian-
te, bei der Einflussgréssen in Bezug auf Single-Nodes (bspw. Server- oder Desktop-Systeme) be-
schrieben werden.

Hardware

Die Analyse im Bereich HW hat gezeigt, dass die parallele Verarbeitung von Programmen auf diesem
Layer aufwandig und komplex ist. Es ist fir Entwickler schwierig oder kaum nachvollziehbar wie ,ihre*
Instruktionen auf der HW-Ebene ausgefiihrt werden. Die Einflussnahme auf die Verarbeitung be-
schréankt sich auf HW-nahe Sprachen wie C oder C++ und ist fiir Java-Programmierer sehr klein.

Chiparchitekturen sind komplexe Gebilde, die mehrere Aspekte/Technologien in sich vereinen. Die
Menge und Anordnung von Cores, die Art wie die Speicheranbindung erfolgt oder Instruktionen abge-
arbeitet werden, lassen viele variable Chipdesigns zu. Die Analyse zeigt die Anwendung relevanter
Technologien anhand konkreter Chipdesigns wie Intel Pentium4, Intel Core/Core2, AMD Opteron oder
SUN UltraSparc T1. Die Fokussierung auf eine spezifische Eigenheiten einer Architektur wie bei-
spielsweise die Anzahl FPU Einheiten oder die Anzahl Pipelines macht meist wenig Sinn da sie auf-
wendig ist, meist kleine Verbesserungen mit sich bringt und letztendlich auch die Portierbarkeit einer
Anwendung negativ beeinflusst.

Obwohl Java die hardwarenahe Programmierung nicht zulasst bietet sie doch den Vorteil, dass der
Bytecode zur Laufzeit mittels Just-in-Time (JIT) Compiler in Maschinencode umgewandelt wird. Somit
ist es mdglich ein plattformunabhangiges Programm zur Laufzeit auf Hardware-Spezifische Eigenhei-
ten hin zu optimieren. Folgende Aspekte und Technologien im Bereich Hardware/Chipdesign haben
direkten oder indirekten Einfluss auf die Umsetzungsphase und werden entsprechend beriicksichtigt:

Einfluss Aspekt/Technologie
Direkt SMP, CMP, CMT
Indirekt UMA/NUMA, Skalar/Superskalar, Pipeline

Betriebssystem

Die Anwendung von Threads auf Level Betriebssystem bringt den Vorteil der einfachen Erzeugung,
Interprozesskommunikation oder schnellen Kontextwechsel dieser leichtgewichtigen Prozesse. Dabei
sind jedoch zunehmende Verwaltungs- oder Synchronisationsaufwendungen zu bertcksichtigen.
Windows XP implementiert das Thread-Model bereits auf Kernel-Ebene. Bei einer 1:1-Zuordnung der
Anwendungs-Threads laufen im gleichen Prozesskontext mehrere Kernel-Level Threads die vom Ker-
nel direkt verwaltet werden. Sie kénnen so auf mehrere Kerne verteilt werden. Die Java-Virtual-
Machine (JVM) bildet als Layer zwischen Betriebssystem und Applikation die Laufzeitumgebung eines
Java-Threads und bestimmt, ob diese direkt (Native Threads) oder indirekt (Green Threads) auf
Threads des Betriebssystems abgebildet werden.

Unter Windows 2000/XP mit einem ,priority-driven — preemtive scheduling”-System wird die Zuord-
nung der Rechenzeit auf Threads Uber die Basisprioritat dieser Threads gesteuert. Sie kann direkt
Uber die Win32-API beeinflusst werden. Die indirekte Beeinflussung ist Uber die Priorisierung der Ja-
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va-Threads maéglich unter Verwendung von Native-Threads (durch die JVM). Wie Prioritaten der Java-
Ebene auf Prioritaten der Betriebssystemebene abgebildet werden, soll mit dieser Arbeit ebenfalls
gezeigt werden.

Eine weitere Mdglichkeit das Laufzeitverhalten in Bezug auf Threads zu beeinflussen, ist mit der Affini-
tat gegeben. Sie ermdglicht die explizite Zuordnung von Prozessoren auf Level Prozess oder Threads
und kann ebenfalls Uber die Win32-API gesteuert werden. Die direkte Zuordnung lber die Java-API ist
nicht méglich. Alternativ kénnen aber lber Systemtools entsprechende Eingriffe vorgenommen wer-
den. Folgende Aspekte und Technologien im Bereich Betriebssystem werden weiter verfolgt:

Einfluss Aspekt/Technologie

Direkt Designprinzip Threads, WIN-32 Thread
Indirekt Scheduling, Affinitat

Applikation

Der Bereich Applikation beleuchtet Techniken und Probleme der parallelen Programmierung. Dabei
sind Standards wie POSIX Threads, OpenMP, Thread Buliding Blocks (TBB) oder Message Passing
Interfaces (MPI) Technologien, die explizit fir eine parallele Programmierung entwickelt wurden oder
diese unterstltzen. Fir die weitere Betrachtung sind Posix Threads sowie OpenMP von Bedeutung.
Letzteres wurde fir Java im Projekt JOMP umgesetzt und steht fur diese Arbeit zu Verfigung. TBB
besteht aus einer reinen C/C++ Bibliothek und MPI ist hauptsachlich fur eine horizontale Skalierung
interessant.

Einfluss Aspekt/Technologie
Direkt POSIX Threads, OpenMP
Indirekt TBB, MPI

Java Virtual Machine

Der Bereich JVM bietet einen Uberblick tiber die Java-API, die mit Threads ein funktionales und einfa-
ches Instrument der parallelen Programmierung bietet. Da dem Java-Entwickler nur diese API zu Ver-
fligung steht, ist der direkte Zugriff auf Betriebssystem-Funktionalitat oder gar die Hardware nicht
moglich. Konkret liegt es an der JVM die Java-Anwendungen mdglichst effizient auf der vorhandenen
Hardware ablaufen zu lassen.

Trotz diesem eingeschrankten Handlungsspielraum fiir einen Java-Entwickler kénnen im Sinne einer
optimalen bzw. effizienten Programmierung spezifische Techniken und Packages angewendet um
ideale Voraussetzungen fiir die Verteilung von Threads zu schaffen. Das Kapitel beleuchtet in diesem
Zusammenhang beispielsweise das Package java.util._concurrent in Java 5, die Reentrant-
Lock-Klasse oder wichtige Methoden der Atomiclnteger Klasse aus dem Package ja-
va.util_concurrent.atomic.

Da eine multithreaded Applikationen unweigerlich mit dem Thema Synchronisation verbunden ist, wird
sie in diesem Abschnitt ausfiihrlich hinterfragt. Neben der bekannten Block- oder Methoden-
Synchronisation sind auch Themen wie ,Unterbrechbare Locks", ,Granularitédt von Locks" oder gar
.Lockfreie Implementierungen (Compare and Swap; CAS)“ Gegenstand dieser Analyse.

Die Performance einer Java-Applikation héngt nicht nur von der effizienten Programmierung der Java-
Routinen ab sondern auch vom effizienten Zusammenspiel von Java-Applikation, Java Virtual Machi-
ne (JVM), Betriebssystem und Hardware. Fur spezifische Bereiche wie JIT-Compiler, Thread-Modell
oder Garbage Collection werden einige Optimierungsmdglichkeiten aufgezeigt.

Einfluss Aspekt/Technologie
Direkt Java Threading, JOMP
Indirekt JVM Optimierung
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3. Dokumentinformationen

3.1. Referenzierte Dokumente

Tabelle 1 Referenzierte Dokumente

Referenz

Beschreibung

(1]
(2]
(3]
(4]
(5]

Diehl Roger, Parallele und verteilte Systeme, Sechste Auflage, 2005
Oliver Lau, c't Ausgabe 15/2006, Seite 218ff, OpenMP
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Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1
Diplomarbeit 2006, Aufgabenstellung V1.0 vom 12. Oktober 2006

3.2. Definitionen und Abklrzungen

Tabelle 2 Abklirzungen

Abkirzung Beschreibung

AMD Advanced Micro Devices

API Application Programming Interface
ASMP Asymmetric Multi Processing

CAS Compare And Swap / Compare And Set
CIsC Complex Instruction Set Computing
CMP Chip Multi Processing

CMT Chip Multi Threading

CPU Central Processing Unit

DDR-RAM Double Data Rate Random Access Memory
EIST Enhanced Intel Speed Step Technology
GC Garbage Collection

GPL Gnu Public License

IPC Inter Process Communication

JIT Just In Time Compiler

JOMP Java OpenMP

JVM Java Virtual Machine

MMX Multimedia Extension

MPI Message Passing Interface
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NUMA
NUMA
POSIX
POSIX
RD-RAM
RISC
SD-RAM
SIMD
SMP
SPARC
SSE
TBB
TDP
UMA
UMA

Non-Uniform Memory Architecture
Non-Uniform Memory Access

Portable Operating System Interface
Portable Operating System Interface for UniX
Rambus Dynamic Random Access Memory
Reduced Instruction Set Computing
Synchronous Dynamic Random Access Memory
Single Instruction Multiple Data

Symmetric Multi Processing
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Uniform Memory Architecture
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3.3. Links

Tabelle 3 Links

Referenz Beschreibung

[AMD64] Wikipedia, AMDG64: http://de.wikipedia.org/wiki/AMD64
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http://www.tmurgent.com/WhitePapers/ProcessorAffinity.pdf

Wikipedia, Deadlock: http://en.wikipedia.org/wiki/Deadlock

Devx, Intel Threading Tools and OpenMP:
http://www.devx.com/go-parallel/Article/32724

GNU, GCC, http://gcc.gnu.org/

Sun, HotSpot Virtual Machine: http://java.sun.com/javase/technologies/hotspot/

Sun, HotSpot Garbage Colleciton Tuning with the 5.0 Java Virtual Machine:
http://java.sun.com/docs/hotspot/qc5.0/gc_tuning_5.html

Sun, HotSpot VM Options: http://java.sun.com/docs/hotspot/VMOptions.html

Sun, HotSpot Threading: http://java.sun.com/docs/hotspot/threads/threads.html

Wikipedia, Hyper-Threading: http://de.wikipedia.org/wiki/Hyper-Threading

Wikipedia, HyperTransport: http://en.wikipedia.org/wiki/HyperTransport

Intel, Compilers :

http://www.intel.com/cd/software/products/asmo-na/eng/compilers/

Intel, Thread Building Blocks 1.0 for Windows, Linux and Mac OS :

http://www.intel.com/cd/software/products/asmo-na/eng/294797.htm

Sun, Java API Reference: http://java.sun.com/reference/api/

Mustafa M. Tikir, NUMA-Aware Java Heaps for Server Applications:
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4. Einleitung

4.1. Der Begriff der Skalierung

Mit der Skalierbarkeit eines Systems meint man allgemein die Fahigkeit die Leistung durch hinzufligen
bzw. entfernen von Ressourcen zu veradndern. Im Optimalfall ist die Skalierung linear. Dies wirde
bedeuten, dass eine Anwendung in einem System mit doppelten Ressourcen doppelt so schnell arbei-
ten kann.

Skalierbarkeit sowohl auf Hardware- wie auch auf Software-Ebene ein gewinschtes Attribut. Insbe-
sondere sind bei der Entwicklung einer Applikation selten exakte Daten (ber die spatere Lastsituation
vorhanden. Reicht die Leistung der Applikation nicht aus kann dies durch die Erweiterung des Sys-
tems (z.B. Hardware-Ausbau oder hinzufiigen weiterer Cluster-Nodes) geschehen. Ist die Anwendung
aber nicht skalierbar, so kann dadurch kein oder nur ein geringer Leistungszuwachs (im Extremfall
sogar eine Leistungsverminderung) eintreten.

Dabei ist die Skalierung grundsatzlich in zwei Kategorien unterteilbar:
e Vertikale Skalierung
e Horizontale Skalierung

Unter dem Begriff der vertikalen Skalierung versteht man die Ressourcenerweiterung eines einzelnen
Knotens (engl. Node) um dessen Leistung zu erh6hen. Diese Form der Skalierung ist essentiell wich-
tig fur Applikationen, die auf einem einzigen Knoten ausgefiihrt werden. Beispielsweise fur Single-
Node Server oder Desktop Anwendungen.

Unter dem Betriff der horizontalen Skalierung versteht man in der Software-Technik die Mdglichkeit
weitere Knoten (engl. Nodes) zum System hinzuzufligen um die Leistung zu erhdhen. Hierbei spricht
man auch von der Skalierung von verteilten Systemen wie High-Performance Cluster oder Grid.

Im Optimalfall ist eine Anwendung naturlich sowohl vertikal als auch horizontal skalierbar. Insbesonde-
re wenn nicht alle Knoten tber dieselben Ressourcen verfligen ist eine vertikale Skalierung auf den
einzelnen Knoten auch dort wichtig.

In unserer Arbeit werden wir uns auf die vertikale Skalierung von Software konzentrieren. Insbesonde-
re geht es um die Ausleuchtung der Skalierung auf modernen Multi-Core bzw. Multi-Prozessor Syste-
men.

Weiterfiihrende Informationen:
e Wikipedia, Scalability: [SCALABILITY]
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4.2. Warum Uberhaupt Parallelisierung?

Die Parallelisierung basiert auf den Prinzip, dass sich eine Aufgabe meistens in mehrere Teilaufgaben
zerlegen lasst, die dann unabhangig voneinander abgearbeitet werden kénnen. Da die verteilten Teil-
aufgaben dann gleichzeitig abgearbeitet werden kann so das Resultat schneller zur Verfiigung stehen.

v| V=R*B

X=(A*B) + (C/D) > X=V+W

A w=c/D

Abbildung 1 Grundprinzip paralleler Verarbeitung

Der Nachteil der parallelen Verarbeitung liegt hier in der Synchronisation der Aufgaben und der Kon-
solidierung der Teilresultate. Haufig sind die Teilaufgaben auch nicht vollstindig ganz unabhéangig zu
erledigen sondern bendtigen Zwischenresultate anderer Teilaufgaben. Im unginstigsten Fall kann
diese Synchronisation und Konsolidierung mehr Zeit in Anspruch nehmen als durch die Parallele Ver-
arbeitung eingespart wird.

Trotz diesen Problemen gewinnt die parallele Verarbeitung von Informationen aktuell immer mehr an
Bedeutung. Dies liegt einerseits daran, dass die Hardware-Hersteller an physikalische Grenzen stos-
sen was die Verarbeitungsgeschwindigkeit der Recheneinheiten angeht. Hier spielen Faktoren wie
Strukturgréssen, Schaltgeschwindigkeiten von Transistoren und Verlustleistung eine wesentliche Rol-
le. Aktuell geht der Trend klar weg vom Gigahertz-Rennen hin zu mehr und intelligenteren Verarbei-
tungseinheiten. Dadurch setzt sich auch das in der Informatik bekannte ,Mooresche Gesetz" (siehe
auch [MOORE]) trotz physikalischer Grenzen fort. Es besagt, dass die Komplexitat von integrierten
Schaltkreisen sich etwa alle 18 Monate verdoppelt.

Die Parallele Verarbeitung an sich ist ein Konzept, welches schon sehr lange existiert. Schon friih hat
man erkannt, dass gewisse Aufgaben in externe Recheneinheiten ausgelagert werden kénnen um die
Haupteinheit (CPU) zu entlasten. Heutige Systeme besitzen eine Vielzahl von Prozessoren, die alle in
einem gewissen Masse unabhéangig voneinander arbeiten. Als Beispiele seien hier Grafikprozessoren,
Netzwerkprozessoren, Hardware-RAID-Controller oder auch Sound-Prozessoren genannt. Diese Ver-
teilung der Aufgaben an unterschiedliche Hardware wird auch asymmetrisches Multi-Prozessing ge-
nannt (siehe Kapitel 5.2).

Diese unterscheiden sich aber in so fern von Multi-Core bzw. Multi-Prozessor Systemen, dass sie alle
eine spezialisierte Aufgabe erfillen und dem Hauptprozessor diese Aufgabe abnehmen kénnen. Das
Hauptprogamm wird nicht aufgeteilt und lauft als einzelner Ausfiihrungsstrang auf dem Prozessor ab.

Da Multi-Core Prozessoren haufig mit niedrigeren physikalischen Taktraten betrieben werden als Sin-
gle-Core Prozessoren werden Anwendungen, welche nur eine Recheneinheit benutzen, durch deren
Einsatz tendenziell langsamer. Die Gesamtleistung des Prozessors liegt aber aufgrund mehrfach vor-
handener Recheneinheiten héher. Die Kunst der Programmierung besteht nun darin die anstehenden
Aufgaben sinnvoll auf die zur Verfliigung stehenden Einheiten zu verteilen um schnellstmdglich zum
Ergebnis zu kommen.

Weiterfihrende Informationen:
e Wikipedia, Parallel_computing: [PARALLELISM]
e Wikipedia, Mooresches Gesetz: [MOORE]
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4.3. Skalierung als System

Aspekte

Hardware Testing
(Prozessor-Architekturen SMP)/ \ (Verfahren u. Parameter)
Betriebssysteme l Thread- * Tools

Skalierung

(Threadkonzepte u. -kontrolle) *

- N
Applikationen

(Konstrukte, Libraries, Pattern)

I (Messbarkeit u. Sichtbarkeit)

/

d

Testklassen
(Implementierung Konzepte)

Resultate
(Auswertung u. Interpretation)

Abbildung 2 Skalierung als System

Zum Begriff der Skalierung gehoren Aspekte der Hardware, des Betriebssystems und der
Applikationen. Dieses Dokument beleuchtet all diese Aspekte:

e Hardware: Siehe Kapitel 5.
e Betriebssysteme: Siehe Kapitel 6.
e Applikationen: Siehe Kapitel 0 (allgemein) und Kapitel 8 (Java).

Auf der anderen Seite steht die Belegbarkeit der Skalierbarkeit anhand von Tests. Dazu werden
einerseits Verfahren und Parameter als auch wichtige Tools kurz erwahnt. Auf der Applikationsebene
liegt der Fokus in dieser Hinsicht auf der Implementierung und allgemeinen Konzepten der
Skalierbarkeit.
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5. Hardware

Dieses Kapitel vermittelt einen Eindruck Uber die Architektur aktueller Mikroprozessor-Systeme. Die
Ubersicht soll dabei helfen die Zusammenhange und Maglichkeiten der Programmierung solcher Sys-
teme besser zu verstehen. Dabei liegt der Fokus auf den Hardware-Aspekten welche eine parallele
Verarbeitung ermdglichen.

5.1. Skalierbarkeit der Hardware

Unter dem Begriff der Hardware-Skalierung wir allgemein die Fahigkeit verstanden durch hinzufligen
von Ressourcen die Systemleistung zu erhéhen. Die Systemperformance skaliert aber grundsatzlich
nie linear. Insbesondere wirkten sich Hardware-Erweiterungen in den seltensten Fallen 1:1 auf die
Software-Performance aus. Dies liegt insbesondere darin begriindet, dass einige Komponenten (Bus-
Systeme) sich nicht einfach erweitern lassen. Beispielsweise kann die menge des Speichers oder die
Taktrate des Prozessors verdoppelt werden. Dies wird aber nur in Sonderféllen eine Verdoppelung
der Anwendungsleistung zur Folge haben und zwar nur so lange bis ein Bussystem oder eine andere
Komponente den Flaschenhals (engl. Bottleneck) darstellt.

Wir wollen uns hier aber nicht auf die Skalierung der Hardware selber sondern auf die Hardware-
Aspekte, die eine Skalierung der darauf aufbauenden Software ermdglichen, konzentrieren.

Aktuelle Hardware- und insbesondere Prozessor-Architekturen sind sehr komplexe Gebilde.
Abbildung 3 gibt einen Uberblick iiber die wichtigsten Komponenten und Architekturen. Im Folgenden
werden die einzelnen Komponenten kurz erklart. Es versteht sich von selbst, dass es sich hier nur um
eine Ubersicht und nicht um eine Detaillierte Spezifikation der Komponenten handelt.
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5.2. SMP / ASMP / CMP
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Abbildung 4 SMP, ASMP, CMP

Unter einem SMP (Symmetric Multi Processing) System versteht man eine Architektur bei der alle
Prozessoren (2 oder mehr) gleichberechtigt arbeiten. Das heisst, dass jeder von ihnen jede Aufgabe
Ubernehmen kann. Eine Modifikation davon stellen ASMP (Asymmetric Multi Processing) Systeme
dar. Bei diesen Architekturen werden gewisse Aufgaben und/oder Ressourcen fest einer Rechenein-
heit zugewiesen. Beispielsweise ist es praktikabel alle Interrupt-Handling Routinen oder I/O Operatio-
nen auf einer dedizierten CPU abzuarbeiten. Der Vorteil von ASMP Architekturen liegt im einfacheren
Design (z.B. nur eine CPU braucht Zugriff zum I/O Bus). Der Nachteil gegeniiber SMP Systemen liegt
darin, dass mit ASMP Systemen haufig nicht die optimale Performance erzielt werden kann.

In gewisser Weise sind alle heutigen PC-Systeme ASMP Systeme da sie fiir diverse Aufgaben spezia-
lisierte Chips verwenden. Beispielsweise sitzt auf der Grafikkarte meist ein leistungsfahiger 3D-
Prozessor, im Chipsatz haufig ein Hardware-RAID Controller und bei Musikfans ein schneller Sound-
Chip. All diese Prozessoren nehmen der CPU einige Aufgaben ab sind aber dedizierte Prozessoren
fur diese Aufgabe.

Chip Multi Processing (CMP) bezeichnet die in jungster Zeit immer haufig gewordenen Multi-Core
Architekturen. Hierbei teilen sich die einzelnen Cores haufig den Cache oder Teile davon. Um die
Frage zu klaren, ob Architekturen mit mehreren Kernen gleichzusetzen sind mit SMP Architekturen
muss man den internen Aufbau mit einbeziehen. Einige Multi-Core Architekturen besitzen zwei physi-
kalisch getrennte Kerne in einem Chip-Gehause. Andere wiederum verwenden gemeinsame Caches
oder gar Funktionseinheiten und sind auf einem Die vereint (siehe Abbildung 4). Getrennte Kerne
verhalten sich nach aussen tendenziell eher wie SMP Systeme. Bei ,verschmolzenen“ Kernen kann
es dagegen einerseits zu Vorteile (gemeinsame und gréssere Caches, schnelle interne Kommunikati-
on) als auch Nachteile (teure Produktion, ungewollte Laufzeit-Abhangigkeiten) kommen.

Allen Architekturen gemeinsam ist aber die Tatsache, dass sie mehrere Recheneinheiten zur Verfu-
gung stellen und ihr volles Potential nur bei parallel abzuarbeitenden Aufgaben ausschdpfen kénnen.

Weiterfiihrende Informationen:
e Wikipedia, Multiprocessing: [MULTIPROC]
e Wikipedia, CMP: [CMP]
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5.2.1. UMA/NUMA

Die Verarbeitungseinheiten missen natirlich auch auf den (gemeinsamen) Speicher zugreifen kon-
nen. Daflir haben sich im Wesentlichen zwei Technologien durchgesetzt: UMA bzw. NUMA.

Uniform Memory Access (UMA) bezeichnet eine Architektur bei der sich die Prozessoren einen ge-
meinsamen Speicherbus teilen. Aus diesem Grunde ist auch der Speicherzugriff auf alle Speicherzel-
len fir alle Prozessoren gleich schnell.

Non-Uniform Memory Access (NUMA) Architekturen arbeiten im Gegensatz dazu mit lokalem Spei-
cher. Jeder Prozessor (Node genannt) hat dabei schnellen Zugriff auf den an ihm direkt angeschlos-
senen Speicher. Trotzdem kann jeder Node Uber entsprechende Kommunikationskanéle auf den
Speicher der anderen Nodes zugreifen. Dieser wird dann als ,remote Memory" bezeichnet. Prinzipbe-
dingt ist der Zugriff auf entfernten (remote) Speicher deutlich langsamer als auf lokal angebundenen.
Dafur ist der Zugriff auf den lokalen Speicher Ublicherweise schneller als bei einem UMA System. Den
Zugriff auf entfernten Speicher und die getrennten Caches der Prozessoren werfen weitere Probleme
bei der Cache-Synchronisierung auf. Dies wird auch als Cache Koharenz bezeichnet (siehe auch
[CACHECOH]). Um die Caches konsistent zu halten miissen die Nodes bei Veranderungen die ande-
ren Nodes informieren. Solche Aktualisierungen belasten den Systembus und kénnen die Leistung
durchaus auch beeinflussen. Hier soll aber nicht naher darauf eingegangen werden. Heute kiimmern
sich alle NUMA Systeme automatisch um die Cache Kohéarenz, deshalb wird hier die Bezeichnung
NUMA als Synonym fiir die korrekte Bezeichnung ccNUMA (Cache Coherent NUMA) verwendet. Trotz
der automatischen Behandlung durch die Hardware kann durch die Verwendung von entferntem Spei-
cher ein Engpass auf dem Systembus und somit ein Leistungseinbruch auftreten.

Beide Technologien haben ihre Vor- und Nachteile. Insbesondere bezogen auf die Geschwindigkeit
der Speicherzugriffe. Bei einem UMA-System lasst sich die Geschwindigkeit besser voraussagen als
auf einem NUMA System. Bei einem NUMA-System sollte das Betriebssystem die Architektur kennen
um Prozesse mit vielen Speicherzugriffen auf einem Prozessor auszufiihren an dem die bendétigten
Daten lokal vorhanden sind. Achtet das Betriebssystem nicht darauf, so kann es vorkommen, dass der
Grossteil der Daten aus entferntem Speicher stammt und dadurch massiv langsamer zur Verfiigung
steht. Ausserdem werden dadurch die Bussysteme zwischen den Prozessoren unnétig belastet. Die
Fahigkeit des Betriebssystems mit diesen NUMA-Eigenschaften umzugehen wird mit dem Attribut
NUMA-Awareness bezeichnet.

Leider ist die Betriebssystem-Unterstitzung noch nicht durchgangig vorhanden. Nach unseren Er-
kenntnissen unterstitzt Windows XP nur in der 64-bit Version und in der 32-bit Version mit dem Ker-
nel-Flag ,/PAE“ NUMA. Ausserdem unterstiitzen einige Windows Server 2003 Versionen NUMA. Sie-
he dazu auch [MSNUMA].

Weiterfuhrende Informationen:
e Wikipedia, Uniform Memory Access: [UMA]
e Wikipedia, Non-Uiform Memory Access: [NUMA]
e Wikipedia, Cache coherency: [CACHECOH]
e Microsoft, Windows Server 2003 NUMA Support: [MSNUMA]
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5.3. Super-Threading, CMT

Super-Threading CMT: Chip Multi - E
(Hyper-Threading) ¥ Threading § O
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Abbildung 5 Super-Threading, CMT

Wie im Kapitel 5.2 beschrieben geht der Trend in Richtung mehrerer parallel arbeitender Prozessor-
kerne (Cores). Innerhalb des Prozessors setzt sich dieser Trend fort. Viele aktuelle Prozessoren sind
Optimiert auf die parallele Abarbeitung der Instruktionen. Einige gehen aber noch einen Schritt weiter
und bieten parallele Abarbeitungspfade fir mehrere Threads. Auch hier gibt es mehrere unterschiedli-
che Implementierungen.

Super-Threading ermdglicht dem Prozessor pro Taktzyklus eine Instruktion eines einzelnen Threads
zu laden. Da dieser einerseits meist mehrere Zyklen zur Bearbeitung braucht und andererseits haufig
auf Speicherzugriffe warten muss ist es oft nicht weiter tragisch, dass eine Thread-
Verarbeitungseinheit nicht bei jedem Zyklus eine neue Instruktion bekommt. Warten auf Speicher wird
Memory Stall genannt (siehe Abbildung 6). Durch weitere Optimierung der Recheneinheit (siehe auch
Kapitel 5.4)ist es aber durchaus mdoglich, dass die Verarbeitungseinheiten leer laufen und auf neue
Instruktionen warten miissen. Beispielsweise arbeitet Intels Hyper-Threading Technologie (siehe auch
[HTT]) nach einem modifizierten Super-Threading Verfahren. Beim Pentium 4 wurde das Hyper-
Threading eingefiihrt um die internen Verarbeitungseinheiten (ALU, FPU, SSE usw.) besser auslasten
zu kénnen.

E M M M E M M M E M M M

E | Executing M | Memory Stall

Abbildung 6 Verarbeitung geméass Super-Threading

Chip Mult Threading (CMT) erlaubt es pro Taktzyklus und Thread eine Instruktion zu lesen. Das
heisst, dass bei einem 4-fach CMT System pro Taktzyklus 4 Instruktionen eingelesen werden kdnnen
(siehe Abbildung 7). Dies stellt natirlich héhere Anforderungen an die innerhalb der Thread-
Ausfiihrungseinheiten liegenden Rechenwerke, erhéht aber auch die Ausfiihrungsgeschwindigkeit und
Auslastung/Effizienz des Prozessors.
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Abbildung 7 Verarbeitung geméass CMT

In der Praxis laufen natirlich beide Verfahren nicht ganz so geordnet ab wie auf den lllustrationen
dargestellt. Die Speicherlatenzzeiten (Memory Stall) variieren je nach angesprochenem Speicher.
Beim Super-Threading bedeutet dies, dass die Einheiten nicht optimal ausgelastet sind sobald zwei
Threads rechenbereit sind und Instruktionen eingelesen werden sollten. Bei CMT konnten dann alle
Thread-Verarbeitungseinheiten zeitgliech wieder mit Instruktionen versorgt werden. Wegen unter-
schiedlicher Latenzzeiten ist der Extremfall, dass 4 Threads gleichzeitig wieder Rechenbereit sind
eher unwahrscheinlich.

Weiterfihrende Informationen:
e Wikipedia, Super-Threading: [STHREAD]
e Wikipedia, Simultanous Multi Threading: [SMT]
e Wikipedia, Hyper-Threading: [HTT]
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5.4. Skalar, Superskalar

Scalar Design Superscalar Design c—cg
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Abbildung 8 Skalar, Superskalar

Skalare Prozessoren arbeiten immer nur an einer Instruktion gleichzeitig und benutzen dabei eine
einzige Funktionseinheit. Dies ist zwar einfach, aber ineffizient. Insbesondere liegen alle unbenutzten
Prozessorteile dabei brach.

Durch eine superskalare Architektur wird versucht dieses Manko zu beheben. Dies geschieht indem
mehrere Recheneinheiten von einem Dispatcher gefittert werden. Die Aufgabe des Dispatchers ist es
die Instruktionen an die freien Einheiten zu lbertragen. Dies erlaubt die gleichzeitige Belegung von
ALU, FPU oder weiteren Einheiten was einer hoheren Effizienz zu Gute kommt. Der Nachteil darin
besteht naturlich im héheren Hardware-Aufwand und dem komplexen Dispatching Mechanismus.
Beispielsweise kdnnen nicht alle Instruktionen parallel auf verschiedenen Einheiten ausgefiihrt werden
wenn sie Resultate einer anderen Instruktion bendtigen.

Um die Geschwindigkeit eines superskalaren Prozessors weiter zu erhéhen kénnen auch mehrere
Einheiten der gleichen Sorte eingebaut werden. Die meisten aktuellen CPUs besitzen beispielsweise
mehrere ALUs.

Aufgrund das einfacheren Designs eines RISC Prozessors (siehe auch [RISC]) ist die Implementie-
rung mehrere Recheneinheiten dort viel einfacher als bei CISC Prozessoren (siehe auch [CISC]).
Deshalb wurde diese Technologie bei x86 Prozessoren erst ende der 90er Jahre mit dem Pentium Pro
(P6) eingefluihrt wobei sie flir RISC Prozessoren schon anfangs der 80er Jahre eingesetzt wurde. Erst
die interne Umsetzung der CISC-Befehle in sogenannte ,micr-ops” erlaubte diese Architektur-
Anderung. Daraus ist auch noch ein weiterer wichtiger Aspekt abzuleiten: Heutige x86 Prozessoren
zerlegen die x86 Instruktionen in Micro-OPs und arbeiten diese (soweit mdglich) parallel ab. Dies kann
insbesondere die Reihenfolge der Ausfiihrung beeinflussen.

In den Recheneinheiten selbst liegen ausserdem noch weitere Mdglichkeiten der Parallelisierung. Die
meisten heutigen x86 Prozessoren bieten einen erweiterten Befehlssatz der hauptsachlich auf die
Manipulation grosser Datenmengen optimiert ist. Die erste Erweiterung dieses Typs war die MMX-
Erweiterung von Intel (siehe auch [MMX]). Weitere Instruktionen kamen dann mit dem SSE Befehls-
satz (siehe auch [SSE]) in diversen Versionen hinzu. Bei all diesen Erweiterungen handelt es sich um
sogenannte SIMD (Single Instruction Multiple Data) Befehle (siehe auch [SIMD]). Insbesondere in der
Multimediatechnik treten haufig Probleme auf bei denen mehrere Datensatze mit derselben Operation
bearbeitet werden missen. Beispielsweise wenn zu allen Komponenten eines RGBA-Pixels (32-bit)
ein Wert addiert werden muss. Ohne SIMD-Instruktionen missten die 8-bit Komponenten einzeln
geladen, verandert und wieder abgespeichert werden. Was einer grossen Anzahl Instruktionen ent-
spricht. Fur solche Operationen bieten sich SIMD-Instruktionen and welche dann die Modifikation aller
Pixelkomponenten mit einem Befehl erledigt. Intern kann der Prozessor die Modifikation dann automa-
tisch parallel ausfuhren.

Weiterfuhrende Informationen:
e Wikipedia, Skalare Architektur: [SCALAR]
e Wikipedia, Superskalare Architektur: [SUPSCALAR]
e Wikipedia, RISC: [RISC]
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e Wikipedia, CISC: [CISC]
e Wikipedia, MMX: [MMX]
e Wikipedia, SSE: [SSE]

e  Wikipedia: SIMD: [SIMD]
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5.5. Pipeline

Pipeline
Beispiel: 3-Stufig

Pipelining

Pipeline: ‘ Load ‘Execute‘ Store

Takt 1:

Takt 2: ‘MOVE‘ LOAD \

Takt 3: \ ADD \ MOVE \ LOAD

Abbildung 9 Pipeline

Die Abarbeitung einer Instruktion erfordert meistens mehrere Stufen und dauert mehrere Taktzyklen.
Die gesamte Arbeitsstrecke wird als Pipeline bezeichnet. Im Beispiel in Abbildung 9 wird exemplarisch
eine 3-Stufige Pipeline dargestellt in der eine Instruktion grundsétzlich in 3 Schritten abgearbeitet wird.
Die erste Stufe besteht aus dem laden der Instruktion und den dazu benétigten Daten. In der zweiten
Stufe wird die Instruktion abgearbeitet und in der dritten wird das Ergebnis zuriickgeschrieben.

Wiirde der Prozessor im Beispiel kein Pipelining unterstiitzen, so kdnnte der nachste Befehl erst ein-
gelesen werden, wenn der vorherige beendet ist und die Pipeline verlassen hat. Alle heutigen Prozes-
soren implementieren aber das Pipelining. Hier kann die néchste Instruktion sofort geladen werden
sobald die vorhergehende die erste Stufe verlassen hat.

Als Beispiel kann folgender Code analysiert werden:

LOAD #40,A ; load 40 to register A
MOVE A,B ; copy register A to register b B
ADD  #20,B ; add 20 to register B

STORE B, 0x300 ; store register B into memory cell 0x300
Listing 1 Pipelining Assembler-Code Beispiel
Tabelle 4 Abarbeitung einer Pipeline

Taktzyklus  Aktionen
Takt 1 Der LOAD Befehlt wird aus dem Speicher gelesen (aber noch nicht ausgefiihrt)

Takt 2 Der LOAD Befehl wird ausgefihrt. Gleichzeitig wird der MOVE Befehl aus dem Spei-
cher gelesen.

Takt 3 Der LOAD Befehl speichert den geladenen Wert in das Register A. Gleichzeitig wird
der MOVE Befehl ausgefiihrt. Da dieser aber vom vorhergehenden LOAD Befehl
abhangt muss dieser warten bis der LOAD Befehl abgearbeitet ist. Gleichzeitig wird
in diesem Taktzyklus die nachste Instruktion (ADD) geladen.

Wie gut zu erkennen ist erlaubt das Pipelining im Optimalfall die volle Auslastung aller Stufen der Pi-
peline. In der Praxis fihren aber Abhangigkeiten (wie bei der LOAD/MOVE Kombination) zu mdgli-
chen Wartezyklen. Im Beispiel handelt es sich um eine sehr kurz gehaltene, beispielhafte Pipeline. In
der Praxis liegen typische Pipeline-Ladngen zwischen 10 und 20 Stufen. Es gibt aber auch Prozessor-
Designs mit Uber 1000 Stufen. Der Pentium 4 beispielsweise besitzt mit 31 Stufen eine extrem lange
Pipeline. Darin liegt einer der Hauptgriinde warum der Intel Pentium 4 sehr hohe Taktraten erreicht.
Doch dazu gleich mehr.

Der Vorteil einer langen Pipeline liegt darin, dass die einzelnen Stufen sehr einfach gebaut (einfachere
Logik-Elemente) auf sind. Damit kann die Taktrate erh6ht werden. Im Optimalfall kann so ein héherer
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Durchsatz erreicht werden. In unserem Beispiel wiirde nach 3 Taktzyklen Verzdgerung das erste Er-
gebnis bereitstehen (Ergebnis der LOAD-Operation). Danach ware theoretisch pro Taktzyklus ein
weiteres Ergebnis méglich (bei voller Auslastung der Pipeline). Die Verzdgerung, die durch die Durch-
laufzeit entsteht wird Latenzzeit genannt.

Der Nachteil von langen Pipelines liegt im Programmablauf begriindet. Praktisch alle Programme ver-
zweigen sich intern durch bedingte Sprungbefehle (Branch). Tritt ein solcher Sprung im Programm auf
gibt es zwei Moglichkeiten fur den Prozessor. Einerseits kann er die Pipeline ,anhalten“ und muss
warten bis der letzte eingegebene Befehl abgearbeitet wurde. Dies ist nétig weil das Ziel des Sprun-
ges erst nach der Abarbeitung des letzten Befehles in der Pipeline feststeht. Dies kostet aber viel Zeit
da der erste Befehl nach dem Sprung (bzw. der Sprungbefehl selbst) erst die gesamte Pipeline durch-
laufen muss und dadurch eine hohe Latenz im Programmfluss entsteht.

Um das Problem der Spriinge zu entschérfen versucht der Prozessor anhand der bekannten Daten
den Sprung vorherzusagen (Branch prediction). Dies funktioniert dank Moderner Algorithmen etwa in
80% der Falle. Der Prozessor kann dann also die Pipeline weiter befiillen und muss nicht auf das Er-
gebnis warten. Kritisch wird es nur, wenn der vorhergesagte Sprung falsch ist. In diesem Fall muss die
gesamte Pipeline verworfen und neu beflillt werden. Dies hat nattirlich fir den nachsten Befehl wieder
eine hohe Latenz zur Folge.

Lange Pipelines sind also von Vorteil um die Taktrate hoch zu halten aber nachteilig wenn viele
Spriinge eintreten. Fiir wissenschaftliche Berechnungen ohne viele Springe (bzw. gut vorhersehbare)
ist eine lange Pipeline eher vorteilhaft. Fir Desktop-Anwendungen mit schlecht vorhersehbaren Er-
eignissen konnen falsche Sprungvorhersagen aber einen massiven Einfluss auf den Durchsatz haben.
Dies ist einer der Griinde warum beispielsweise die Leistung des Intel Pentium 4 Prozessors eng an
extrem hohe Taktraten geknipft ist. Auf der anderen Seite steigt mit der Taktrate Ublicherweise auch
die Betriebsspannung und somit die Verlustleistung eines Prozessors quadratisch. Dies flhrte zuletzt
zu TDP (Thermal Design Power) Werten tber 130W (siehe auch [P4TDP] und [PADTDP]) was selbst
Intel dazu bewegte Abstand von der verwendeten NetBurst (siehe auch [NETBURST]) Architektur zu
nehmen.

Weiterfiihrende Informationen:
e Wikipedia, Pipelining: [PIPELINE]
e Wikipedia, Netburst: [NETBURST]

e Intel Pentium 4 Processor Thermal Specifications: [P4TDP]
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5.6. Konkrete Prozessor-Designs

In Diesem Kapitel werden einige der wichtigen Prozessor-Designs mit ihren speziellen Vorziigen und
Nachteilen etwas genauer betrachtet.

5.6.1. Intel Pentium 4

Im Jahre 2000 stellte Intel einen komplett Uberarbeiteten
Prozessor vor. Er bot einige Neuerungen im Vergleich zur
bereits 5 Jahre alten Architektur des P6 (Pentium Pro, Pen-
tium Il, Pentium IlI).

Abbildung 10 Intel Pentium 4

Damals war das Gigahertz-Rennen noch in vollem Gange und bdse Zungen behaupten, dass Intel die
NetBurst Architektur mit ihrer Uberlangen Pipeline (siehe auch Kapitel 5.5) nur eingefiihrt hat um mit
hoheren Taktraten gegenliber der Konkurrenz zu glanzen. Tatsachlich erwies sich die NetBurst Tech-
nologie als Sackgasse. Mit der Taktrate stieg auch die Verlustleistung (steigt Quadratisch zur Be-
triebsspannung und linear zur Taktrate) und fuhrte zu unlésbaren Kuhlproblemen. Die urspriinglich
geplanten 6 GHz und mehr wurden nie erreicht. Die Uberlange Pipeline setzte ausserdem einen ge-
waltigen Aufwand in der internen Architektur voraus. Ausserdem bendtigt der Prozessor eine schnelle
Speicheranbindung weshalb Intel auf die RD-RAM Technik setzte. Diese erwies sich aber als zu teu-
er. Mit herkdmmlichem SD-RAM wurde die CPU massiv ausgebremst und auf den fahrenden DDR-
Zug sprang Intel viel zu spat auf.

All diese Probleme haben dazu gefiihrt, dass Intel das NetBurst Konzept tiber Bord geworfen hat und
auf Basis des urspriinglichen Pentium 3 zuerst den Pentium-M und anschliessend die Core/Core 2
(siehe Kaptiel 5.6.2) Mikroarchitektur entwickelt hat. Neue Prozessoren basierend auf der NetBurst
Architektur werden nicht mehr produziert. Insbesondere fiir die Marketingstrategen wirkt sich dies aber
katastrophal aus. Bis anhin vertrauten sie darauf den Kunden die einfache Formel ,Hohe Taktra-
te=Hohe Leistung" zu verkaufen. Insbesondere war dies effektiv da der Konkurrent AMD mit ihrer Ar-
chitektur zwar die Leistung aber nie die Taktraten der NetBurst Prozessoren erreichte. Jetzt missen
die selben Marketing-Strategen ihren Kunden beibringen, dass ihre neuen Core 2 Prozessoren mit
noch niedrigeren Taktraten als der Konkurrent trotzdem mehr Leistung bringen.

Trotz aller Probleme brachte der Pentium 4 einige Interessante Konzepte und Neuerungen. Insbeson-
dere ist hier das Hyper-Threading (HTT) zu erwdhnen. Der Pentium 4 mit HTT war der erste virtuelle
Multi-Corre Porzessor fur den Desktop-Einsatz. Die zweite Recheneinheit war aber physikalisch nicht
vorhanden sondern wurde nur durch einige zusatzliche Register und Einheiten (ca. 5% zusatzliche
Chip-Flache) bereitgestellt. Dadurch konnte die interne Auslastung verbessert werden wodurch eine
Geschwindigkeitsvorteil von 15-30% (je nach Applikation auch massiv weniger) erzielt werden konnte.

Hyper-Threading basiert auf dem Prinzip des Super-Threading (siehe Kapitel 5.3).
Weiterfuhrende Informationen:

e Wikipedia, Pentium 4: [PENTIUMA4]

e Wikipedia, NetBurst; [NETBURST]

e Wikipedia, Hyper-Threading: [HTT]

e Intel, Pentium 4 TDP: [PATDP]

e Intel, Pentium D TDP (DualCore): [P4DTDP]
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5.6.2. Intel Core/Core 2

Wie in Kapitel 5.6.1 erwahnt hat sich fir Intel die NetBurst
Architektur als Sackgasse erwiesen. Basierend auf der
Architektur der P6 (Pentium Pro, Pentium II, Pentium IIl)
wurde ein Prozessor namens Pentium-M entwickelt. Der
Pentium-M wurde als reiner Mobil-Prozessor vermarktet
und stellt die Basis der Centrino-Plattform dar. Die Weiter-
entwicklung wurde von Intel ,Core* getauft und kommt in
der zweiten Generation als Desktop-Prozessor auf den
Markt.

Abbildung 11 Intel Core 2

Die Core 2 Prozessoren unterscheiden sich wesentlich vom Design des Pentium 4. Insbesondere
basieren sie wie erwahnt nicht mehr auf NetBurst sondern auf der Core Mikroarchitektur. Die Pipeline
(siehe Kapitel 5.5) wurde massiv verkirzt. Dies beschrénkt einerseits die maximale Taktrate, erlaubt
aber andererseits eine Effizienzsteigerung (Operationen pro Megahertz). Die Abkehr von den Strom-
fressenden Pentium 4 Boliden wird auch durch die erstmalige Integration von EIST (Enhanced Intel
Speed Step) untermauert. Bisher war SpeedStep nur in Mobilprozessoren verfugbar. EIST erlaubt die
dynamische Regulierung der Taktfrequenz und Spannungen im Betrieb um bei geringer Last die
Stromaufnahme (und somit die Warmeabgabe) zu reduzieren.

Um die Effizienz des Prozessors weiter zu erhdhen hat Intel eine Reihe von neuen Technologien ent-
wickelt. Beispielsweise die so genannte ,Macro-OP Fusion“. Dadurch kann der Prozessor mehrere
Instruktionen zu einer einzigen zusammenfassen und diese in einem Schritt erledigen (z.B. Addition
und Multiplikation).

Insgesamt erreicht die Core Architektur eine massiv hohere Effizienz als die NetBurst Architektur was
auch der Grund ist warum Intel diese nicht mehr weiterentwickelt und keine neuen Prozessoren mit
NetBurst mehr auf den Markt wirft.

Hyper-Threading fir den Core/Core 2 sind allerdings nicht in Sicht weil dies im aktuellen Design nicht
vorgesehen ist. Stattdessen ist der Core 2 auf Multi-Core Anwendung ausgelegt und ist anfangs auch
nur als ,Core 2 Duo" Prozessor in Dual-Core Ausfiihrung erhéltlich. Spéater soll aber auch ein giinsti-
ger Core 2 Solo folgen. Noch vor Ende 2006 wird bereits der Core 2 Quad im Einzelhandel erwartet.
Dieser wird intern als zwei zusammengeschaltete Core 2 Duo aufgebaut sein (1 Package, 2 Dice, 4
Kerne). Bei den aktuellen Core 2 Duo Prozessoren sind beide Kerne auf einem einzigen Die aufge-
baut (1 Package, 1 Die, 2 Kerne). Siehe dazu auch Kapitel 5.2.

Weiterflihrende Informationen:
e Intel, Core Microarchitecture: [COREARCH]
e Wikipedia, Core 2: [COREZ2]
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5.6.3. AMD Opteron / Athlon 64

Beim Opteron handelt es sich um die Server-Version des
fur Desktop-PCs bekannten Athlon 64 Prozessors (auch als
K8 bekannt). Im Gegensatz zum Desktop-Prozessor bein-
haltet der Opteron nur minimale Anpassungen wie einen
modifizierten Speicherkontroller und zusatzliche Kommuni-
kationskanale fir die Mehrprozessor-Kommunikation.

Abbildung 12 AMD Opteron

Der Auffalligste Unterschied der K8 Architektur gegeniber der K7 Architektur (Athlon Classic, Athlon,
Athlon XP) besteht in der 64-bit Erweiterung. Im Gegensatz zu Intels Itanium wurde der Prozessor
nicht komplett 64-bittig aufgebaut sondern lediglich der 32-bit Prozessor um 64-bit Instruktionen erwei-
tert. Dadurch entfallt bei der Ausfiihrung von 32-bit Code die sehr langsame Emulationsschicht. Des-
wegen handelt es sich im Grunde auch nicht um einen ,echten 64-bit Prozessor sondern um einen
32-bit Prozessor mit 64-bit Erweiterungen. AMD hat erkannt, dass die Umstellung auf 64-bit nicht
durch einen klaren Schnitt der Architektur machbar ist und die Umstellung der Anwendungen einige
Zeit in Anspruch nehmen wird. Mittlerweile hat Intel dies auch eingesehen und die nach AMD benann-
ten AMD64 Erweiterungen (siehe auch [AMDG64]) unter dem Namen ,Intel 64“ (vormals EM64T ge-
nannt) lizenziert.

Mehrprozessorsysteme (SMP) auf Basis des Opteron Prozessors stellen die aktuell bekannteste
Implementation eines ccNUMA Systems dar (siehe Kapitel 5.2.1). Die Prozessoren kommunizieren
dabei Uber direkte HyperTransport Kandle miteinander (siehe [HYPERTRANS]).

Sowohl vom Opteron als auch vom Athlon 64 sind Dual-Core Varianten erhéltlich. einzelner Ein Dual-
Core Prozessor (Opteron 1xx Serie oder Athlon 64 X2) verhélt sich dabei wie ein UMA System, da der
gesamte Speicher lokal angebunden ist. In Multi-Sockel Umgebungen (Opteron 2xx, 4xx, 8xx mit 2-8
CPUs) kénnen zwar auch Dual-Core Prozessoren eingesetzt werden, dort verhalt sich aber jeder So-
ckel wie ein Node im ccNUMA System. Beide Kerne kdnnen den lokal angebundenen Speicher
schnell ansprechen aber mussen entfernten Speicher tber die HyperTransport Links ansprechen.

Weiterfuhrende Informationen:
e  Wikipedia, AMD Opteron: [OPTERON]
e Wikipedia, AMD64: [AMD64]
e Wikipedia, HyperTransport: [HYPERTRANS]
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5.6.4. Sun UltraSparc T1 (Niagara)

Die Bezeichnung SPARC steht fir “Scalable Processor
ARChitecture” und bezeichnet eine Prozessorarchitektur.
Die Architektur wurde urspriinglich von Sun Microsystems
entwickelt und spéter als offene Architektur von der Non-
Profit Organisation SPARC International weiterentwickelt.

Dank der offenen Spezifikation konnten auch andere Her-
steller wie Texas Instruments oder Fujitsu SPARC-
Kompatible Prozessoren herstellen.

Abbildung 13 UltraSparc T1

Der aktuellste Prozessor dieser Serie ist der UltraSparc T1 (Codename ,Niagara) der Firma Sun Mic-
rosystems. Der Prozessor beinhaltet einige sehr Interessante Design-Aspekte. Beispielsweise verfugt
er mit 8 integrierten Kernen und 4-fach Chip Multi-Threading Uber 32 logische Einheiten auf einem
Chip. Zu beachten ist dabei aber, dass Sun zwar von CMT (Chip Multi-Threading) spricht aber der
Chip pro Taktzyklus nur eine Instruktion decodieren kann. Dies entspricht streng genommen dem
Super-Threading und nicht CMT (siehe Kapitel 5.3).

Bemerkenswert ist bei dem Chip insbesondere die Leistungsaufnahme. Trotz den 8 Kernen und 32
logischen Thread-Verarbeitungseinheiten bendtigt der Chip weniger als 80 Watt. Dieser Umstand hat
Sun wohl auch zum Marketing-Schlagwort ,CoolThreads” gefuhrt. Sun fuhrt in Vergleichen auch im-
mer wieder gerne die Einheit ,Watt pro Thread" an. Hier liegt der Chip mit ~2Watt pro Thread den
Faktor 20 unter aktuellen Intel Xeon oder den ,Power"-Prozessoren von IBM.

Die Speicheranbindung geschieht tber einen gemeinsamen Crossbar-Switch. Daher verhalt sich der
Prozessor wie ein UMA System (siehe Kapitel 5.2.1)

Es versteht sich von selbst, dass ein solcher massiv paralleler Prozessor entsprechend programmiert
werden muss. Single-Threaded Applikationen laufen darauf nur sehr zah ab. Dies hangt auch mit der
moderaten Taktrate von 1.0 bis 1.2GHz zusammen. Sein gesamtes Leistungspotential kann dieser
Prozessor nur ausspielen wenn er mit vielen (unabhéngigen) Threads arbeiten kann. Somit ist er pra-
destiniert fur parallele Anwendungen wie Webserver und Datenbankserver wo sehr viele einzelne
Anfragen bearbeitet werden mussen.

Sun hat das Design des Prozessors anfangs des Jahres 2006 unter der Open-Source Lizenz GPL
veroffentlicht. Seither hat sich eine beachtliche Community gebildet um die Weiterentwicklung voran-
zutreiben.

Weiterfihrende Informationen:
e OpenSPARC, Offene Weiterentwicklung: [OPENSPARC]
e Wikipedia, Sun SPARC: [SUNSPARC]
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5.7. Zusammenfassung und Fazit

Es ist gut zu erkennen, dass die parallele Verarbeitung auf Hardware-Ebene extrem aufwéandig ist. Fir
den Programmierer ist kaum mehr nachvollziehbar wie die Instruktionen einer High-Level Entwick-
lungsumgebung in Hardware ausgefiihrt werden. Am ehesten geht das noch mit hardwarenahen
Sprachen wie C oder C++ aber selbst auf Assembler-Ebene sind die Verarbeitungen kaum mehr
Nachvollziehbar. Beispielsweise kbnnen mehrere Operationen zu einer zusammengefasst (Macro-OP
Fusion) oder eine einzelne Instruktion in mehrere zerlegt und parallel verarbeitet werden (Micro-OPs).

Eine Optimierung auf eine spezifische Hardware-Architektur macht nur selten Sinn da sie sehr auf-
wandig sein kann, unter Umstdnden nur eine kleine Verbesserung bringt und die Ausfiihrungsge-
schwindigkeit auf ansonsten kompatiblen Prozessoren beeintréachtigen kann. Kaum ein Software Her-
steller bietet auf eine spezielle CPU optimierte Software an. Das fuhrt auch dazu, dass haufig nur der
kleinste, gemeinsame Nenner der Funktionen benutzt wird. Heutige Compiler bieten zwar haufig die
Maoglichkeit auf gewisse Architekturen zu optimieren. Soll das Programm aber beispielsweise auf allen
x86 gleichermassen laufen so wird man eher darauf verzichten. Vereinzelt bieten Software-Hersteller
von Performancekritischen Anwendungen (Compiler-)optimierte Binardateien an aber das stellt eher
die Ausnahme dar.

Allgemein kann man sagen, dass die Hersteller viel unternehmen um bestehenden Code auf neuer
Hardware schneller ablaufen zu lassen. Diese Optimierung hat aber mittlerweile (physikalische und
technische) Grenzen Erreicht. Nun versuchen die Hardware Hersteller durch Bereitstellung mehrere
Parallel arbeitende Einheiten die zur Verfiigung stehende Gesamtleistung zu erhdhen. Dies funktio-
niert aber nur, wenn die Software sich auch parallel verarbeiten lasst (Stichwort: Multi-Threading).

Der Grosse Vorteil von Multi-Threading besteht darin, dass die Software auch noch funktioniert, wenn
die Hardware keine parallele Verarbeitung unterstiitzt. In diesem Fall werden einfach alle Threads
Sequenziell (bzw. scheibchenweise) abgearbeitet. Der dadurch erhdhte Verwaltungsaufwand und die
resultierende sinkende Gesamtleistung auf Uni-Prozessor Maschinen kann meist in Kauf genommen
werden. Ausserdem kann die Anzahl Threads dynamisch (auch zur Laufzeit) an die Hardware ange-
passt werden. Somit sind bei entsprechender Programmierung keine Sonderversionen fir spezielle
Systeme nétig.

5.8. Auswirkungen auf die Aufgabenstellung

Gemass der Aufgabenstellung untersuchen wir die Skalierbarkeit von Anwendungen auf aktueller
Multi-Core/Multi-Threading Hardware unter Windows mit Fokus auf die Java-Programmierung. Insbe-
sondere die Java-Programmierung lasst sehr wenig Spielraum firr die hardwarenahe Programmierung
(siehe Kapitel 8). Java bietet aber eine sehr gute Basis zur Multi-Threaded Programmierung. Dies
beinhaltet eine breite Basis vorhandener Klassen (auch Thread-Safe) und die relativ einfache Hand-
habung von Threads. Somit liegt es nahe hauptséchlich die Skalierung auf Thread-Ebene zu betrach-
ten.

Java bietet ausserdem noch den Vorteil, dass der Bytecode zur Laufzeit mittels Just-in-Time (JIT)
Compiler (siehe Kapitel 8.4.1) in Maschinencode umgewandelt wird. Somit ist es mdglich ein plattfor-
munabhéangiges Programm zur Laufzeit auf Hardware-Spezifische Eigenheiten hin zu optimieren.

Die in diesem Kapitel aufgefihrten Hardware-Architekturen und Eigenschaften kénnen dabei helfen
die Theoretischen Mdglichkeiten auf einer Plattform abzuschatzen und die Ergebnisse besser zu ver-
stehen.

Einige der hier aufgefihrten Technologien werden fiir den weiteren Verlauf dieser Arbeit direkte Be-
deutung haben und einige werden nur am Rande (beispielsweise bei der Interpretation der Resultate)
eine Rolle spielen

Tabelle 5 Technologien mit direktem Einfluss auf die Arbeit

Technologie Beschreibung
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SMP, CMP

CMT

Gemass der Aufgabenstellung (siehe [5]) ist die Software-Entwicklung auf Mehr-
prozessor und Multi-Core Maschinen zu betrachten. Diese Technologien gehéren
also zur zentralen Aufgabenstellung.

Sollte die Testplattform CMT unterstiitzen, dann ist dies sicher zu bertcksichtigen
und abzuklaren in wie Fern die einzelnen Threads auf einer CPU parallel ablaufen
kdnnen.

Tabelle 6 Technologien mit indirektem Einfluss auf die Arbeit

Technologie

Beschreibung

UMA/NUMA

Skalar

Superskalar

Pipeline

Je nach Verfligbarer Hardware und der darauf laufenden Software kann die Spei-
cher-Architektur einen Einfluss auf die Ausfiihrungsgeschwindigkeit haben. Da uns
aber eh kein System bekannt ist, welches auf derselben Hardware UMA und NU-
MA anbietet ist ein direkter Vergleich sowieso nicht mdglich. Die Architektur der
Testplattform sollte aber bei den Tests im Hinterkopf behalten werden. Dies einer-
seits um die Ergebnisse interpretieren zu kdnnen und andererseits um eventuelle
Optimierungen vornehmen zu kénen.

Da heutige CPUs alle superskalar sind braucht dies nicht ndher betrachtet zu wer-
den. Die Performance der CPUs hangt aber zu einem guten Teil von der dadurch
erzielten Auslastung der Recheneinheiten ab. Bis so tief in die Hardware-Ebene
werden wir aber aus zeitlichen Griinden keine Analyse machen kénnen.

Auch hier gilt dasselbe wie fir die Skalaritat. Aus zeitlichen Griinden werden wir
keine Analyse bis auf die Stufe der Pipeline durchfihren kénnen.
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6. Betriebssysteme

6.1. Einleitung

Neben der Aufgabe vorhandene Geréte zu verwalten und verschiedenen Softwareanwendungen eine
abstrakte Schnittstelle zur Hardware zu Verfiigung zu stellen, Gibernimmt das Betriebssystem auch die
Prozess- und Prozessorverwaltung. Im Kontext der Skalierung paralleler Software-Anwendungen be-
deutet dies, dass die Zuweisung von Rechenzeit eines oder mehrerer Prozessoren bzw. Prozessor-
kerne an mehrere Prozesse Uber das Betriebssystem optimiert gesteuert wird. Im Hinblick auf diese
Verwaltung von Prozess und Prozessoren ergeben sich folgende Aufgabenbereiche:

e Prozesserzeugung und Prozessterminierung

e Prozesswechsel

e Verwaltung der Prozesskontrollblocke

e Prozessablaufplanung und Zuteilung (Scheduling und Dispatching)
e Prozesssynchronisation und Interprozesskommunikation

e Zuteilung von Adressraum an Prozesse

e Interrupt- und Trapbehandlung

Ziel dieses Kapitels ist es, die grundlegenden Aspekte im Bereich Betriebssystem, Prozesse und Pro-
zessmanagements zu vermitteln um die Threadkontrolle auf Level OS beurteilen zu kénnen. Dieser
Abschnitt soll das Threadhandling unter Windows XP offen legen und letztendlich Méglichkeiten auf-
zeigen wie dieses beeinflusst werden kann.
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6.2. Windows XP

Die Analyse der Skalierbarkeit einer Java-Applikation soll gemass Vorgaben auf dem OS Windows XP
untersucht werden. Windows XP (NT 5.1) ist ein Betriebssystem der Firma Microsoft und wurde im
Oktober 2001 lanciert. Es ist der technische Nachfolger von Windows 2000 (NT 5.0) mit Windows NT-
Kern. Zusétzlich I6ste es Windows ME der MS-DOS-Linie in der Version ,Home Edition als Nachfol-
ger in der Produktlinie fur Heimanwender bzw. Privatnutzer ab. Die MS-DOS-Linie wurde von Micro-
soft eingestellt. Von Windows XP existieren zahlreiche Varianten. Fir diese Arbeit sind folgende Aus-
fuhrungen denkbar:

Die , Professional Edition”

Fur den Einsatz in Unternehmen entwickelt, enthalt Funktionen wie bspw. Fernverwaltung (Remote
Control), Dateiverschliisselung (EFS), zentrale Wartung mittels Richtlinien oder die Nutzung von meh-
reren Prozessoren (SMP).

Die ,Home Edition*“

Preiswerte Variante um einige Eigenschaften der Professional Edition gekirzt, basiert jedoch auf
demselben NT-Kern.

Windows XP ,x64 Edition”

Eine spezielle 64-Bit Version, die ausschliesslich fir AMD- und Intel-Prozessoren mit x86-64-
Erweiterung entwickelt wurde. Sie lauft nicht auf 64-Bit-Prozessoren anderer Hersteller und ist an-
sonsten identisch zu Windows XP Professional. Die x64 Edition ist als OEM- und als System-Builder-
Lizenz erhaltlich. Im Zusammenspiel zwischen Prozessor und Betriebssystem kann auch eine konven-
tionelle 32-Bit-Software ausgefuhrt werden. Somit ist es nicht erforderlich, dass die auszufiihrenden
Programme als 64-Bit-Version vorliegen missen. Dieses Verfahren des x64-Prozessors wird auch
Mixed-Mode genannt - also das Ausfuhren von 64- und 32-Bit-Software gleichzeitig auf einem Pro-
zessor. Jedoch ist es erforderlich, dass die Treiber als 64-Bit-Version vorliegen. Die Treiber werden
vom Hardware-Hersteller fiir das Betriebssystem hergestellt und zur Verfigung gestellt.
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6.2.1. Interne Struktur

Windows 2000/XP ist als Schichtenarchitektur implementiert. Hierbei kdnnen die Schichten des Ker-
nel- und User-Mode unterschieden werden. Der Hardware Abstraction Layer (HAL), die Ausfiihrungs-
schicht (Executive) und der eigentliche Kernel laufen im ,Protected-Mode". Sie haben einen geschitz-
ten Speicherbereich der gegen ,schadliche* Prozesse aus dem Userspace abgeschottet ist (bspw.
fehlerhafte Applikationen). Windows NT/2000/XP ist in C, zu kleineren Teilen in C++ programmiert.
Wenige Softwareteile, die direkt die Hardware ansprechen, sind auch in Assemblersprache kodiert.

Systemhilfsprozesse Systemdienstprozesse Umgebungs-Sub-
(system support (system service Benutzerapplikationen systeme (environment
processes) processes) subsystems)
A A i A
4 / A /
Subsystem-Programmbibliotheken (environment DLLs)
' User Mode

Kernel Mode

System-Threads

Systemdienst-Verteiler (system service dispatcher)
A i A
y Y A

Text- und Grafik- Ein-/Ausgabe
(GDI- und USER-Komponente)

A
A4

Exekutive (executive)

Gerate- und Dateisystem- ‘ A
treiber (device and file A A v
system driver) v '

Kern (kernel)
A 4

v Y

Hardware-Abstraktionsschicht (hardware abstraction layer, HAL)

Grafiktreiber (graphics driver)

A

A J
/ A 4

Hardware

Abbildung 14 Interne Struktur Windows NT/2000/XP

Der Windows Kernel

Der Kernel von Windows 2000/XP ist die zentrale Kommunikationsschnittstelle fir die Module der
Ausfuhrungsschicht die Aufgaben wie Interrupt- oder Exceptionhandling oder das Scheduling wahr-
nimmt. Der Kernel ist objektorientiert implementiert und nutzt Dispatcher- und Control-Objekte um
seine Aufgaben zu erledigen. Thread-Objekte sind dabei Dispatcher-Objekte die immer zu einem spe-
zifischen Prozess assoziiert werden kdnnen und vom Kernel direkt koordiniert werden. Das Timer-
Obijekt ist ein weiteres wichtiges Dispachter-Objekt, welches die verbrauchte CPU-Zeit Giberwacht und
Uber allfallige Timeouts oder abgelaufene Zeitscheiben (Scheduling) informiert.
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6.3. Das Prozess Modell

6.3.1. Begriff des Prozesses

Ein Prozess wird im allgemeinen Sprachgebrauch als ,Programm in Ausfiihrung“ bezeichnet. Er ben-
tigt eine Anzahl physikalischer und logischer Ressourcen wie bspw. Prozessor (CPU), 1/0-Geréte,
Arneitsspeicher, damit er ablaufen kann.

Eine andere, nachvollziehbare Definition eines Prozesses ist ,Der Prozess als Code und Daten im
Arbeitsspeicher plus zugehoriger Kontext (Register im Prozessor, Stack, Puffer, Filehandles)" also
Programmanweisungen und Daten, die im Hauptspeicher liegen sowie der Registerbelegung und
Verwaltungsinformationen fiir diesen Prozess.

Pro betrachtete Zeiteinheit kann in einer Einprozessor-Architektur ohne spezielles Zutun (bspw. Chip
Multi Threading) gleichzeitig nur ein Prozess ausgefiihrt werden. Die Prozesse kdnnen aber ,logisch-
parallel“ ablaufen indem der Prozessor nach einer festgelegten Strategie zwischen den Prozessen
umschaltet wird (Multiplexing). Die Strategie mit der diese Prozesse auf CPUs verteilt werden wird
durch den Scheduler des Betriebssystems bzw. deren Scheduling-Algorithmus bestimmt.

6.3.2. Der Prozesskontext

Die Vergabe von Rechenzeit von einem laufenden an einen lauffahigen Prozess wird als Kontext-
wechsel (engl. Context-Switch) bezeichnet. Das verwaltende Betriebssystem muss dabei in der Lage
sein, den aktuellen ,Zustand” eines Prozesses zu speichern, um diesen zu einem spateren Zeitpunkt
wieder aktivieren bzw. reproduzieren zu kénnen. Die Implementierung auf Level OS erfolgt Giber Pro-
zesstabellen mit einem ,Process Control Block* (PCB) fiur jeden Prozess.

Der PCB wird auch als Kontext eines Prozesses bezeichnet und enthalt die 4 Elemente:

Programm-
Image

Memory Kontext

Abbildung 15 Process Control Block
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Hardware Kontext
e Zustand des Prozessors, Abbild der Register
e Programm-Counter (PC)
e Prozess-Status-Register (PS)
e Stack-Pointer (SP)

e Allgemeine Prozessor-Register (R#)

Software Kontext
e Verwaltungsdaten fiir Prozess-Ressourcen
e Prozess-ID
e Zustand Prozess (running, ready, blocked)
e Informationen Uber I/O (bspw. Offene Files)

e Privilegien

Memory Kontext

e Beschreibung des Adressraumes des Prozessors (bspw. Obere/untere Grenze des zugeteil-
ten Speicherbereichs)

6.3.3. Context-Switch

Ein Context-Switch nennt man den Vorgang, wenn das OS die Abarbeitung eines Prozesses nach
einem Interrupt unterbricht und mit einem anderen Prozess bzw. Routine weiterfahrt. Fir einen Con-
text-Switch, muss das OS den Zustand des bestehenden Prozesses im PCB speichern und den PCB
des neuen Prozesses laden. Dieser Vorgang kostet Zeit und kann als ,nichtproduktiver Overhead"
bezeichnet werden. Mann kann daher fir solche Prozesse folgendes festhalten:

e Die Erzeugung von Prozessen ist sehr aufwendig

e Der Context-Switch ist Abhdngig vom PCB ebenfalls aufwendig

Process Py

executing [ idle
|
save state into PCBy [
| |
| v |
| |
| reload state from PCB;
idle )
: executing
| .
| save state into PCB; |
l |
| v |
I reload state from PCBg :
executing | idle
|

Abbildung 16 PCB
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6.3.4. Klassifizierung von Prozessen

Mit Bezug auf den bei der Initialisierung zugewiesene Adressraum eines Prozesses werden im Allge-
meinen folgende zwei Kategorien gebildet:

Schwergewichtige Prozesse
e Besitzt eigenen Adressraum

e Prozesswechsel erfordert auch einen Wechsel des Adressraumes

Leichtgewichtige Prozesse (Threads)
e Besitzen gemeinsamen Adressraum

e Prozesswechsel erfordert keinen Wechsel des Adressraumes

Schwergewichtiger
Process

/ \\ / \\
[
( ProzgssfKgntext ) k ProzgssfKgntext )

AL W

User-
Space

Kernel

Kernel-
Space

/

Leichtgewichtiger
Prozess (Thread)

Abbildung 17 Schwer- und leichgewichtige Prozesse

6.3.5. Privilegierungsstufen im OS

In alteren Generationen von Betriebssystemen war es moglich, Programme zu schreiben die auch auf
Speicherbereiche des Betriebssystems zugreifen konnten. Durch bewusste oder unbewusste Pro-
grammierfehler konnte das Betriebssystem so zum Absturz gebracht werden. Diese Problematik fiihr-
te zur Einfihrung von Privilegierungsstufen flir Prozesse mit denen Benutzerprozesse in einer Art
~Sandbox“ gekapselt werden kénnen. Das Verstandnis dieses Models ist wichtig, weil es ein essentiel-
ler Unterschied zwischen einem Prozess und Thread darstellt.

In einem ,autoritédren“ Betriebssystem erfolgt die Implementierung von Prozessen unter Verwendung
verschiedener Privilegierungsstufen, die den sichtbaren bzw. verwendbaren Adressraum und Befehls-
satz eines Prozesses eingrenzen. In diesem Sicherheitskonzept kann ein so genannter ,unprivilegier-
ter* Prozess (bspw. Ring 3) nicht direkt auf HW-Ressourcen zugreifen oder gar den Speicher eines
Lprivilegierteren* Prozesses im Ring 0-2 beschreiben.

Intel-Prozessoren seit dem 386er unterscheiden 4 verschiedene Sicherheitsstufen (Modi) tiber welche
die Privilegierung stufenweise eingeschrankt wird. Der Modus mit dem starksten Schutz wird als Ker-
nel-Mode und der mit dem geringsten als User-Mode bezeichnet.

2006-11-20



Diplomarbeit Seite 38

Die verbreiteten Betriebssysteme fir x86 (dazu gehéren Linux und Windows) nutzen lediglich 2 der 4
mdglichen CPU-Ringe. Im Ring 0 werden der Kernel und alle Hardwaretreiber ausgefihrt, wahrend
die Anwendungssoftware im unprivilegierten Ring 3 arbeitet.

<\,:> Gate-Deskriptor

Abbildung 18 User- und Kernel-Mode

Will nun ein Benutzerprozess die Dienste des Betriebssystems nutzen, kann er dies Uber Systemcalls
realisieren. Dabei erfolgt ein Context-Switch bei dem die Kontrolle des Programms auf das Betriebs-
system Ubergeht. Das OS im Kernel-Mode hat Zugriff auf alle Ressourcen und Speicherbereiche und
kann so die geforderte Aufgabe erflllen. Nach erfolgreichem Abschluss erfolgt ein erneuter Context-
Switch und der Ubergang in den User-Mode.

Das “Schlupfloch” oder die Mdglichkeit fur einen weniger privilegierten Prozess, die API des Kernels
zu nutzen, wird Uber Gate-Deskriptoren realisiert. Sie reprasentieren einen kontrollierten Ubergang
von einem privilege-Niveau zu einem anderen. Die Deskriptoren sind in der Global Deskriptor Table
(GTD) gespeichert, die fir alle Prozesse zuganglich ist.

6.4. Das Thread-Modell

Ein Thread ist die ausfiihrbare Einheit (execution) eines Prozesses. Threads erweitert die oben be-
schriebene Prozessdefinition um die Méglichkeit, mehrere voneinander unabhéngige ,Ausfiihrungsfa-
den“in einer Prozessumgebung (Prozesskontext) laufen zu lassen.

Threads sind leichtgewichtig, d.h. sie bestehen aus einem Programm-Counter (PC), einem Register-
Set und einem Stack. Sie laufen im Kontext eines Prozesses ab und teilen dabei mit einem ,Peer-
Thread" (Thread im gleichen Prozess-Kontext) Elemente wie bspw. Adressraum, globale Variabeln,
oder geoffnete Dateien.
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Multithreaded-Process Multithreaded-Process
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Abbildung 19 Multithreaded Process

In einem Multithreaded-Process (ein Prozess mit 2...n Threads) werden vom Prozesskontext gemein-
sam genutzte Elemente der Threads bereitgestellt. Durch die gemeinsame Nutzung entsteht der Vor-
teil, das Threads mit wenig Aufwand erzeugt werden kénnen (unter der Voraussetzung, dass der Pro-
zess bereits existiert). Der Context-Switch von Threads ist ebenfalls effizienter da nicht der “ganze”
Prozesskontext ausgetauscht werden muss. Bei einem Threadwechsel muss lediglich der Threadkon-

text berlicksichtigt werden.

Da Threads, die demselben Prozess zugeordnet sind, den gleichen Adressraum verwenden, ist eine
Kommunikation zwischen diesen Threads von vorneherein méglich (Interprozesskommunikation).
Diese Vorteile durch gemeinsam genutzte Kontexte, birgt aber den Nachteil, dass mit Synchronisati-
ons-Massnahmen gezielt Konflikte im Zugriff auf Speicherbereiche abgefangen werden missen.

6.4.1. Der Threadkontext

Der Threadkontext hangt im Wesentlichen von der Prozessor-Architektur ab. Ein Kontextwechsel um-
fasst im Allgemeinen das Sichern und Laden folgender Daten eines Threads:
Threadkontext

e Program counter

e Statusregister des Prozessors

e Weitere Register des Prozessors

e User- und Kernel-Stackpointer

e Pointer zum Adressraum in dem der Thread lauft

6.4.2. Klassifizierung von Threads

Es existieren zwei grundsatzlich verschiedene Arten, wie Threads implementiert werden kénnen.
.Richtiges" Threading wird die Methodik genannt, in der Threads im Kernel implementiert werden
(Kernel-Space). Dabei kennt der Kernel jeden Thread was eine Voraussetzung fir die Verteilung die-
ser Threads auf mehrere CPUs ist.
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Eine Spezialisierung ist die Implementation im User-Space. Dabei sieht der Kernel nur den Prozess
mit dem Initialthread, nicht aber die 2...n Threads die méglicherweise in diesem einen Prozesskontext
laufen. Es ist offensichtlich, dass die Verwaltung solcher Threads nicht vom Kernel iilbernommen wer-
den konnen. User-Level-Threads benétigen eine Runtime-Umgebung welche die Verwaltung dieser
Threads Ubernimmt. Da die Verwaltung bei der Runtime-Umgebung liegt, kann der Kernel diese User-
Threads auch nicht auf mehrere CPUs verteilen.

Als Mischform der beiden oben genannten Varianten kann die Hybride Implementierung betrachtet
werden. Sie verbindet die Vorteile beider Implementierungsarten.

Kernel-Level-Threads (Abbildung 1:1)

Die Verwaltung dieser Thread erfolgt Uber eine Thread-Tabelle, die im Kernel angelegt ist. Analog der
Ublichen Prozesstabelle mit den PCBs, ist im Kernadressraum auch die Threadtabelle angelegt. Der
Kernel-Thread besitzt folgende charakteristische Eigenschaften:

e Thread Im Kerneladressraum

e Kernel verwaltet Prozesse und Threads

e Operation zur Verwaltung von Threads Uber Systemcalls
e Kernel besitzt Prozesstabelle (PCB) und Threadtabelle

e Ausflihrung der Threads erfordert keine Laufzeitumgebung

Thread Process
{ \
2 gi) (v
v N

[

Process-Table Thread-Table
Abbildung 20 Kernel-Level-Thread

Vorteile Kernel-Level-Threads
e Keine blockierenden Systemaufrufe
e Threads kdénnen vom Kernel direkt auf CPUs verteilt werden

e Portierbarkeit der Applikationen geringer (Threadoperationen Uber Systemcalls)

Nachteile Kernel-Level-Threads
e Threadwechsel bendtigt Mode-Wechsel zum Kern (Kontext-Switch)
e Erzeugen, Beenden, etc. bendétigt Systemcall (Kontext-Switch)

e Aufwand fir Erzeugung grésser (bspw. Solaris/Sparc2;):
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0 Benutzer-Thread 52 uSec
o Kernel-Thread 350 uSec
o0 Prozess 1700 uSec

Kernel-Level-Threads (KLT) finden in Windows NT/2000/XP und Linux Anwendung

User-Level-Threads (Abbildung 1:n)

Die Implementierung und Verwaltung dieser Threads erfolgt tGber ein Runtime-System auf Library-
Ebene. Analog dem Kernel verwaltet die Runtime-Umgebung Thread mittels Thread Control Blocks
(TCBs). Diese Art Threads zu realisieren, hat den Vorteil, dass sie unabhéngiger vom OS gestaltet
werden kann und somit die Poritierbarkeit einer Applikation eher gegeben ist. Der Context-Switch ist
ebenfalls performanter da er ohne Einwirkung des Kernels gemacht werde kann.

Im Kontext der Skalierbarkeit von Applikationen zeigt sich hier aber der klare Nachteil, dass mehrere
User-Threads (im gleichen Prozesskontext) vom Kernel nicht auf CPUs verteilt werden kénnen. Der
Kernel kennt lediglich den Initialthread des Prozesses. Ein weiterer Nachteil zeigt sich dadurch, dass
bei einem blockierenden Systemaufruf eines Threads seine Peer-Threads ebenfalls blockieren.

Der User-Level-Thread hat folgende charakteristische Eigenschaften:
e Thread im Benutzeradressraum
e Kernel kennt Threads in Prozess nicht
e Kernel verwaltet nur ,gewdhnlicher” Prozess (PCB)

e Threads durch Laufzeitumgebung verwaltet (TCB)

Thread Process

{ )

User-
Space

Kernel-
Space

Kernel _
/N \

Runtime Thread-Table Process-Table

Abbildung 21 User-Level-Thread

2006-11-20



Diplomarbeit Seite 42

Vorteile User-Level-Threads
e Fir Thread Wechsel bendtigt kein Kernel-Mode Privilegien
¢ Anwendungsspezifisches Scheduling der Threads méglich

e Unabhéangig vom Betriebssystem.

Nachteile User-Level-Threads
e Blockierender Systemaufruf moglich
e Scheduling muss von der Laufzeitumgebung sichergestellt werden
e Keine Verteilung auf mehrere CPU mdglich

User-Level-Threads finden unter Unix und Linux Anwendung.

Hybride-Threads (Abbildung m:n)

Hybride Threads sind eine Kombination von Kernel- und User-Level-Threads. Ziesetzung ist dabei, die
Vorteile beider Modelle zu vereinen. In einem kombinierten System erfolgt die Thread-Erzeugung
vollstandig im Userspace, ebenso Teile des Scheduling und der Synchronisation.

Die User-Level- Threads werden einer geringeren oder gleichen Anzahl von Kernel-Level-Threads
zugeordnet. Méglich wird dies durch das Konzept der ,leichtgewichtigen Prozesse” (LWP), die ,Mittler*
im Userspace fir die Kernel Threads sind. Der Entwickler hat die Mdglichkeit zu bestimmen, welche
und wie viele Threads auf einen LWP abgebildet werden sollen.

Die Threads sind in diesem Fall ungebunden, da sie nach der Implementierung um einen LWP kon-
kurrieren. Die LWPs besitzen zu den User-Level- Threads eine 1:n Beziehung und einel:1 Beziehung
zu den Kernel-Level-Threads. Sie werden analog der 1:1-Abbildung als Kernel-Level-Threads behan-
delt.

Multiple User-Thread

User-
Space

Kernel-
Space

(o

\

Kernel-Thread

Abbildung 22 Hybride Threads
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6.5. Prozessmodell Windows

Unter Windows werden Prozesse als Objekte implementiert. Die Prozesse sind gleichgestellt, d.h. sie
stehen auf der gleichen Ebene. Die baumartige Prozesshierarchie wie unter UNIX, in der 1 Vaterpro-
zess 1..n Kindsprozesse haben kann, existiert unter Windows nicht. Windows kennt in Bezug auf ihr
Prozessmodell die Objekttypen Job, Prozess, Thread und Fiber.

6.5.1. Objekttypen

Job

Ein Job ist eine Menge von Prozessen, die gemeinsame BM-Quoten, Zeitbegrenzungen und ev.
Zugriffsbeschrankungen haben.

Prozess

Ein Prozess ist ein Objekt, das Betriebsmittel (Ressourcen) einschliesslich eines Adressraums hat.
Jeder Prozess hat einen geschiitzten Adressraum von 4 GB.

Thread

Ein Thread ist ein Ausfiihrungspfad innerhalb eines Prozesses. Jeder Prozess startet mit einem Initi-
althread. Anschliessend kénnen beliebige zusatzliche Threads erzeugt werden. Diese Thread-
Funktionalitdt auch bekannt als Win32-Thread ist direkt in die Kernel32.dll eingefuigt und steht fir die
Windows Betriebsystem der NT-Familie (Win2000, XP, Vista) zu Verfiigung.

Da die Entwicklung von .NET-Anwednungen mit .NET-Threads von Microsoft gezielt geférdert wird,
verliert der Win32-Thread in diesem Bereich an Bedeutung. Allerdings ist fiir nicht .NET-Applikationen
und im Bereich der Echtzeitprogrammierung der Win32-Thread nach wie vor wichtig.

Win32-Threads bieten auch eine grosse Funktionsvielfalt von Mutexen und Semaphoren bis Messa-
ge-Queues und Task-Pools. Win2000 und WinXP realisieren diese Threads als Kernel-Threads.

Fiber

Ein Fiber kann unter Windows als , Thread in einem Thread" betrachtet werden. Er liegt vollsténdig im
Benutzerbereich und ist somit fir den Kernel nicht sichtbar. Das Scheduling eines solchen Fibers ist
nonpreemtive, d.h. dass ein Fiber muss die Kontrolle tber ein Win32-Thread selbstandig tibergeben.
Der aktuelle Fiber Gbernimmt fur die Zeit der Ausfihrung die Identitdt des Threads in dem er lauft.
Blockiert ein Fiber, blockieren auch die anderen Fibers dieses Threads bzw. der Thread selbst.

Fibers kénnen schnell gestartet und auf eine CPU verteilt werden, da es sich um eine vom Kernel
unabhéngige User-Level Implementierung handelt. Die Umschaltung von Fibers ist wesentlich effizien-
ter als eine Threadumschaltung.

Die Unterstitzung nur einer CPU fallt dabei nicht ins Gewicht, da man bereits durch eine geeignete
Aufteilung der Win32-Threads fur eine gute Lastenbalancierung sorgen kann. Geeignet sind Fibers fur
Anwendungen, bei denen kurze Antwortzeiten im Vordergrund stehen.

6.5.2. Abbildung von Threads

Windows 2000/XP realisiert mit seiner Prozess/Thread-Architektur das Kernel-Level-Thread-Modell
(1:1-Zuordnung) in dem in einem Prozesskontext mehrere Kernel-Level-Threads laufen die vom Ker-
nel direkt verwaltet werden. Der Kernel verteilt dabei nach einem ,priority-driven, preemtive scheduling
system," die CPU(s) an mehrere Threads unterschiedlicher Prozesse.
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6.5.3. Threadzustande

Windows 2000/XP definiert in Bezug auf Threadzusténde folgende Mdéglichkeiten:

Tabelle 7 Threadzustande in Windows

Zustand Code Beschreibung

Waiting 5 Thread wartet auf I/O, falls Ressource verfugbar folgt Zustand Ready

Ready 1 Thread ist lauffahig (vom Scheduler beriicksichtigt)

Running 2 Thread in Ausfuhrung

Standby 3 Néchster Thread in Ausfiihrung (ausser es folgt Anderung Prioritat
oder Interrupt)

Transition 6 Ablaufbereiter Thread, dessen Ressourcen nicht verfiigbar sind

Terminated 4 Beendeter Thread

Zu einem bestimmten Zeitpunkt kann nur ein Thread pro Prozessor(kern) im Zustand Running sein.
Alle anderen lauffahigen Threads sind dann im Zustand Waiting oder Ready. Ein laufender Thread
wird ausgefihrt bis eine der folgenden Ubergangsbedingung eintritt:

e Der Thread uUberschreitet die zulassige Ausfiihrungszeit (Timesclice, Quantum)
e Ein héher priorer Thread geht in den Zustand Waiting tiber

Der laufende Thread wird durch ein I/O-Ereignis in den Zustand Waiting versetzt

6.6. Das Prozessmodell Java

Seit Java 1.0 sind Threads fester Bestandteil der Java-Standardbibliothek. Durch verschiedene Imp-
lementierungen der JRE gibt es aber auch Unterschiede im verwendeten Thread-Modell. Altere Imp-
lementierungen beispielsweise nutzen noch keine Kernel-Threads womit die Voraussetzung fur Multi-
Prozessor-Unterstiizung nicht gegeben ist.

6.6.1. Klassifizierung

In einem Java-System gibt es zwei Arten von Threads: User Threads und Daemon Threads. Norma-
lerweise werden Daemon Threads durch das System erzeugt. Daemon Threads werden bis auf eine
Ausnahme gleich behandelt wie User Threads. Sie haben eine Prioritat, haben dieselben Methoden
und Zustande. Das einzige Mal wo die Java Virtual Machine prift ob es sich bei einem Thread um
einen Daemon- oder einen User Thread handelt, ist wenn ein Thread terminiert. Handelt es sich bei
diesem Thread um einen User Thread, so wird gepriift, ob noch weitere User-Threads vorhanden
sind. Ist dies nicht der Fall, sind also keine oder nur noch Daemon-Threads vorhanden, so terminiert
das Programm. Der Grund dafir ist einfach. Daemon Threads sind als Server-Threads fiur die User
Threads gedacht. Gibt es keine User-Threads mehr, so gibt es nichts mehr zu bedienen. Ein typisches
Beispiel fir einen Daemon Thread ist der Garbage Collector.

6.6.2. Erzeugung

In Java ist ein Thread eine Instanz einer von der Klasse Thread abgeleiteten Klasse. Dabei wird die
Methode run() Uberschrieben und darin definiert, was der Thread tun soll. Eine solche Klasse kann
weitere Methoden haben, die nichts mit dem Thread zu tun haben. All diese Methoden, sowie alle
Instanzvariablen einer solchen Klasse werden, abgesehen von den Sichtbarkeiten, gleich behandelt
wie andere Klassen. Ein Thread kann nur einmal gestartet werden! Soll die run()-Methode ein zwei-
tes Mal ausgefiihrt werden, muss zuerst eine neue Instanz erzeugt werden.
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Eine andere Mdglichkeit besteht darin, dass die Thread-Klasse das Interface Runnable implemen-
tiert. Dieses Interface definiert eine einzige Methode run() ohne Parameter. Die Klasse Thread sel-
ber implementiert Runnable. Dies wird insbesondere dann benétigt, wenn die Thread-Klasse bereits
von einer anderen Klasse abgeleitet ist (Java unterstitzt keine Mehrfachvererbung)

Siehe dazu auch Kapitel 8.1.1.

6.6.3. Kontrolle

Die Kontrolle bzw. das Laufzeitverhalten von Java-Threads kann durch den Aufruf mehrerer Methoden
gezielt gesteuert werden.

Siehe dazu auch Kapitel 8.1.1.
Die Wichtigsten Methoden der Threadkontrolle sind ebenfalls im Kapitel 8.1.1 erklart.

6.6.4. Laufzeitumgebung eines Thread

Die Java Virtual Machine (JVM) bildet die Laufzeitumgebung der Threads in Java. Sie ist in Software
realisiert und bildet einen Layer zwischen der Hardware-Plattform und dem Java-Programm. Der JVM
obliegen fur die korrekte und sichere Ausfiihrung von Java-Programmen zahlreiche Aufgaben. Eine
zentrale Aufgabe ist die Verwaltung von Java-Threads. Da die JVM nicht a priori auf Multithreading-
Funktionalitat des darunterliegenden Betriebssystems zahlen kann, muss diese Aufgabe selber in die
Hand nehmen kénnen. Uber einen Threadverwalter werden Threads in einem Zeitmultiplex-Verfahren
.Zwangssequenzialisiert®. Das bedeutet, dass zur Laufzeit laufende Threads zu Gunsten eines ande-
ren unterbrochen werden und der Bytecode-Ausfuhrer immer nur ein Thread gleichzeitig ausfihrt.

6.6.5. Abbildung auf OS-Threads

Die Art und Weise wie Java Threads auf OS-Threads abgebildet werden, entscheidet letztendlich
dartber ob eine Skalierung dieser Threads bzw. Applikation Uberhaupt mdéglich ist. Sind die Java-
Threads fir das Betriebssystem nicht sichtbar, kbnnen diese auf einem SMP-System auch nicht ver-
teilt werden. Die Kombination JVM-/OS-Ausfuhrung fuhrt in diesem Zusammenhang zu ,green“- oder
.hative" Threads.

Green-Threads
Green Threads sind simulierte Threads innerhalb des Virtual-Machine-Prozesses. Sie werden in der
Virtual Machine selbst realisiert weil das Betriebssystem keine Threads unterstiitzt.

Native Threads

Unterstitzt das Betriebssystem des Rechners, auf dem die JVM lauft, Threads direkt, so nutzt die
Laufzeitumgebung diese Fahigkeit in der Regel. In diesem Fall haben wir es mit nativen Threads zu
tun. Unter Windows NT/2000/XP werden Java-Threads auf Threads im Betriebssystem abgebildet, die
innerhalb des Virtual-Machine-Prozesses ablaufen
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6.7. Prozessverwaltung durch Scheduling

In einem Multi-Threaded Anwendung konkurrieren mehrere lauffahige Prozesse um die Rechenzeit
des Prozessors. Das Scheduling-Modul der Ausfiihrungseinheit des Betriebssystems hat die Aufgabe
diese Rechenzeit an die Prozesse in der Ready-Queue zu verteilen. Die Zuweisung erfolg dabei nicht
willktirlich sonder bspw. nach dem Optimierungsprinzip folgender Bereiche:

e Fairness der Prozesse (kein Starving)

e Beriicksichtigung der Wichtigkeit von Prozessen (Priority)

e Maximale HW-Auslastung

e Maximaler Durchsatz des Systems (kleine Abarbeitungszeit)
e Minimale Scheduling Aufwand

e Tolerierbare Antwortzeit (Turaround-Time)

Diese Aspekte werden in individuellen Scheduling-Algorithmen umgesetzt, die Aufgrund verschiede-
ner Prozess-Messgréssen entscheiden, ob und wann ein Prozess die Rechenzeit abgeben muss. Die
effektive Laufzeit eines Prozesses bis zum néchsten Context-Wechsel wird (dynamisch) beeinfluss
durch:

e Laufzeitverhalten des Prozesses (I/O- oder CPU-lastig)
e Aktuelle (relative) Wichtigkeit des Prozesses
e Zulassigkeit einer Unterbrechung (preemtion)

e Ressourcenbedarf und effektiver —verbrauch des Prozesses

6.7.1.1. Scheduling-Strategien

Die Theorie definiert grundsatzlich zwei verschiedene Ansatze, wie einem Prozess die Rechenzeit
entzogen werden kann:

Nonpreemtives Scheduling

Einem Prozess kann die CPU nicht entzogen werden. Diese wird nur freiwillig abgegeben bspw. bei
einem 1/O-Request oder nach der Terminierung

Preemtives Scheduling

Einem Prozess kann die CPU jeder Zeit zu Gunsten eines anderen Prozesses entzogen werden
bspw. durch einen héher prioren Prozess oder nach Ablauf der Zeitscheibe.

6.7.1.2. Scheduling-Algorithmen

Die nachfolgende Ausfuhrung Uber 3 bekannte Scheduling-Algorithmen hat nicht den Anspruch einer
vertieften Beschreibung dieser Verfahren. Ziel ist es hier, dem Leser die Begriffe wieder ins Bewusst-
sein zu rufen fir eine spatere Zuordnung.

FIFO-Scheduling

Diese Verfahren nimmt keine Riicksicht auf Wichtigkeit oder Laufzeitverhalten von Prozessen. Ein neu
erzeugter Prozess wird in der Ready-Queue eingeordnet und muss mit der Ausfiihrung warten, bis
alle vor ihm liegenden Prozesse abgearbeitet sind. Die Prozessorzeit wird hier nach dem nonpreemti-
ve-Ansatz nur freiwillig abgegeben. Falls ein Prozess aus einem blocked-in den ready-Zustand ge-
langt wird er wieder am Ende der Queue eingereiht (FCFS; first come first served)

Round Robin-Scheduling

Das Round-Robin-Verfahren kann vom letztgenannten FIFO-Verfahren abgeleitet werden. Die Pro-
zesse werden der Reihe nach in die Ready-Queue abgelegt und wie geordnet auch abgearbeitet (FI-
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FO). Der entscheidende Unterschied zum Round-Robin liegt darin, dass die maximale Ausfihrungs-
zeit eines Prozesses durch die Timeslice (Zeitscheibe, Quantum) begrenzt ist. Einem Prozess der
diese Grenze erreicht, wird die CPU auf jeden Fall entzogen. Die Systemcharakteristik hangt hier von
der Grosse dieser Timeslice ab — wird sie gross gewahlt verhalt sich das System wie FI-
FO_Scheduled, wird sie (zu) klein gewahlt wird das System durch Context-Wechsel iberladen.

Priority-Scheduling

Das Priority-Verfahren ordnet die Ready-Queue nicht nach der Ankunftszeit eines Prozesses sondern
nach deren Prioritat. Prozesses erhalten unter Berlcksichtigung der oben genannten Prozess-
Messgrossen (bspw. Laufzeitverhalten) Prioritdten zwischen 0 bis 31. Diese bestimm die Reihenfolge
in der Queue und den Zeitpunkt der Abarbeitung. Das Verhalten wéhrend der Laufzeit des Prozesses
ist preemtive oder nonpreemtive:

e Preemtive: Erscheint ein héher priorer Thread wird dem laufenden Thread die CPU entzogen.

e Nonpreemtive: Ist die ready-Queue nach Prioritédten geordnet, verhalt sich dieses Verfahren
wie FIFO-Scheduled.

Das letztgenannte birgt das Problem des Starving (Verhungern von Prozessen mit tiefer Prioritat).
Lésung bietet hier die Erweiterung in Form von ,Priority-Feedback-Scheduling“ bei dem die Prioritét
wartender Prozesse laufend inkrementiert wird oder Prozessen mit Laufzeit die Prioritdt dekrementiert
wird.

6.8. Prozessverwaltung Windows

Das Scheduling unter Windows 2000/XP erfolgt auf der Ebene von Threads und nicht auf Prozess-
ebene. Windows implementiert ein ,priority-driven — preemtive scheduling”-System wo jener lauffahige
Thread mit der hdchsten Basisprioritéat die Prozessorzeit erhédlt. Wird ein Thread selektiert, lauft er
maximal den festgelegten Timeslice (Quantum) ab und wird von einem gleichen oder héher prioren
Thread abgelést. Windows 2000/XP implementiert mit diesen Mechanismen der klassische Round-
Robin-Ansatz.

Windows definiert insgesamt 32 Prioritatsstufen (0...31) wobei 0 die tiefste- und 31 die hdchste Priori-
tét reprasentiert. Die Prioritat eines Threads setzt sich zusammen aus:

e der Priority Class seines Prozesses und
e dem Priority Level des Threads im Kontext dieses Prozesses

Priority Class und Priority Level werden kombiniert um die Base Prority des Threads zu bestimmen.
Diese Base Priority wird verwendet um die Scheduling Entscheidungen zu treffen.

6.8.1. Priority Class

Unter Windows 2000/XP gehort jeder Prozess zu einer der folgenden Priority Classes:

Tabelle 8 Priority Class

Prioritatsklassen

IDLE_PRIORITY_CLASS
BELOW_NORMAL_PRIORITY_CLASS
NORMAL_PRIORITY_CLASS
ABOVE_NORMAL_PRIORITY_CLASS
HIGH_PRIORITY_CLASS
REALTIME_PRIORITY_CLASS
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Per Default ist die Priority Class eines Prozesses mit NORMAL_PRIORITY_CLASS definiert. Mit der
SetPriorityClass-Methode kann die die Priority Class eines Prozesses verandert werden. Die
GetPriorityClass-Methode gibt die aktuelle Priority Class zurtick.

SetPriorityClass Priority Class setzen

BOOL WINAPI SetPriorityClass(
HANDLE hProcess,
DWORD dwPriorityClass

)

Listing 2 SetPriorityClass

Attribut Beschreibung
dwPriorityClass Siehe Tabelle 8 Priority Class
GetPriorityClass Priority Class abfragen

DWORD WINAPI GetPriorityClass(
HANDLE hProcess

)
Listing 3 GetPriorityClass

6.8.2. Priority Level

Die nachfolgende Liste zeigt die moglichen Priority Levels innerhalb der Priority Classes der Prozes-
se:

Tabelle 9 Priority Level

Prioritatslevel

THREAD_PRIORITY_IDLE
THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_HIGHEST
THREAD_PRIORITY_TIME_CRITICAL

Threads werden per Default mit dem Priority Level THREAD_PRIORITY_NORMAL erzeugt. Das bedeu-
tet, dass die Thread Prioritat der Prozess Prioritat entspricht. Mit der SetThreadPriority-Methode
kann nach der Erzeugung der Threads die relative Prioritat eines Threads innerhalb der Threads die-
ses Prozesses verandert werden. Den aktuelle Priority Level gibt die GetThreadPriority-Methode
zurdck.
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SetThreadPriority Priority Level setzen

BOOL WINAPI SetThreadPriority(
HANDLE hThread,
int nPriority

)
Listing 4 SetThreadPriority

Attribut Beschreibung
nPriority Siehe Tabelle 9 Priority Level
GetThreadPriority Priority Level abfragen

DWORD WINAPI GetPriorityClass(
HANDLE hProcess

)
Listing 5 GetThreadPriority

6.8.3. Base Priority

Die Base Priority eines Threads ist eine Kombination aus Priority Class und Priority Level. Sie be-
stimmt ob ein Thread im Vergleich zu einem anderen Thread den Vorzug erhélt oder nicht. Die Werte
kénnen aus der folgenden Auflistung entnommen werde (Auszug aus Gesamtliste)

Tabelle 10 Auszug aus der Thread-Priority Tabelle

#  Process Priority Class Thread Priority Level

IDLE_PRIORITY_CLASS THREAD_PRIORITY_IDLE

BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_IDLE
NORMAL_PRIORITY_CLASS THREAD_PRIORITY_IDLE
ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_IDLE

HIGH_PRIORITY_CLASS THREAD_PRIORITY_IDLE

o oo N N WN R R R R R

—

[a—

IDLE_PRIORITY_CLASS
IDLE_PRIORITY_CLASS
IDLE_PRIORITY_CLASS
BELOW_NORMAL_PRIORITY_CLASS
IDLE_PRIORITY_CLASS
BELOW_NORMAL_PRIORITY_CLASS
Background NORMAL_PRIORITY_CLASS

THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_LOWEST
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20 REALTIME_PRIORITY_CLASS -4

21 REALTIME_PRIORITY_CLASS -3

22 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_LOWEST

23 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL
24 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_NORMAL

25 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL
26 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST

27 REALTIME_PRIORITY_CLASS 3

28 REALTIME_PRIORITY_CLASS 4

29 REALTIME_PRIORITY_CLASS 5

30 REALTIME_PRIORITY_CLASS 6

31 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_TIME_CRITICAL

Die Gesamtliste ist unter MSDNSCHED]einsehbar.
Weiterfihrende Informationen:
e MSDN, Scheduling Priorities: [MSDNSCHED]

6.8.4. Priority Boosts
Jeder Thread besitzt eine dynamische Prioritat, die Base-Priority. Sie wird vom Scheduler benutzt um
Entscheidungen zu treffen. Das System kann diese Base-Priority dynamisch verandern um die Opti-

mierungsprinzipien wie Fairness oder maximaler Durchsatz zu realisieren. Es findet keine dynamische
Anpassungen im Bereich von Priority Level 16...31 statt.

6.8.5. Prozesse erzeugen

Die Erzeugung eines Prozesses unter Windows 2000/XP erfolgt mit der CreateProcess-Methode.
Sie besitzt zahlreiche Parameter, von denen hier nicht alle dokumentiert werden.
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CreateProcess Erstellt und startet einen Prozess

Beispiel; Erzeugen und starten eines Prozesses mit eigener Konsole

STARTUPINFO si;

ZeroMemory(&si, sizeof(STARTUPINFO));
si.cb = sizeof(STARTUPINFO);

PROCESS_ INFORMATION pi;

BOOL fCreated = CreateProcess( T(“C:\\foo.exe™),

NULL,

NULL,

NULL,

FALSE,
CREATE_NEW_CONSOLE,
NULL,

TCC:\\ ).

&si,

&pi);

HANDLE hProcess = pi.-hProcess; //Process-Handle

Listing 6 CreateProcess

Es werden nur diejenigen Attribute/We
kénnen.

rte beschrieben, die einen Einfluss auf die Skalierung haben

Tabelle 11 Prozessattribut dwCreationFlag

Attribut

Beschreibung

dwCreationFlag

Tabelle 12 Werte von dwCreationFlag

Mogliche Werte von dwCreationFlag

Steuert die Prioritatsklasse und die Erzeugung des
Prozesses. Kann diverse Werte annehmen.

Beschreibung

CREATE_NEW_CONSOLE

IDLE_PRIORITY_CLASS
BELOW_NORMAL_PRIORITY_CLASS

NORMAL_PRIORITY_CLASS

ABOVE_NORMAL_PRIORITY_CLASS

HIGH_PRIORITY_CLASS

REALTIME_PRIORITY_CLASS

Prozess erhalt eine eigene Konsole, erbt die Konsole
des Ubergeordneten Prozesses nicht

Threads laufen nur falls System im Leerlauf

Threads laufen auf Prioritatsstufe zwischen
IDLE_PRIORITY_CLASS und
NORMAL_PRIORITY_CLASS

Thread ohne bestimmte Anforderungen
an den Scheduling

Thread laufen auf Prioritatsstufe zwischen
NORMAL_PRIORITY_CLASS und
HIGH_PRIORITY_CLASS

Thread fur zeitkritische Aufgaben innerhalb einer mi-
nimalen Zeitverzégerung

Threads mit hdchst mdglicher Prioritdt (mit Vorsicht
anzuwenden!)
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6.8.6. Threads erzeugen

Threads unter Windows 2000/XP kdnnen auf 4 verschiedene Arten erzeugt werden:
e Starten eines neuen Prozesses
e Aufrufen der Win32-API-Funktion CreateThread
e Aufrufen der Funktion _beginthread aus der C-Laufzeitbibliothek
e Aufrufen der Funktion _beginthreadex aus der C-Laufzeitbibliothek

Nachfolgend wird aufgezeigt, wie mit der CreateThread-Methode ein Thread erzeugt werden kann.
Die Prioritat der Threads wird Uber die CreateProcess-Methode bestimmt oder nachfolgend mit
SetThreadPriority dynamisch geéndert.

CreateThread Erstellt und startet einen Thread

Beispiel; Erzeugen und starten eines Threads mit eigener Konsole
long WINAPI ThreadEntry(LPARAM Iparam)
{

}

unsigned long nThreadlD;
HANDLE hThread = CreateThread(NULL,

O!

(LPTHREAD_START_ROUTINE) ThreadEntry,
( void*)szHello,

Ov

&nThreadlD) ;

//

Listing 7 CreateThread

6.8.7. Affinitat von Prozessen

Unter einer Prozess-Affinitat versteht man die logische Zuordnung eines Prozesses zu einem Prozes-
sor. Sie wird bspw. angewendet um auf SMP-Architekturen das CPU-Hopping (stetiger CPU-Wechsel
eines Threads) oder das Cache-Trashing (stetiger Wechsel des Cache-Inhalts durch wechselnde
Threads) zu verhindern.

6.8.8. Affinitat unter Windows XP

Unter Windows 2000/XP wird per Default ein Prozess oder Thread irgendeinem verfligbaren Prozes-
sor zugeordnet. Will man hier korrigierend eingreifen, kann auf Level Prozess oder Thread eine Pro-
zess-Affinitat realisiert werden. Auf einem Mehrprozessorsystem kann so erreicht werden, dass Pro-
zesse oder Threads auf verschiedenen, zugewiesenen Prozessor(kernen) laufen kdnnen.

Die Affinitatsmaske ist eine DWORD-Variable fur die gilt:
e Bit 0 (niederwertigste) entspricht erster CPU
e Bitl entspricht zweiter CPU

Die Affinitatsmaske unter Windows lasst sich fiir den ganzen Prozess oder einzelne Threads eines
Prozesses definieren. Soll die Thread-Affinitat gesetzt werden, kann folgende Methode verwendet
werden:
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SetThreadAffinityMask Setzt die Affinitat eines Threads

Beispiel; Ausfiihren eines Thread auf der zweiten CPU erzwingen

#include <windows.h>
#include <tchar.h>

Int _tmain(Q

{
// Pseudohandle fir Thread ermitteln
HANDLE hThread = GetCurrentThread();
DWORD dwAffinity = 0x02; // Nur auf zweitem Prozessor ausfihren!
DWORD dwOldAffinity = SetThreadAffinityMask(hThread, dwAffinity);
_tprintFC T(“Allte Affinitatsmaske: %x\n”, dwOldAFFinity);
L]

return O;

by
Listing 8 SetThreadAffinityMask

Soll die Prozess-Affinitat gesetzt werden, kann folgende Methode verwendet werden:
SetProcessAffinityMask Setzt die Affinitat eines Prozesses

Beispiel; Ausfuhren eines Prozesses auf der zweiten CPU erzwingen

#include <windows.h>
#include <tchar.h>

Int _tmain(Q

// Pseudohandle fur Thread ermitteln

HANDLE hProcess = GetCurrentProcess();

DWORD dwAffinity = 0x02; // Nur auf zweitem Prozessor ausfihren!
BOOL fSetAffinity = SetProcessAffinityMask(hProcess, dwAffinity);
L]

return O;

e
Listing 9 SetProcessAffinityMask

Die unbedingte Zuweisung eines Threads oder Prozesses auf einen bestimmten Prozessor kann vor-
teilhaft sein, kann aber auch zu unerwarteten Performanceeinbussen fihren. Wenn bspw. ein Thread
mit Prozessor-Affinitat durch einen anderen Thread auf diesem Prozessor blockiert wird, kann er nicht
auf andere Systemressourcen ausweichen.

Dieses Problem kann umgangen werden indem mit der Funktion SetThreadldealProcessor nur

ein bevorzugter Prozessor definiert wird. Ist der Thread auf ,seinem“ Prozessor blockiert verhindert
das System die Nutzung eines anderen Prozessors nicht.
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SetThreadldealProcessor Setzt den idealen Prozessor flir einen Thread

Beispiel; Ausfiihren eines Threads auf einem bevorzugten Prozessor

#include <windows.h>
#include <tchar.h>

Int _tmain()

{
// Pseudohandle fir Thread ermitteln
HANDLE hThread = GetCurrentThread();
DWORD dwPrefferedProc = 0x02; // Prozessor 2 bevorzugen

DWORD dwPrevious = SetThreadldealProcessor(hThread, dwPrefferedProc);
if( dwPrevious == -1 )

ReportError();
L]

by
Listing 10 SetThreadldealProcessor
Weiterfiihrende Informationen:

e Windows 2000 developers’s guide (ISBN 3-8272-5702-6): [WIN2KDEV]

6.8.9. Skalierbarkeit durch Affinitat

Die Skalierbarkeit unter Anwendung der Prozess-Affinitat ist durchaus denkbar. Das zu erwartende
Systemverhalten ist aber nicht immer offensichtlich. System-Threads die im ,Verborgenen* laufen und
deren Scheduling kénnen zu unerwarteten Ergebnissen fihren.

Weiterfiihrende Informationen:

e TMurgent Technologies, White Paper Processor Affinity: [CPUAFFINITY]
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6.9. Prozessverwaltung Java

Werden Java Threads nicht auf Betriebssystem-Threads abgebildet, Gbernimmt die JVM das Schedu-
ling der Threads. Die Java Virtual Maschine Specification definiert nicht abschliessend, welche Sche-
duling-Methode anzuwenden ist. Folglich ist die Verteilung unter Verwendung von ,Green Threads"
abhangig von der effektiven Implementierung der JVM.

Das am haufigsten umgesetzte Verfahren basiert auf der ,priority-driven“-Entscheidung, ob ein Thread
Rechenzeit erhélt oder nicht. Hierbei besitzt jeder Thread eine Prioritat aus einem festgelegten Werte-
bereich. Kommt ein héher priorisierter Thread, wird ihm die CPU zu Verfigung gestellt. Falls Threads
gleicher Wichtigkeit aufeinandertreffen, wendet der Scheduler das ,Round-Robin“-Verfahren an
(Quantum).

Die Prioritdt eines Threads wird bei der Erzeugung des Threads vergeben (vererbt) und kann vom
Programmierer bewusst verandert werden. Die Java-Laufzeitumgebung andert aber die einmal ge-
setzte Prioritat von Threads nicht selbstandig (vergl. Priority-Levels unter Windows). Die Abstufung
der Prioritdten umfasst:

Tabelle 13 Thread Prioritéaten

Prioritatswert Beschreibung

public final static int MIN_PRIORITY =1 Minimalprioritéat eines Threads

public final static int NORM_PRIORITY =5 Standardprioritét eines Threads.
public final static int MAX_PRIORITY = 10 Maximalprioritét eines Threads

Die Prioritat eines aktiven Threads kann abgefragt und innerhalb des oben genannten Bereiches nach
belieben gesetzt werden:

Tabelle 14 Thread Prioritaten abfragen

Methode Beschreibung
public int getPriority() Aktuelle Prioritéat abfragen
public void setPriority(int newPriority) Neue Prioritat setzen

Mehr Informationen im Kapitel 8.1.1.

Java bietet auch Methoden, mit denen das Laufzeitverhalten bzw. der Scheduler beeinflusst werden
kann (bspw.):

Tabelle 15 Java Scheduler

Methode Beschreibung
public static void yield() Vorschlag Threadwechsel
public final void join() (max.) warten bis Thread beendet ist

public final void join(long millis)
public static void sleep(long millis) Thread pausieren lassen

Siehe dazu auch Kapitel 8.1.1.
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6.10. Windows API

In Bezug auf die Windows Prozesse werden von der API folgende Methoden zu Verfligung gestellt:

Tabelle 16 Windows API zur Prozessverwaltung (Auszug)

Funktion Beschreibung

CreateProcess Erzeugt einen neuen Prozess und Thread mit der security
identification des Aufrufers

CreateProcessAsUser Erzeugt einen neuen Prozess und Thread mit einem spezi-
fischen security token

OpenProcess Gibt den Handle dieses Prozess-Objektes zuriick

ExitProcess Beendet Prozess mit notify aller eingebundenen DLLs

TerminateProcess Beendet Prozess ohne notify aller eingebundenen DLLs

GetProcessTimes Sammelt Zeitinformationen wie lange der Prozess im User-

/Kernelmode gelaufen ist

In Bezug auf die Windows Threads werden von der API folgende Methoden zu Verfiigung gestellt:

Tabelle 17 Windows API zur Thread Verwaltung (Auszug)

Funktion Beschreibung

CreateThread Erzeugt neuen Thread

CreateRemoteThread Erzeugt einen neuen Thread in einem anderen Prozess
OpenThread Offnet einen Thread

ExitThread Normales Beenden eines Thread
TerminateThread Terminiert ein Thread

GetThreadTimes Gibt Zeitinformationen eines Threads zurlick
GetCurrentProcess Gibt den Pseudo-Handle eines Threads zurtick
GetCurrentProcessliD Gibt die ID des aktuellen Threads zurtick
GetThreadld Gibt die ID eines spezifischen Threads zuriick
Get/SetThreadContext Liefert oder @andert die CPU-Register eines Threads
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6.11. Prozesse Uberwachen

Performance Counter flir Prozesse

Windows stellt einige Leistungsindikatoren (Counter) zu Verfigung mit dem Prozesse tberwacht wer-
den kénnen:

Tabelle 18 Windows Performance Counter fiir Prozesse (Auszug)

Counter

Beschreibung

Process:

% Privileged Time

Process: % User Time

Process: % Processed Time

Process: % Elapsed Time

Process: % ID Process

Process: % Thread Count

Performance Counter fir Threads

Prozentuale-Laufzeit der Threads eines Prozesses im Ker-
nel-Mode in einem spezifischen Intervall

Prozentuale-Laufzeit der Threads eines Prozesses im User-
Mode in einem spezifischen Intervall

Prozentuale-Laufzeit der Threads eines Prozesses in einem
spezifischen Intervall (Privileged-Time + User-Time)

Verstrichene Zeit seit der Erzeugung des Prozesses
Definiert die Prozess-ID (Achtung Wiederverwendung!)

Gibt die Anzahl Threads eines Processes zuriick

Windows stellt auch einige Leistungsindikatoren (Counter) zu Verfiigung mit dem Threads tUberwacht
werden kdnnen:

Tabelle 19 Windows Performance Counter fir Threads

Counter

Beschreibung

Process: Priority Base

Thread:

Thread:

Thread:

Thread:
Thread:

Thread:

Thread:

Thread:

Thread:

% Privileged Time

% User Time

% Processor Time

% Context Switches/Sec

% Elapsed Time

% ID Process

% ID Thread

Priority Base

Priority Current

Gibt die aktuelle Base Priority des Prozesses zuriick (Start-
Prioritét des Threads)

Prozentuale-Laufzeit der Threads im Kernel-Mode in einem
spezifischen Intervall

Prozentuale-Laufzeit der Threads im User-Mode in einem
spezifischen Intervall

Prozentuale-Laufzeit der Threads in einem spezifischen
Intervall (Privileged-Time + User-Time)

Anzahl Kontextwechsel per Sekunde des Systems

Gibt die CPU-Zeit in Sekunden zurtick die ein Thread ins-
gesamt konsumiert hat

Definiert die Prozess-ID eines Threads (Achtung Wieder-
verwendung!)

Definiert die Thread-ID eines Threads (Achtung Wieder-
verwendung!)

Gibt die aktuelle Base Priority des Threads zuriick (Kann
ungleich Start-Prioritat des Threads sein)

Gibt die dynamische Prioritat des Threads zuriick
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Thread: Thread State Gibt den aktuellen Status/Zustand des Threads zurlck
(Wert 0...7)
Thread: Thread Wait Reason Gibt den Grund fur den Zustand WAIT zuriick (Wert 0...19)

6.12. Profiling Prozesse
Das Profiling des Systems hat zum Ziel, die oben genannten Leistungsindikatoren von Prozessen und
Threads sichtbar zu machen um das Systemverhalten analysieren zu kénnen.

Fur diese Tatigkeit gibt es zahlreiche Tools die mit mehr oder weniger Leistungsumfang Hinweise
Uber folgende Grdssen liefern kénnen:

e Prozess-/Thread-ID

e Konsumierte CPU-Zeit Prozess/Thread
e Anzahl Threads pro Prozess

e Prioritat von Threads (Basis)

Nachfolgend werden mehrere Beispiele solcher Instrumente grob vorgestellt ohne eine vertiefte Ana-
lyse deren Funktionalitat durchzufihren.
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6.12.1. Windows TaskManager

Der Windows Task Manager ist auf jedem Windows 2000/XP System verfigbar und bietet im Wesent-
lichen Informationen Uiber Programme und Prozesse die auf dem System laufen. Er zeigt weiter einige
Indikatoren in Bezug auf die aktuelle Systemleistung.

Performance

2

finwendungen || Prozesse | Systemleistung | Netzwerk

CPLU-Auslastung

Auslagerungsdatei

werlauf der CPU-Auslastung

|’If|

AL

werlauf der Auslagerungsdateiauslastung

Insgesamt Physikalischer Speicher (KE)
Handles 12019 Insgesamt 523244
Threads 490 “erfiighar FUF5E
Prozesse &0 Systemcache 1565855
Zugesicherker Speicher (KB} Kernel-Speicher (KB)

Insgesamt 387520 Insgesamt 53100
Grenzwert 1016132 Ausgelagert 41036
Maximalwert: 418764 Micht ausgelagert 12064

Prozesse: 60

CPU-Auslastung: 2% Zugesicherter Speicher : 378M

Das Performance Tab zeigt in dynamischer Form
Werte der CPU-Performance wie bspw. CPU-
Auslastung (insgesamt) oder der Verlauf dieser

Auslastung.

Leistungsindikatoren

Aktive Prozesse

Windows Task-Manager
Datei

ME X

Optionen  Ansicht 7

Anwendungen | Prozesse | Syctemleistung | Netzwerk

MName PID | Benutzername CPU-Auslastung (%) ~
ashMaisy. exe 2500 SYSTEM 0o
PodService.exe 2472 SYSTEM 0o
postraster. exe 2256 maregger ao
WINWORD EXE 2245  Marcel Aregger o1

jucheck. exe 201Z  Marcel Aregger [ula]
PcfMor.exe 1976 Marcel Aregger [ala]
PEPTraw.exe 1968 Marcel Arsgger 0o
POFSaver.exe 1960  Marcel Aregger oo
SetPoint.exe 1940 Marcel Aregger oo
AcroTray.exe 1932 Marcel Aregger oo
CopernicDesk, ., 1908  Marcel Aregger [ala]

MSMS0s exe 1900 Marcel Aregger ao
Skype.exe 1554  Marcel Aregger o1
ctfmon.exe 1876 Marcel Aregger [ula]
ashDisp.exe 1866 Marcel Aregger [ula]

mrm_tray exe 1860  Marcel Aregger oo

mmkask, exe 1852  Marcel Aregger [ula] "
< b4

Prozesse aller Benutzer anzeigen

Frozess beenden

Prozesse: 61 CPU-Auslastung: 4% Zugesicherter Speicher: 415M

Das Process Tab zeigt die aktiven Prozesse des
System. In dieser Spaltentbersicht kdnnen Pro-
zesse selektiert, beendet oder nach belieben
Leistungsindikatoren angezeigt werden.

Prioritat von Prozessen

Spalten auswahlen

"Prozesse” angezeigt werden sollen,

FID (Frozess-1D)
CPU-Auslastung

Wahlen Sie die Spalten aus, die auf der Reqisterkarte

[weranderung der Seitenfehlar
Grife des virtuellen Speichers
[ Ausgelagerter Pocl

[]cpu-zeit [Iricht ausgelagerter Poal

Speicherauslastung Basisprioritak

[Jverand. der Speicherauslastung [ |Handleanzahl

[[ImMaximale Speicherauslastung Threadanzahl

[ =eitenfehler [} abI-Chjekke

[]BEMUTZER-Objekke [CIEfa {Schreiben)

[JEfa (Lesen) [CEfa-Bytes (Schreiben)

[JEja-Bytes (Lesen) [IEfa (Andere)

[ sitzungskennung [JE{a-Bvtes (andere)

Eenukzername

I Ok l [ Abbrechen ]

Der Taskmanager bietet Leistungsindikatoren

gemass Auflistung.

=] X]

Windows Task-Manager

Datei

Optionen  ansicht 7

Anwendungen | Prozesse | Systemleistung | Metzwerk

Mame FID | Benutzername CPU-Auslastung (%) -
ashMaisy exe 2500 SYSTEM o
iPodService exe 2472 SYSTEM o
postmaster exe 2256 maregger a0
WINWORD,EXE 2248 Marcel Aregger oo
jucheck.exe Z01Z  Marcel Aregger [ula]

PcfMgr. exe 1976 Marcel Aregger Jula]
PEPTray.ex” P 0o
POFsaver.e| Prozess beenden o
SetPoint.ext  prozessstrukiur beenden Ly
AcraTray.e: a0
CopernicDe: a0

MISMSOS . EXE o
Shype.sxe Prioritst festlegen 4 Echizeit

ctfmon. exe T876 " MarcelAregder| Hoch

ashhisp.exe 1866 Marcel Aregger|

mm_tray, exe 1860 Marcel Aregger| Hiher als normal

mmtask.exe 1852 Marcel Aregger) @ Mormal v
< Wiedriger a&wormal >

Niedrig jd
SRRy = ]

CPL-Auslastung: 1% Zugesicherter Speicher: 420M

Prozesse dller Benutzer anzeigen

Prozesse: 61

Fur jeden Prozess kann die Priority Class des
Prozesses geéndert werden (siehe 6.8.1)
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Grundfunktionalitat

Tabelle 20 Funktionalitdten Windows Task Manager

Windows Task Manager

Ja Nein

Prozess-1D

Thread-ID

Konsumierte CPU-Zeit Prozess

Konsumierte CPU-Zeit Thread

Anzahl Threads pro Prozess

Prozess Affinitat (SMP)

Weiterfiihrende Informationen:
e Microsoft, Task Manager Overview: [TASKMANOV]

6.12.2. Process Explorer

~Process Explorer” eine Freeware von Syslinternals ist eine Spezialisierung des Windows-Task Mana-
gers. Er erweitert das oben beschriebene Tool um zahlreiche Zusatzfunktionen und bietet im Wesent-
lichen mehr Informationen Uber die Threads eines spezifischen Prozesses.

Aktive Prozesse u. Leistungsindikatoren

o]
I Y
Pracess PID| CPU | Description Cornpary Mame Pricrity ~
3 atiptans exe 1796 ATI Desktop Control Panel ATl Technalogies. Inc. 8
ico.axe 1604 Mouse Suite 98 Daeman PFrimaz Electronics Ltd. g
O SunTPEnh.exe 1820 Sunaptics TouchPad, 8
|| HES erv exe 1828 Hat Key Server EXE Select Columns 3
JogServZ exe 1836 Jog Dial Main Server 8
@ e25P_Prexe 1844 225P_Px MFC Applic| Process Image Process Performance ]
[jusched exe 1860 Java(Th) 2 Plattorm Process Memory Handle DLL Status Bar 3
,\I-J iTunesHelper.exe 1872 ITunesHelper Module 8
a qitask.eve 1600 Select the columns that will appear on Process Explorer g
R dacron exe 1308 Vinial DAEMON Mar] | #1345 Bat 8
mmtask. exe 1924 TODO: <File descript, L4 zage v sage 8
= i CRUU [CJowncPUU
‘\W’ mm_ray. e 1332 m_tray Commit Charge: ] Own Commit Charge 8
2 ashDisp. 1948 tl service GUII g
E :;mnl:p;::e 1958 ;EFSLDS:‘;::E = Number of Processes [IMumber of Own Processes 3
15) Skype.exe 1976 0.91 Skype. The whole w [] Mumber NET Processes ] Own MET Processes 7
i mamsgs.exe 1364 wiindows Messenger Number of Threads [ Murmber of Own Thieads g
=# CopemicDesktopSearchexe | 1932 Copermic Desktop Sej 8
- Y peroTray [] Mumber of Handles ] Mumber of Dwn Handles 5
= @ SetPaint.eve 2016 Logitech SetPaint Ei| | [ Refresh Time g
ogitect ain
[TIKHALMNPR EXE 368 Logitech KHAL M 3 =
o
Tvpe 7 Mamme ~
Desktop “Default
Directom “KnawnDlls
Directory “Windows »

CPU Usage: 11.82%

I

Commit Charge: 48.81% Processes: 60 7]

Symbole ergéanzen die Ubersicht der Prozesse wodurch diese besser identifiziert werden kénnen. Es
kénnen zahlreiche Leistungsindikatoren in die Spalten eingefligt oder entfernt werden.
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Performance-Ubersicht

< System Information

LCPU Usage

Commit

1/0 Bytes

Totals

Handles 12088
Threads 4933
Processas B0

Commit Charge: (K]

Current 435704
Limit 1016132
Peak 436300
PeakeLimit 48.84%
Current/Limit 48.78%

CPL Usage Histary

Commit History

140 Bytes History

Physical Memory (K]

Total 523244
Available 7872
System Cache 167052
Kemel Memory (K]

Paged Physical 55412
Paged Virual 601348
Paged Limit o symbals
Nonpaged 11328

Monpaged Limit o symbols

Faging

Page Fauk Delta 1232
Page Read Della 0
Paging Fils Wits Delta 0
Mapped File Wwhite Delta a
CPU and 140

Context Switch Delta 2435
1#0 Read Delta n
140 Wit Deta 0
10 Other Delta 104

Der Performance Graph kann fir alle oder einen
spezifischen Prozess angezeigt werden. In der
Gesamtansicht kann ein Peak selektiert werden
wodurch die spezifische CPU-Usage angezeigt

wird.

Grundfunktionalitat

Tabelle 21 Funktionalitdten Process Explorer

Windows Task Manager

Thread-Ubersicht

53 Skype.exe:1976 Properties

M= X]

TCPAP
Image

CPU +
0.88

Thread ID:

Start Tirne:

State;

Fermel Time:

User Tirne:
Cortest Switches:
Biaze Priority:

Drwnamic Priarity:

Environment Stings
Performance Graph Threads

Security
Performance

CSwitch Delta | Start Address
13 Skype.ewe+0x3f2dd0
8 Skype.exe+lxlebfdc

10 Skype.exe+0:51d0
Skype.exe+0x3f2dd0
Skype.exe+0x3f2dd0

10 Skype.exe+0x3f2dd0
Skype.exe+0:3f2dd0
wdmaud. drvimidMessage+0x306
winrmm, diltirme etS pstemTime+0x44
Skype.exe+0x3f2dd0
kemnel32.dilCreate T hiead+0x22

1580
14:38:48 29.10.2008
wait il zerRequest

Kil

0:00: 06,229
00008 552
:

Im Tab Threads werden zahlreiche Informatio-
nen Uber die Threads eines Prozesses gezeigt.

Ja Nein

Prozess-ID

Thread-ID

Konsumierte CPU-Zeit Prozess

Konsumierte CPU-Zeit Thread

Anzahl Threads pro Prozess

Prozess Affinitat (SMP)

Weiterfuhrende Informationen:

e Sysinternals Process Explorer Overview: [PROCEXP]

AN N N NN
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6.12.3. Performance Monitor

Der Performance Monitor ist ebenfalls auf Windows 2000/XP verfigbar. Mit diesem Systemmonitor
kann die Leistung des lokalen Computers sowie anderer Computer im Netzwerk gemessen werden.
Im Speziellen kdnnen mit dem Systemmonitor Leistungsdaten in Echtzeit gesammelt werden.

Leistungsobjekte Leistungsindikatoren
[@ Performance =X 9
B Datel aktion Ansicht Favoriten Fenster 7 == % B Datei Aktion Ansicht Faworiten  Fenster 7 EIES
=4 2
DE?SD'ERED‘ X OO e Baa +X¥Xe 2R2E @0 @ DE”SE"ERM |D Q0 Magg +Xe 2BEH @@
System Monitor:
= Performance Logs and ale | 100 « & rerf| Leistungsindikatoren hinzufiigen
20
© Lokale Leistungsindikatoren werwenden
GO @ Leistungsindikatoren auswablen ven
“ \WMAREGEER v
20 :
Datenobjekt
o Thread v] rchschriitt 12304
Worherige 0.000 Durchechnitt 0.651 o
" & — —— ) Alle Leistungsindik.storen ) Alle Instanzen Maximum 1049493
i = i : (&) Leistungsindikatoren wihler: () Instanzen wahlen Davier 1:40
Davuer 1:40
% Privieged Tirne o [CTetal_Tetdl -~
- - % Pracessar Time Ecrobal/ ber... | Objekt
| Farbe | Fak... ‘ Leistungsi... ‘ Instanz | Uber... | Chijekt | Computer | % User Time Aorobat _ Mermary \\MAREG...
Contet Switches/sec AcroTray/0
1.000 Fages{sec Memary \WMARES. . Flapos Tins o/l = Physi... \WMAREG...
100.... Avg. Disk ... _Total Physi... \WMAREG... |0 Process alm it - Proce... \WMAREG...
1.000 % Process.. _Total Froce... \WWAREG... 1D Thread o] [ e Total  Thread \WMAREG...
< >
B
Schlisben

Die Uberwachung erfolgt fir mehrere frei wahlba-
re Leistungsobjekte (bspw. Process, Thread, Pro-
cessor)

Fir jedes Leistungsobjekt kénnen zahlreiche Leis-

tungsindikatoren (Counter) angezeigt

(siehe 6.11)

werden

[ﬁ Performance

M=)

8 Datel

Aktion  Ansicht  Favoriten  Fenster 7
©

=|= x|

Darstellung Resultate

[@ Performance =

@ Datei  aktion  Ansicht  Fawvoriten  Fenster 7 ;@Iﬂ
£

(] Console Raot O * @ ERE + % B &

gﬁ| System Monitor
+- @ Performance Logs and Ale 0@

% MAREGGER
Processor
% Processor Time

Thread
2% Privileged Time
% Processor Time
Context Switches/sec
ID Thread
Priority Base

_Total
7.000

_Total
_Total
97.000
08.000
1121.384
u}

u]

3 Cansole Root
2 Systern Monitor
+ #] Performance Logs and Ale

000 BHda +X ¢ BREE @%@

100

80

Mo

60

. J U Uv / ]
20 Iy
. pal I\n’\ /\ . A
NI SRR WAL A M
warherige 0 Durchschnitt 0
minirurm 0 Maximum 0
Dauer 1:40
‘ Farbe ‘ Fakbor Leistungsindikator | Instanz | Uberd
1.000 % Processor Time  _Total -
1.000 1D Thread _Total _Tota
1.000 % Privileged Time _Total _Tota
1.000 % Processor Time _Total _Tota
0.0100000  Context Switches,... _Total Tota
1,000 Friority Basa Total ot

Die Daten kénnen in Form eines Grafen oder in
Form eines Berichtes angezeigt werden.

2006-11-20



Diplomarbeit Seite 63

Grundfunktionalitat

Tabelle 22 Funktionalitaten Performance Monitor

Performance Monitor Ja Nein

Prozess-ID

Thread-ID

Konsumierte CPU-Zeit Prozess
Konsumierte CPU-Zeit Thread

Anzahl Threads pro Prozess

A N N NN

Prozess Affinitat (SMP)

Weiterfilhrende Informationen:
e ZDNet, System-Performance im Visier: Die besten Tools: [PERFTOOLS]

6.12.4. Intel Thread Profiler

Der Intel Thread Profiler 3.0 for Windows ist ein Performance Tuning Tool das speziell dafir entwickelt
wurde, multithreaded Applikationen auf Basis von OpenMP auf Mehrprozessor-Systemen zu testen.
Schwerpunkt liegt dabei auf dem Load Imbalancing und Synchronisation Impact.

Intel Thread Profiler Load Imbalancing
@Figure 2. - Mozilla Firefox -/0JEd| Das Tool zeigt die Ausnutzung der logi-
Figure 2. Threads Vienw schen/physischen Cores eines Prozessors
LT (hier Dual Core mit HT-Technologie und 4
- I : ot Threads).
I | Synchronisation Impact
= Das Tool ermdglicht auch eine spezifische

Analyse in Bezug auf den (negativen) Einfluss
der Synchronisation auf die Performance.

Fertig b

Grundfunktionalitat

Intel Thread Profiler Ja Nein

Load Imbalancing
Synchronisation Impact 4

Das Tool ist grundsatzlich Kostenpflichtig (ca. CHF 450.-), kann aber als Trial Version fiir 30 Tage
kostenlos getestet werden.

Weiterfihrende Informationen:
e Devx, Intel Threading Tools and OpenMP: [DEVXINTEL]
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6.13. Zusammenfassung und Fazit

Einem Betriebssystem sind in Bezug auf Prozesse und Threads zahlreiche Aufgaben zugeordnet.
Neben der Erzeugung und dem Zuweisen von Adressraum muss das Betriebssystem in einer Ablauf-
planung permanent verfiigbare CPU-Zeit auf die konkurrierenden Prozesse und Threads verteilen.
Pro Zeiteinheit kann dabei nur ein Prozess auf einem Prozessor(Kern) ausgefiihrt werden. Fir ein
Singlecore-System (exKkl. Intel-HT) fihrt das zu einer rein ,logischen-Parallelitat" (pseudo-Parrallelitat).
Multicore Systeme hingegen kdnnen hier ,echte” Parallelitat bieten und Prozesse gleichzeitig ablaufen
lassen. Im Kontext der Skalierung von multithreaded Applikationen stellt sich somit die Frage, wie auf
Level Betriebssystem die Verteilung von CPU-Zeit auf mehrere Prozesse/Threads optimiert bzw. be-
einflusst werden kann.

Der Begriff Prozess ist eng verknlpft mit dem Begriff ,Prozess-Kontext“, der den aktuellen Zustand
eines Prozesses reprasentiert bzw. speichert. Ein Wechsel von einem laufenden auf einen lauffahigen
Prozess bedeutet auch ein Kontextwechsel d.h. speichern des aktuellen Kontext und laden des Nach-
folgenden. Dieser Vorgang ist zeitraubend und wird oftmals als ,nicht produktiver Overhead” bezeich-
net. Threads sind ,leichtgewichtige* Prozesse die mit anderen Threads im gleichen Prozesskontext
den Adressraum teilen (Peerthreads). Durch den ,kleineren* Thread-Prozesskontext sind Threads
einfacher und schneller zu erzeugen, unterbrechen oder letztendlich zu entfernen. Der gemeinsame
Adressraum bietet implizit eine einfachere Interprozess-Kommunikation.

Windows XP implementiert ein Kernel-Level-Thread-Model. In dieser 1:1-Zuordnung laufen im glei-
chen Prozesskontext mehrere Kernel-Level-Threads die vom Kernel direkt verwaltet werden. Der Ker-
nel besitzt neben der Prozess-Tabelle auch eine Thread-Tabelle wodurch er in die Lage versetzt wird,
Threads direkt zu verwalten bzw. auf verschiedene CPUs zu verteilen. Unter Windows sind ,Fibers*
von Threads zu unterscheiden. Ein ,Fiber* kann als “Thread in Thread” bezeichnet werden und ist
eine Kernel unabhangige User-Level Implementierung. Das Scheduling eines Fibers ist nonpreemtive
d.h. die CPU muss selbstandig an den Win32-Thread abgegeben werden.

Die Java-Virtual-Machine (JVM) bildet die Laufzeitumgebung eines Java-Threads. Durch ihre Imple-
mentierung wird festgelegt, ob ein Java-Thread direkt auf einen Thread des Betriebssystem abgebil-
det werden kann. Erfolgt die Abbildung direkt (1:1) ist die Voraussetzung fir eine individuelle Vertei-
lung auf mehrere CPU durch das OS gegeben.

Ob ein Prozess Rechenzeit zugeteilt bekommt oder nicht, hangt vom Scheduler des Betriebssystems
ab. Unter Windows 2000/XP erfolgt diese Zuweisung auf der Ebene von Threads und nicht auf Pro-
zessebene. Windows implementiert ein ,priority-driven — preemtive scheduling”-System wo jener lauf-
fahige Thread mit der hdchsten Basisprioritat die Prozessorzeit erhélt. Die Basisprioritat ist also die
ausschlaggebende Grésse um den Zuspruch durch den Scheduler zu erhalten. Die Basis-Prioritéat
eines Threads ist eine Kombination aus der Priority-Class seines Prozesses und des eigenen Priority-
Levels.

Die Prioritat eines Prozesses kann bei der Erzeugung mitgegeben oder nachtraglich mit der Methode
SetPriorityClass geandert werden. Threads ,erben” per Default die Prioritat ihres Prozesses die
aber nachfolgend auch beeinflusst werden kann (SetThreadPriority). Der Begriff ,Priority Boosts"
beschreibt die dynamische Anpassung der Basis-Prioritdt von Threads durch das Betriebssystem. Im
Priority-Level 1...15. hat das Betriebssystem so die Méglichkeit nach spezifischen Optimierungsprinzi-
pien das Systemverhalten zu steuern.

Java-Threads besitzen ebenfalls eine Prioritat die mit der Methode setPriority(int newPriori-
ty) im Bereich von [1...5...10] (Min_ ...Norm__ ... Max_) ge&ndert werden kann. Sie wird bei der Ver-
wendung von ,,Green-Threads" (simulierte Threads innerhalb des VM-Prozess) von der VM dazu ver-
wendet Scheduling-Enscheidunge zu treffen.

Soll ein Prozess einem Prozessor zugeordnet werden spricht man von Prozess-Affinitat. Windows
ordnet per Default Prozessor-Ressourcen willkiirlich zu. Mit der Definition einer Affinititsmaske kann
aber auf Level Prozess und Thread die entsprechende Affinitat gesetzt werden (SetProcessAffi-
nityMask | SetThreadAffinityMask). Diese unbedingte Zuweisung kann sich aber sehr nachtei-
lig auswirken weil andere Prozessoren fir diese Prozesse oder Threads gesperrt sind. Die Verwen-
dung von SetThreadldealProcessor setzt einen praferenzierten Prozessor und lasst ein Auswei-
chen auf andere Ressourcen zu.
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Prozesse und Threads kénne im OS Uber sogenannte Leistungsindikatoren (Performance-Counter)
Uberwacht werden. In einem Profiling kann mit Hilfe dieser Indikatoren das Systemverhalten mit Pro-
zessen und Threads sichtbar gemacht und interpretiert werden. Das Windows OS bietet mit Tools wie
“Task manager” oder “Performance manager” eigene Instrumente zur Messung solcher Indikatoren.

6.14. Auswirkungen auf die Aufgabenstellung

Nicht alle nachfolgend aufgefiihrten Einflussbereiche die aus der Detailanalyse des Betriebssystems
resultieren kénnen gleichermassen fur die weitere Analyse oder Implementierung genutzt werden. Ziel
ist es, Aspekte mit direktem Einfluss auf die Aufgabestellung in die nachfolgenden Projektphasen zu
Ubernehmen bzw. einzuarbeiten.

Tabelle 23 Aspekte mit direktem Einfluss auf die Arbeit

Aspekt Beschreibung

Designprinzip Die Prozesstheorie hat gezeigt, dass die Anwendung ,leichtgewichtiger” Threads
zahlreiche Vorteile mit sich bringt. Aus dem gemeinsamen Adressraum resultieren
wenig Overhead beim Kontextwechsel und eine vereinfachte Interprozess-
kommunikation. Trotzt Vorteilen sind Grossen wie Verwaltungsaufwand, Ressour-
cenbedarf oder Schedulingverhalten mit Threads zu bericksichtigen.

WIN-32 Thread  Kernel-Level-Threads von Windows werden vom Kernel verwaltet und kdnnen
somit in einer Mehrprozessor-Architektur auch verteilt werden. Mit einer entspre-
chenden VM-Implementierung werden Java-Threads auf solche Native-Threads
abgebildet.

Tabelle 24 Aspekte mit indirektem Einfluss auf die Arbeit

Technologie Beschreibung

Scheduling Der Windows Scheduler implentiert auf Level Threads ein “priority-driven” schedul-
ing. Die entscheidende Grosse ist hierbei die Basisprioritat des jeweiligen Kernel-
Threads. Soll das Schedulingverhalten beeinflusst werden, muss tber die WinAPI
die Prioritat von Prozessen oder Threads beeinflusst werden.

Da mit einer Java-Anwendung die WIinAPI ausser Reichweite ist, kann die Prioritéat
auf Level OS nicht direkt beeinflusst werden. Im Verlauf soll aber untersucht wer-
den, wie die VM Java-Thread-Prioritaten (1...5...10) auf Prioritaten des OS abbil-
det.

Weiter besteht die Mdglichkeit mit diversen System(Tools) die Prioritat aktiver Pro-
zesse/Threads ,manuell* zu beeinflussen. Das Systemverhalten kann mit ,manuel-
lem* Andern der Prioritat untersucht werden.

Affinitat Windows erlaubt die Prozess- wie auch die Thread-Affinitat, bei der ein Prozess
oder einzelne Threads einem Prozessor zugeordnet werden kdnnen. Uber die
WInAPI kann eine Zuweisung von Prozess oder Thread durchgefihrt werden.

Auf Level VM oder Java-Applikation kann die Affinitat nicht direkt beeinflusst wer-
den. Es besteht aber die Mdoglichkeit die Folgen einer Zuweisung mit (Sys-
tem)Tools zu provozieren bzw. untersuchen.
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7. Applikationen

7.1. Allgemeine Eigenschaften paralleler Programme

Korrektheit

Sicherheit

Lebendigkeit

| Unconditionally Fair

- Weak Fair

— Strong Fair

Abbildung 23 Korrektheit von Programmen

Zur Korrektheit eines Programms gehort einerseits die Sicherheit und andererseits die Lebendigkeit.
Sicherheit bedeutet, dass keine Interferenzen in kritischen Bereichen sowie auch keine Verklemmun-
gen (Deadlock) auftreten. Die Lebendigkeit Iasst sich allgemein damit umschreiben, dass weder Live-
locks noch so genannte Starvation auftreten.

Ein Deadlock entsteht in einer Situation in der mehrere Prozesse auf die Freigabe einer Ressource
warten die durch einen anderen Prozess blockiert ist. Sind die Ressourcen zirkular angeordnet so
entsteht eine Wartesituation aus der die involvierten Prozesse selber nicht mehr herauskommen. Sie-
he dazu auch [DEADLOCK].

Ein Livelock fuhrt ebenfalls dazu, dass die Prozesse nicht mehr weiter arbeiten kénnen. Allerdings
warten sie dabei nicht wie beim Deadlock auf eine Ressource sondern verandern ihren Status dabei
um weiter arbeiten zu kdnnen. Tun sie das so, dass sie bei jeder Veranderung weiterhin blockiert wer-
den nennt man dies Livelock Siehe dazu auch [LIVELOCK].

Unter Starvation versteht man den Zustand eines Prozesses in dem er auf Ressourcen wartet und
diese nie bekommt. Dies kann beispielsweise passieren, wenn ein Worker-Pool als FILO Queue
(First-In-Last-Out) realisiert wird und immer mehr Worker in den Pool gelegt werden als herausge-
nommen werden. Dann bleiben einige Worker im Pool liegen und werden ihre Aufgabe nie erledigen
kodnnen. Siehe dazu auch [STARVATION].

Zur Lebendigkeit gehtren weitere Attribute welche mit den Attributen Unconditionally Fair, Weak Fair
und Strong Fair bezeichnet werden. Wie die Bezeichnung schon aussagt geht es dabei um die Fair-
ness wahrend der Programmausfiihrung. Ist ein Programm ,Unconditionally Fair“ so sorgt das Pro-
gramm nicht manuell fir Fairness aber kann beispielsweise durch den Scheduler zur Abgabe der Re-
chenzeit gezwungen werden. Arbeitet der Scheduler nach dem ,Weak Fair* Prinzip (was bei den
meisten der Fall ist) so kann fir den Prozess nicht garantiert werden, dass er genau an der ge-
winschten Stelle unterbrochen wird. Bei ,Strong Fair* Scheduling wiirde dies sichergestellt.
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7.2. Technologien zur Parallelisierung

In diesem Kapitel werden allgemeine Technologien zur parallelen Verarbeitung kurz beschrieben.

7.2.1. Prozesse

Die einfachste Moglichkeit eine Aufgabe parallel zu verarbeiten ist die Aufteilung auf mehrere Prozes-
se. Diese Methode zieht aber einige Nachteile mit sich. In heutigen Multitasking-Betriebssystemen
laufen verschiedenste Prozesse ab. Das Betriebssystem sorgt dafiir, dass alle Prozesse Rechenzeit
bekommen. Die Wechsel zwischen den Prozessen nennt man Kontextwechsel (engl. Context Switch).
Siehe dazu auch [CONTEXTSW]. Solche Prozesswechsel sind aber aufwéndig und kosten natirlich
Zeit. Fur Kontextwechsel ist generell der Scheduler des Betriebssystems zustandig. Dieser kann na-
turlich versuchen die Anzahl Kontextwechsel zu minimieren indem die Zeitscheiben fir die einzelnen
Prozesse vergrissert werden. Dies wirde bedeuten, dass ein Prozess langer Rechenzeit bekommt.
Andererseits bedeutet dies, dass ein wartender Prozess langer darauf warten muss um wieder Re-
chenzeit zu bekommen. Dies ist insbesondere bei zeitkritischen Anwendungen wie Multimedia kritisch.

Ein weiteres Problem bei der Aufteilung in mehrere Prozesse ist die Kommunikation und Synchronisa-
tion. Die meisten Betriebssysteme stellen so genannte Inter-Prozess-Kommunikation (IPC, Inter Pro-
cess Communication) zur Verfigung. Diese ist aber abhéngig vom Betriebssystem und teilweise sehr
aufwandig.

Hier muss insbesondere darauf geachtet werden, dass der Geschwindigkeitsgewinn aus der paralle-
len Verarbeitung nicht durch Synchronisierung, Prozess-Erzeugung, Prozess-Terminierung und Inter-
Prozess-Kommunikation zunichte gemacht wird.

7.2.2. Threads

Threads werden haufig auch als leichtgewichtige Prozesse oder LWP (englisch fur Lightwight Proces-
ses) bezeichnet. Mit Threads wird versucht den Nachteilen der Multi-Prozess-Programmierung entge-
genzutreten. Die Erzeugung eines neuen Threads ist weniger aufwandig da fir einen Thread nicht ein
gesamter Prozess-Kontext erstellt werden muss. Ein Thread lauft innerhalb des erzeugenden Pro-
zess-Kontextes. Aus demselben Grund sind auch Kontextwechsel zwischen Threads weit weniger
aufwandig. Wird ein Thread beendet so muss natirlich auch nur der Thread-Kontext entfernt werden
und nicht gleich der ganze Prozess-Kontext.

Da Threads ihren Adressraum mit Prozessen teilen vereinfacht sich auch die Kommunikation zwi-
schen ihnen (Inter-Thread-Kommunikation). Hier muss nicht auf Betriebssystem-Funktionen zur Inter-
Prozess-Kommunikation zuriickgegriffen werden. Die Kommunikation kann tber gemeinsame Varia-
beln im selben Adressraum geschehen.

Andererseits stellt uns der gemeinsame Zugriff auf Prozessressourcen natirlich wieder vor weitere
Probleme. Der Zugriff auf gemeinsame Speicherbereiche muss synchronisiert werden um sicherzu-
stellen, dass die Daten konsistent bleiben. Einer der Schlisselpunkte zur effizienten Thread-
Programmierung liegt darin diesen Synchronisationsaufwand im Verhaltnis zur parallelen Verarbeitung
moglichst gering zu halten.
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7.2.3. Verteilung

Eine weitere Mdglichkeit Aufgaben parallel abzuarbeiten besteht in der Verteilung auf mehrere Syste-
me. Dies entspricht der schon in Kapitel 4 angesprochenen horizontalen Skalierung und soll hier nicht
naher betrachtet werden.

Allerdings sind die Grenzen hier fliessend. Beispielsweise spricht man selbst bei grossen Rechnersys-
temen in einem Gehause von Knoten (engl. Nodes) wie bei einem Cluster wenn die Hardware intern
entsprechend aufgebaut ist. Verwaltet ein System den Speicher nach dem NUMA/ccNUMA Prinzip
(siehe dazu Kapitel 5.2.1) so verhdlt es sich im Grunde wie ein sehr schnell gekoppeltes verteiltes
System.
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7.3. Frameworks, Standards und Libraries

7.3.1. POSIX-Threads

Wenn man von POSIX Threads spricht, so ist allgemein die Plattformunabhangige Definition der PO-
SIX Thread Schnittstelle gemeint. Diese spezifiziert ,nur* die Schnittstelle fiir die Thread-Behandlung.
Nicht aber deren Implementierung. Dies hat insbesondere den Vorteil, dass POSIX Threads auf vielen
unterschiedlichen Betriebssystemen verfigbar sind. Diese Tatsache erlaubt dem Programmierer
Threads einzusetzen ohne auf Plattformspezifische APIs zurlickgreifen zu missen. Da die Thread-
Behandlung innerhalb eines komplexen Programms sehr eng mit dem Programmcode verknipft ist
wirde eine Plattformabhéngige Programmierung in den meisten Anwendungen sehr viel Aufwand
verursachen. POSIX Threads abstrahieren diese Komplexitat. Nattrlich muss die POSIX Thread Lib-
rary Plattformabhangig implementiert werden. Diese Adaptierung muss aber nur einmal gemacht wer-
den. Im Optimalfall bietet das Betriebssystem direkte Unterstiitzung fir POSIX Threads. In diesem
Fall musste keine Abbildung der Thread-Behandlung auf Betriebssystemfunktionen durch die POSIX-
Thread Bibliothek stattfinden.

Nachfolgend werden einige der wichtigsten Funktionen der POSIX Thread Schnittstele kurz erlautert.
Die Beispiele stammen dabei aus dem sehr guten POSIX Thread Tutorial von Mark Hays (siehe auch
[POSIXTUTORY]) Hierbei handelt es sich nicht um eine abschliessende Dokumentation sondern um
einen Uberblick tber die POSIX Schnittstelle.

Um einen Thread zu erzeugen wird die folgende Funktion verwendet:
pthread create(&tid, &attr, function, &parameters)

Listing 11 POSIX Thread erzeugen
Tabelle 25 pthread_create() Parameter

Argument Beschreibung

tid Pointer auf eine Datenstruktur vom Typ pthread_t. Wird allgemein als Thread ID
(TID) bezeichnet und entspricht dem Thread-Handle um den Thread spater kontrol-
lieren zu kénnen.

attr Thread-Attribute. Hierbei handelt es sich um Attribute welche die Eigenschaften des
Threads direct beeinflussen.

function Name der auszufiihrenden Funktion. Der Thread wird diese Funktion nach der Er-
zeugung aufrufen.

parameters Pointer auf eine Datenstruktur, die als Parameter an die Funktion bergeben wird.

Nach dem Start des Threads wird das Hauptprogramm unter Umstédnden noch weitere Aufgaben erle-
digen. Sehr haufig wird es dann aber auf die Beendigung des/der Threads warten. Dies kann mit fol-
gender Funktion getan werden:

pthread join(tid, &return)
Listing 12 Warten auf Thread-Ende
Tabelle 26 pthread_join() Parameter

Argument Beschreibung

tid Pointer auf eine Datenstruktur von Typ pthread t. Dies entspricht dem Thread
Handle wie bereits bei pthread_create().

return Pointer an dem die Rickgabewerte der Thread-Funktion abgelegt werden sollen
(void Pointer).
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Durch die Verwendung mehrerer Threads entsteht nattrlich das Problem der gleichzeitigen Modifika-
tion von globalen, gemeinsamen Daten. Insbesondere erleichtern Threads ja gerade den Zugriff auf
gemeinsame Daten. Als Beispiel sei die Situation genannt wo zwei Threads eine Variable auslesen, 1
addieren und wieder speichern. Taten sie das streng sequenziell, dann wiirde die Variable am Ende
der Modifikation um 2 grosser sein als am Anfang. Lesen aber beide (quasi-) gleichzeitig den aktuel-
len Wert aus und inkrementieren ihn unabhangig voneinander, dann ,gewinnt* schlussendlich derjeni-
ge, der die Variable als letztes speichert/liberschreibt. Um dies zu verhindern bietet die POSIX Thread
Schnittstelle so genannte Mutexe an. Mutex steht fur ,Mutual Exclusion“ und bezeichnet einen Me-
chanismus, bei dem nur ein Thread in einen kritischen Bereich eintreten kann. Befindet sich bereits
ein Thread in diesem Bereich, so missen weitere Threads warten bis dieser den geschuitzten Bereich
verlassen hat.

Mutex mit POSIX Threads:
pthread mutex t lock;
// code
pthread _mutex_lock(&lock);
// code
pthread_mutex_ unlock(&lock);

Listing 13 POSIX Mutex

Mit diesem Code ist sichergestellt, dass sic him Bereich zwischen pthread_mutex_ lock() und
pthread_mutex_unlock() nu rein einziger Thread aufhalten kann. Durch Mutexe lasst sich der
Zugriff auf gemeinsame Ressourcen kontrollieren. Dabei kénnen beliebig vielen Mutexe erstellt wer-
den. Allerdings ist darauf zu achten, dass jeder Datenzugriff synchronisiert wird. Ignoriert ein Thread
den Mutex (den er ja manuell verwenden muss) so kann dies wieder zu denselben Problemen fuhren.
In der Objektorientierten Programmierung hilft hierbei das Konzept der Datenkapselung indem der
direkte Zugriff auf die Daten verhindert wird und Gber dafur bestimmte get und set Methoden realisiert
wird. Diese kdnnen dann die Synchronisation an zentraler Stelle ibernehmen. Ob eine Klasse intern
synchronisiert ist und somit konsistente Daten garantiert wird oft mit dem Attribut ,Thread safe* ge-
kennzeichnet. Eine Klasse, die Thread safe ist muss den parallelen Zugriff regeln und in jedem Fall
gultige Daten garantieren.

Hierbei ist insbesondere auf die Gefahr von Deadlocks zu achten (siehe dazu auch Kapitel 7.1).

Angenommen Thread A besitzt den Mutex-Lock fiir Datenfeld 1 und Thread B besitzt den Mutex-Lock
fur Datenfel 2.

Nun versucht Thread B den Mutex-Lock fur Datenfeld 1 auch noch zu bekommen ohne den Mutex-
Lock fur Datenfeld 2 abzugeben. Jetzt muss Thread B auf die Lock-Freigabe von Datenfeld 1 warten.

Wenn jetzt Thread A aus irgendeinem Grund den Lock fur Datenfeld 1 nicht freigibt und/oder seiner-
seits versucht den Lock fur Datenfeld 2 zu bekommen, dann befinden sich beide Threads in einem
Deadlock-Zustand aus dem sie nicht mehr herauskommen. Es besteht eine Zirkuldre Abhéangigkeit.

Warten auf Bedingungen:
pthread_mutex_locak(&mutex) ;
while (Ipredicate) {
pthread cond wait(&condvar, &mutex);
by

pthread_mutex_unlock(&mutex) ;
Listing 14 POSIX Mutex - warten auf Bedingungen

Falls in diesem Code-Teil die Variable predicate den Wert false hat, dann wird der Thread mittels
pthread_cond_wait() schlafen gelegt. Wichtig ist es dabei zu wissen, dass der Mutex-Lock beim
warten abgegeben und erst beim aufwecken wieder zugewiesen wird. Um ihn wieder aufzuwecken
kann folgendes Code-Fragment verwendet werden.

pthread _mutex_ lock(&mutex);

predicate=1;

pthread _cond_broadcast(&condvar);

pthread _mutex_unlock(&mutex) ;

Listing 15 POSIX Thread - condiditonal wait
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Das Aufwecksignal wird Uiber die Variable condvar gesendet.
Weiterfuhrende Informationen:
e Mark Hays, POSIX Thread Tutorial: [POSIXTUTOR]
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7.3.2. OpenMP

Bei OpenMP handelt es sich wie bei POSIX auch um eine API Spezifikation. Allerdings auf einer ganz
anderen Ebene. OpenMP definiert eine Schnittstelle fiir so genannte Compiler-Direktiven. Das Ziel
dabei ist es, dass der Programmierer sich nicht selber um die Erzeugung, Synchronisierung und Ter-
minierung von Threads kiimmern muss. All diese Aufgaben werden automatisch vom Compiler ber-
nommen. Zu diesem Zweck definiert OpemMP spezielle Compiler-Direktiven. Diese konzentrieren
sich insbesondere auf die Parallelisierung von Schleifen welche haufig in mehrere parallel laufende
Schleifen aufgeteilt werden kénnen. Dieser Verfahren wird auch Data partitioning genannt.

Ein grosser Vorteil von OpenMP ist, dass die Compiler-Direktiven von Compilern die kein OpenMP
unterstiitzen, einfach ignoriert werden. Dies erlaubt dem Programmierer eine portable Implementie-
rung. Nachfolgend eine Liste der Compiler, die bekanntermassen OpenMP unterstitzen:

Tabelle 27 Compiler mit OpenMP Unterstiitzung
Compiler Beschreibung

Microsoft Visual C++ Unterstlitzung erst ab Visual Studio 2005. Ausserdem unterstitzt Visual
Studio 2005 Express Edition kein OpenMP weil die benétigten Libraries
fehlen.

Intel Die aktuellen Intel Compiler unterstiitzen OpenMP und sind zu Evaluie-
rungszwecken kostenlos bei Intel erhéltlich. Siehe dazu auch [INTELC].

GCC GCC wird erst ab Version 4.2 OpenMP unterstitzen. Es dirfte aber nicht
mehr lange dauern bis Version 4.2 freigegeben wird. Snapshots kénnen
bereits auf der offiziellen Homepage bezogen werden. Siehe dazu auch
[GCC].

Einer der grossen Vorteile von OpenMP liegt darin, dass bestehender (sequenzieller) Code ohne ma-
nuelle Thread-Behandlung parallelisiert werden kann. Dies kann anhand eines kurzen Beispieles aus
[2] verdeutlicht werden.

Original Code:

double w=1.0 / (double) n;

double sum = 0, Xx;

for (int 1=0; i<=n; i++) {
X = w * ((double)i - 0.5);
sum += 4 / (1 + X * X );

}

pi = w * sum;

printf(“pi = %131f\n”, pi);

Listing 16 OpenMP, parallelisierbarer Code

Dieser Code kann nun mit OpenMP Anweisungen parallelisiert werden:
double w = 1.0 / (double) n;
double sum = 0, x, F Xx;
#pragma omp parallel for private(x, f x) shared(w, sum)
for (int 1=0; i<=n; i++) {
X =w * ((double)i - 0.5);
fx=4/7 L +XxX*Xx);
#pragma omp critical
sum += F Xx;
by

pi = w * sum;
Listing 17 OpenMP, parallelisierter Code

Auf einem 4-Prozessor System wirde die for-Schleife jetzt standardmassig auf 4 Threads aufgeteilt
und parallel bearbeitet. Die #pragma omp critical Anweisung ist notwendig weil alle Threads hier
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synchronisiert werden missen um die Konsistenz der Variable sum zu gewéhrleisten. OpenMP bietet
hierzu auch alternativ die Pragma Anweisung atomic an. Hier wére atomic effizienter, lasst sich
aber nur auf einzelne Anweisungen und nicht auf Code-Blocke anwenden.

Y

Master
\
v v ] v
Thread 0 Thread 1 Thread 2 Thread n
X=W*... X=W*... X=W*... X=W*...
f x=4/x... f x=4/x... f x=4/x... f x=4/x...
J'- # pragma omp atomic
sum +=f_x
# pragma omp atomic
sum +=f_x
# pragma omp atomic
sum +=f x
# pragma omp atomic
sum +=f x
\ # \j \

Abbildung 24 Parallele Verarbeitung der Beispiel-Schleife mit OpenMP

Lasst man das Beispiel so laufen, dann werden auch die Gefahren der OpenMP Programmierung
deutlich. Das parallel ablaufende Beispiel lauft hier mit zwei oder mehr Threads tatsachlich massiv
langsamer ab. Dies liegt daran, dass die Synchronisation des kritischen Bereiches (Summierung) im
Vergleich zur Berechnung viel zu aufwandig ist und mehr Rechenzeit in Anspruch nimmt als durch die
parallele Verarbeitung gewonnen wird.

Um solche Effekte zu minimieren bietet OpenMP weitere Direktiven. Beispielsweise kann die Summie-
rung durch OpenMP durchgefiihrt werden. Dies hat zur Folge, dass die Synchronisierung nur einmal
(am Ende der Berechnungen) und nicht mehr bei jedem Schleifendurchlauf zu erfolgen hat:
double w = 1.0 / (double) n;
double sum = 0, X;
#pragma omp parallel for private(x) shared(w) reduction (+:sum)
for (int i=0; i<=n; i++) {
X = w * ((double)i - 0.5);
sum =4 / (L + X * X );
}

pi = w * sum;
Listing 18 OpenMP, reduction

Hier arbeiten die parallelen Threads jeweils mit einer lokalen sum Variablen. Am Ende der Berech-
nungen wird diese von OpenMP durch Addierung ,reduziert‘. Wahrend der gesamten Berechnungs-
dauer ist keine Synchronisation der Threads notwendig weshalb auch nahezu das volle Potential der
Parallelitéat ausgenutzt werden kann.
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Eine wichtige Eigenschaft von OpenMP ist, dass standardméssig genau so viele Threads erzeugt
werden wie Prozessoren zur Verfigung stehen. Dies lasst sich aber nachtraglich (auch zu Testzwe-
cken) Gber Umgebungsvariabeln beeinflussen. Wichtig ist dabei auch, dass die Threads tber die ge-
samte Laufzeit des Programms bestehen bleiben. Dadurch wird der Aufwand die Threads laufend zu
erzeugen und wieder zu entfernen umgangen was insgesamt der Effizienz zu Gute kommt.

Weiterfihrende Informationen:
e OpenMP, Homepage: [OPENMP]
e Wikipedia, OpenMP: [OPENMPWP]
e Sun, OpenMP Unterstiitzung: [OPENMPSUN]
e GNU, GCC 4.2 mit OpenMP Unterstiitzung: [GCC]
e Intel, Compilers: [INTELC]
e Oliver Lau, c't Ausgabe 15/2006, Seite 218ff: [2]
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7.3.3. Thread Building Blocks (TBB)

Die Inten Thread Building Blocks (TBB) sind vom Prinzip her verwandt mit OpenMP. Die Implementie-
rung geschieht hier allerdings in Form einer C++ Bibliothek. Auch TBB wird zur Parallelisierung von
Schleifen verwendet. Hierzu ebenfalls ein kleines Beispiel:
#include ,,tbb/blocked_range.h*
#include “tbb/parallel_for.h”
void PrintArray(int[] &v, size t n, size_t blocksize) {
Printer whattodo(Vv);
parallel_for(blocked range<size t>(0, n, blocksize), whattodo);

by
Listing 19 TBB, ein kleines Beispiel

Bei size_t kann es sich hierbei um integer, long, Pointer oder Iteratoren handeln. Die parallele
for Schleife ruft hier fir die Elemente O bis n das Objekt whattodo auf. Dazu muss das Objekt den
Funktionsoperator ,()* tUberladen. Dieser wird dann durch jeden Thread mit einem anderen Blockbe-
reich aufgerufen. Hier die Klasse Printer (Objekt: whattodo):

class Printer {
int * const m_v;
public:
Printer(int v[]D : m v(v) {}
void operator() (const blocked_range<size_t>& r) const
{ for (size_t i = r.beginQ); 1 != r.end(Q); ++i)
cout << m_v[i];
}

}:
Listing 20 TBB, Funktionsoperator Uberladen

Analog zu OpenMP entsteht nattrlich auch hier das Problem der Synchronisation beim Zugriff auf
gemeinsame Variabeln. OpenMP bietet dazu die reduction Klausel. TBB bietet zu diesem Zweck
die parallel_reduce Schleife:
void SumUpArray(int v[], size_t n, size_t blocksize) {
Summarizer s(v);
parallel_reduce(blocked range<size t>(0, n, blocksize), s);
cout << s.sumQ);

by
Listing 21 TBB, parallel_reduce

Wie man sieht unterscheidet sich der Aufruf nur im tUbergebenen Objekt. Dieses ist wie folgt aufzu-
bauen:
class Summarizer {
int * const m_v;
int m_sum;
public:
Summarizer(int v[]) : m_v(v), m_sum(0) {}
void operator() (const blocked range<size t>& r) {
for (size_t i = r.begin(Q); 1 = r.end(Q); ++i) {
m_sum += m_Vv[i]
by

Summarizer(Summarizer& x, split) : m_v(x.m_v), m _sum(0) {}
void join(const Summarizer& other) {

m_sum += other.m_sum;
}

int sum(void) {
retunr m_sum;
}
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}:
Listing 22 TBB, Beispiel: Summarizer

Hier wird von paral lel _reduce der zweite Konstruktor (Splitting-Konstruktor) aufgerufen. Der zwei-
te Parameter spl it dient dabei nur zur Unterscheidung von einem Copy-Konstruktor. Das Summari-
zer Objekt wird also von parallel_reduce mehrfach erzeugt. Durch die Ubergabe einer Referenz
auf das originale Objekt kann die Member-Variable m_v Ubernommen werden (Wertebereich). Die
Membervariable m_sum muss naturlich lokal beleiben. Am Schluss der Operation wird die Methode
jJoin() aufgerufen. Dort kénnen die Werte dann aufsummiert werden. Praktischerweise kénnte man
die Methode join() noch erweitern um beispielsweise den Maximal- oder Minimalwert noch zu er-
halten.

Die TBB bieten ausserdem noch erweiterte Werkzeuge, die teilweise etwas Uber die Mdglichkeiten
von OpenMP hinausgehen. Beispielsweise parallel_while, pipeline oder die zweidimensionale
Segmentierung. Einen Uberblick dariiber vermittelt die Quelle [3] aus der auch die oben aufgefiihrten
Codebeispiele stammen. Interessierte finden natirlich direkt bei Intel ([INTELTBB]) weitere Informati-
onen.

Ein kleiner Wehrmutstropfen liegt darin, dass die TBB Bibliothek nicht frei verfligbar ist. Lediglich eine
Linux-Version fur Nichtkommerzielle Zwecke liegt zum Download auf der Intel Webseite.

Weiterfihrende Informationen:
e Oliver Lau, c't Ausgabe 21/2006, Seite 234ff, Thread-Baukasten/TBB: [3]
e Intel, Thread Building Blocks 1.0 for Windows, Linux and Mac OS: [INTELTBB]

2006-11-20



Diplomarbeit Seite 77

7.3.4. MPI

Das Message Passing Interface (MPI) ist zwar nicht direkt eine Technologie zur Parallelisierung eines
Programmcodes kiimmert sich aber um eines der wichtigsten Probleme der parallelen und verteilten
Programmierung. Wir haben gesehen, dass die Kommunikation von Prozessen untereinander haufig
ein grosses Problem darstellt. Durch die Threadbasierende Programmierung kann dieses Problem
etwas entscharft werden da die Kommunikation Giber den gemeinsamen Prozesskontext laufen kann.
Wir die Anwendung aber auf mehrere Prozesse verteilt oder gar auf mehreren Rechnern ausgefihrt
so sollten diese moglichst einfach und direkt miteinander kommunizieren kénnen.

Die MPI-Schnittstelle erlaubt es den Programmen untereinander direkte Nachrichten auszutauschen.
Dies kann sowohl lokal Uber den Hauptspeicher als auch tGber Rechnergrenzen hinweg beispielsweise
Uber TCP/IP geschehen.

Da wir uns hier hauptsachlich mit der Thread-Programmierung beschéaftigen und uns auf lokale Sys-
teme beschrénken wird MPI flir uns nicht relevant sein. Fir gréssere und verteilte Anwendungen kann
es aber durchaus hilfreich sein.

Weiterfihrende Informationen:
e Wikipedia, Message Passing Interface: [MPI]
e Alexander Greiml, Universitét Trier, Message Passing Interface (MPI): [MPI-TRIER]
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7.4. Zusammenfassung und Fazit

Dieses Kapitel hat einen Uberblick tiber die Programmierung von parallel ablaufenden Programmen
gegeben. Insbesondere die dadurch entstehenden Probleme der Kommunikation und der Synchroni-
sierung sowie Methoden zu deren Lésung wurden vorgestellt. Die vorgestellten Techniken wie POSIX
Threads, OpenMP, TBB und MPI werden flir uns nur am Rande wichtig sein, da dies keine Techniken
auf Java-Ebene darstellen. Diese Techniken sind aber sehr wohl fur die Java Virtual Machine (siehe
Kapitel 8) wichtig. Fur Programmierer einer JVM kdnnen die vorgestellten Technologien durchaus
wichtig sein. Wie viele davon bei der Programmierung einer Java-Applikation wichtig sein werden wird
sich im Verlauf der Arbeit zeigen.

7.5. Auswirkungen auf die Aufgabenstellung

Dieses Kapitel bietet einen Uberblick tiber Parallelisierungs-Techniken auf Applikations-Ebene. Einige
der vorgestellten Technologien kdnnten fir uns auf Java-Ebene wichtig werden:

Tabelle 28 Technologien mit direktem Einfluss auf die Arbeit

Technologie Beschreibung

POSIX Threads Auf Java-Ebene werden zwar nicht direkt Posix-Threads verwaltet aber Java bietet
eine ahnliche Schnittstelle Uber die Java-API. Ob die JVM die Thread-Verwaltung
Uber die POSIX-Schnittstelle abwickelt oder direkte Betriebssystemspezifische
Routinen verwendet werden wir mdglicherweise noch erfahren.

OpenMP Auch OpenMP ist prinzipiell auf C/C++ und Fortran limitiert (siehe Kapitel 7.3.2).
Wir konnten aber das Projekt JOMP (siehe [PROCEXP]) finden welches zum Ziel
hat dieselbe Funktionalitat fir Java-Anwendungen zur Verfiigung zu stellen. Des-
halb kénnte diese Technologie fir unsere Arbeit relevant sein.

Tabelle 29 Technologien mit indirektem Einfluss auf die Arbeit

Technologie Beschreibung

TBB Die Intel Thread Building Blocks besteht aus einer reinen C/C++ Bibliothek, des-
halb ist diese Technologie fiir uns mit Fokus auf Java-Implementierung nicht rele-
vant. Im entfernten Sinne kdnnten einige in der Java APl vorhandenen Klassen
ahnliche Funktionalitaten tbernehmen.

MPI Das Message Passing Interface ist fiir uns nicht weiter von Interesse, da wir nicht
die vertikale Skalierung auf mehreren Systemen (Cluster) untersuchen sondern die
Skalierung auf einem einzigen Host. Zwar kann MPI auch zur Inter-Prozess-
Kommunikation genutzt werden, angesichts moderner Thread-Unterstiitzung
macht es aber eher wenig Sinn mehrere Prozesse zu verwenden. Zur Kommunika-
tion zwischen Threads (geteilter Adressraum) wird MPI nicht benétigt.
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8. Java Virtual Machine (JVM)

Fur Java-Basierende Applikationen spielt die Java Virtual Machine (JVM) eine zentrale Rolle. Alle
Java-Applikationen laufen dabei in der Virtuellen Maschine ab. Dies bedeutet natirlich, dass die Virtu-
elle Maschine eine weitere Ebene zwischen dem Betriebssystem und der eigentlichen Java-
Anwendung darstellt. Fir Java-Anwendungen ist es daher auch nicht moéglich einfach auf Funktionen
des Betriebssystems zugreifen zu kénnen. Diese missen sich somit mit der von der Virtuellen Ma-
schine zur Verfliigung gestellten API zufrieden geben.

Die Java-VM daflr sorgen, dass die Applikation mit optimaler Geschwindigkeit ablaufen kann. Aus-
serdem bietet die VM gegeniiber der Applikation eine Schnittstelle (API) um parallele Programmierung
zu ermdglichen beziehungsweise diese mdglichst einfach zu gestalten.

In diesem Kapitel solle daher die Java API zur parallelen Programmierung betrachtet werden. Ausser-
dem wird untersucht in wie fern die APl Optimierungen auf Betriebssystem und Hardware zuldsst. Da
anzunehmen ist, dass die Plattformunabhangige Java-API keine tief greifenden und Betriebssystem-
abhéngigen Konfigurationen bietet soll auch die JVM selbst genauer betrachtet werden. Diese selbst
ist Plattform-abhé&ngig und soll fur eine optimale Ausfihrung der Anwendung sorgen. Es ist anzuneh-
men, dass die JVM entweder durch Konfiguration oder in Form speziell optimierter Varianten an Be-
triebssystem und Hardware angepasst werden kann.

Die folgende Grafik zeigt die Architektur der Sun Java Plattform in der Version 5.

Java™ 2 Platform Standard Edition 5.0

Lang d:;: Java Language
Dlgﬁl.:ﬂﬁ; java Jjavac Jjavadoc apt Jar Javap JPDA Other

Security | Int'l RMI Monitoring | dhostng | JVMTI

D ent
Tec! ies

User Inte
Toolks

Integration
DK Libraries

Other Base
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lang & wtil
Base Libraries

Java Virtual
Machine

Platforms

Windows Linux

Abbildung 25 Sun Java VM Architektur

Wie gut zu erkennen ist stellt die eigentliche Virtuelle Maschine (Java Virtual Machine) eine Ebene
zwischen dem Betriebssystem und der eigentlichen Java-Sprache dar. Dazwischen liegt die Java API.
Diese bietet dem Programmierer einen vordefinierten Sprachumfang und damit eine Schnittstelle zur
einfacheren Programmierung. Die API beinhaltet beispielsweise vordefinierte Containerklassen wie
Vektoren und Maps. Diese missen also vom Entwickler nicht mehr implementiert werden.

Weiterfihrende Informationen:
e Sun, Java Langugage Specification: [JLS]
e Sun, Java Virtual Machine Specification: [JVMS]
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e Sun, Java API Reference: [JAPIREF]

8.1. Die Java API

Bereits in der Java Language Specification (siehe auch [JLS]) ist der Umgang mit Threads und die
Behandlung von Nebenlaufigkeit exakt spezifiziert. Somit ist die parallele Programmierung im Gegen-
satz zu vielen anderen Sprachen ein integraler Bestandteil der Sprachdefinition.

Wie bereits erwahnt stellt die Java API die Schnittstelle zwischen Anwendung und Java Virtual Machi-
ne (JVM) dar. Diese Schnittstelle beinhaltet einige wichtige Klassen, welche die parallele Programmie-
rung erméglichen und vereinfachen. Diese Schnittstellen sollen im Folgenden kurz beschrieben wer-
den. Weiterfiihrende Informationen zur Java API sind auf der Java Homepage ([JAPIREF]) zu finden.

8.1.1. Threads

Wie gesagt bietet Java eine in der Sprache selbst verankerte Thread-Unterstlitzung. Streng genom-
men gibt es innerhalb von Java gar keine Prozesse. Die Java Virtual Machine ist der einzige, sichtba-
re Prozess gegeniber dem Betriebssystem. Die statische main() Methode stellt dabei den Eintritts-
punkt des Programmes dar. Diese wird aber bereits von einem JVM-internen Thread mit der Bezeich-
nung ,main“ aufgerufen. Somit ist auch der Haupt-Ausfilhrungsstrang einer Java-Applikation nichts
weiter als ein Thread.

Die zur Thread-Verwaltung und parallelen Verarbeitung verwendeten Mechanismen wie Monitore sind
in [JLS] beschrieben. Der Thread Lebenszyklus sieht wie folgt aus:

New Blocked Dead
I/0 done I/0 Operations
resume() sleep() Arun)
Start Join done join() termi-

‘ nates
Running
A
;:;;ked synchronized() wait()
Y

Objects
Lock-Pool

Object

<« notify() / notifyAll() Wait-Pool

Abbildung 26 Thread Lebenszyklus, (Quelle: [1])

Jedes Objekt in Java besitzt einen Lock- und einen Wait-Pool. Dadurch sind die wichtigsten Synchro-
nisationsprobleme bereits ohne Zusatzaufwand l6sbar:

e Konkurrierenden Zugriff verhindern: Kann mittels Lock-Pool (Zeitgleich erhalt nur ein Thread
einen Lock) realisiert werden.

e Warten auf ein Ereignis: Kann mittels Wait-Pool realisiert werden.
Hierbei sind einige wichtige Bedingungen zu beachten:

e Sowohl wait() als auch notify() bzw. notifyAll () dirfen nur aufgerufen werden,
wenn der Thread im Besitz des Locks fiir dieses Objekt ist.
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e Ein Thread, der wait() aufruft gibt implizit den Lock ab und kommt somit bei erhaltenem no-
tify() automatisch in den Lock-Pool um den Lock wieder neu zu erhalten. Ein mit noti-
fy () ,aufgeweckter” Thread lauft erst weiter, wenn er den Lock wieder bekommen hat.

e Ein Thread der aufgrund einer I/O Operation, sleep() oder join() blockiert wird gibt den
Lock nicht ab. Dies ist wichtig zu wissen weil dieser unter Umstanden dann fur l&ngere Zeit
blockiert bleibt.

Mehr zur Synchronisierung in Kapitel 0.

Es gibt prinzipiell zwei Méglichkeiten einen Thread unter Java zu erzeugen. Einerseits kann von der
Klasse java.lang.Thread abgeleitet werden und andererseits kann eine beliebige Klasse die Run-
nable-Schnittstelle implementieren (Java. lang.Runnable). Da Java keine Mehrfachvererbung un-
terstiitzt und Klassen manchmal schon von anderen Klassen abgeleitet sind bleibt haufig nur die zwei-
te Moglichkeit. In beiden Féllen muss aber nur die run() Methode implementiert werden. Diese wird
beim Start des Threads ausgefihrt. Wie in Abbildung 26 zu sehen ist endet ein Thread mit dem Ende
der run() Methode.

Hier ein Beispiel einer Thread-Klasse, die von java. lang.Thread abgeleitet ist:
package ch.skybeam.examples;

public class MyThread extends Thread {
// fields, methods. ..

@Override

public void run() {
super.run(Q);
// do some stuff

}
}

Listing 23 Java, Threaderzeugung durch Ableitung

Ein konkreter Thread kann danach mittels folgendem Code (z.B. in der main() Methode) erzeugt
werden:

Thread t = new MyThread();
t.start();

Listing 24 Java, Thread starten (Thread Klasse)
Analog dazu eine Klasse, welche die Runnable-Schnittstelle implementiert:
package ch.skybeam.examples;

public class MyRunnable implements Runnable {
// fields, methods....

public void run() {
// do some stuff
}

}

Listing 25 Java, Thread mittels Runnable Interface

Die Erzeugung des Threads geschieht analog dazu:

Thread t = new Thread(new MyRunnable());
t.start();

Listing 26 Java, Thread starten (Runnable Interface)

Hier wird lediglich der Basisklasse Thread das zuvor definierte Runnable-Objekt ibergeben. Das er-
zeugte Thread-Objekt verhalt sich danach gleich wie im Beispiel zuvor.

Wichtig: Beim Start von Threads ist darauf zu achten nicht die run() Methode auszufiihren sondern
die start() Methode der Klasse java.lang.Thread. Wird die run() Methode ausgefihrt, so
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verhalt sich der Aufruf wie ein Methodenaufruf und wird im Kontext des aufrufenden Threads ausge-
fuhrt (z.B. im ,main“ Thread).

Es folgt eine Auflistung der wichtigsten Methoden der Thread Klasse (java. lang. Thread):

Tabelle 30 Wichtige Methoden von java.lang.Thread
Methode Beschreibung

start() Diese Methode aktiviert den Thread. Das fuhrt zum Aufruf der run() Methode in
der Thread-Klasse bzw. der im Konstruktor angegebenen Runnable-Klasse.

getPriority() Mit diesen Methoden kann die Thread-Prioritat abgefragt bzw. beeinflusst wer-

setPriority() den.

isDaemon() Erlaubt die Abfrage des Daemon-Status eines Threads. Standadmassig sind
alle Java Threads so genannte User Threads. Die JVM beendet sich erst, wenn
alle User-Threads beendet sind. Wenn die main() Methode beendet ist tber-
pruft die JVM ob noch User-Threads abgearbeitet werden und wartet falls notig
auf deren Terminierung. Daemon-Threads werden dabei ignoriert. Soll also ein
Thread einfach bis zur Beendung der JVM weiterlaufen so empfiehlt sich die
Definition als Daemon. Dieser wird dann bei der Terminierung der JVM auto-
matisch beendet.

setDaemon()

getState() Seit Java 1.5 ist es mdglich den aktuellen Status eines Threads zu erfragen.
Dies ist inshesondere zu Debug-Zwecken sinnvoll oder zur Uberwachung des
Systemstatus.

interrupt(Q) Den Abbruch eines Threads mittels der interrupt() Methode ist die bevorzugte
Art der vorzeitigen Thread-Terminierung. Vorsicht: Wird interrupt() auf einem
Thread aufgerufen, der sich im ,blocked" Zustand befindet so wird eine Inter-
ruptedException geworfen. Wird diese nicht abgefangen terminiert der Thread
naturlich. Die Korrekte Art eines Interrupted-Handling wére die aktive Prifung
von isinterrupted() durch den Thread und eine entsprechende Terminierung der
run() Methode.

isinterrupted()

joinQ Bewirkt, dass der aktuelle Thread auf die Terminierung des Threads auf dem
join() aufgerufen wird wartet.

yield(Q Mittels dieser Methode lasst sich die Rechenzeit freiwillig abgeben. Der aufru-
fende Thread wird automatisch wieder in den Status ,ready” versetzt. Dies er-
laubt die Abgabe von Rechenzeit zugunsten anderer Threads.

Warnung: Eine Methode namens stop() existiert zwar aber sollte nicht mehr verwendet werden da
diese Methode keine Mdglichkeit zur sauberen Terminierung (Aufriumen von Datenstrukturen, Frei-
gabe/Schliessung von Dateien und Handlern, beenden von Transaktionen) vorsieht.

Mehrere Threads kdnnen auch in einer so genannten Thread Gruppe zusammengefasst werden. Da-
zu wird zunéachst eine leere Gruppe erzeugt und bei der Erzeugung der Threads als Argument tber-
geben:

ThreadGroup tg = new ThreadGroup(*'Thread-Gruppe™™);
new Thread(tg, new MyRunnable()).start();

Listing 27 Java, Threadgruppen

Nun kénnen einige Operationen direkt auf der Gruppe anstatt auf den einzelnen Threads ausgefihrt
werden. Beispielsweise lasst sich durch

tg.interrupt();
Listing 28 Java, Threadgruppen (Interrupt)

das Interrupt-Signal an alle Threads in der Gruppe senden. Eine Methode um auf die Terminierung
aller Threads in der Gruppe zu warten existiert allerdings nicht. Um dies zu erreichen muss also die
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Liste der Threads aus der Gruppe herausgeholt werden um die join() Methode jedes einzelnen
Threads aufzurufen.

8.1.2. Collections

Wo parallel verarbeitet wird finden praktisch immer auch Zugriffe auf gemeinsame Ressourcen oder
gemeinsame Datenfelder statt. Java bietet bereits eine Reihe von so genannten Collections. Collecti-
ons sind Container-Klassen um Daten in einer bestimmten Struktur abzulegen. Speziell bei der paral-
lelen Programmierung ist es wichtig, dass solche Container Thread-Safe sind. Dies bedeutet, dass
selbst bei parallelen Zugriffen auf die Daten kein undefinierter oder ungewollter Zustand eintreten
kann. Die meisten der bis zu Java 1.4.x vorhandenen Collection-Klassen sind nicht synchronisiert und
somit nicht Thread-Safe. Bei Java 5 kamen hier einige sehr wichtige neue Klassen hinzu. Die wich-
tigsten sollen hier kurz vorgestellt werden:

Tabelle 31 Neue Concurrent-Collections in Java 5 (java.util.concurrent Package)

Klasse Beschreibung

ConcurrentHashMap Wourde als Ersatz fir die Hashtable Klasse entwickelt und erlaubt massiven
parallelen Zugriff. Lesende Zugriffe blockieren nie und fir schreibende
Zugriffe lasst sich die Locking-Strategie beeinflussen bzw. optimieren.

CopyOnWriteArray* Diese Klassen erstellen bei jeder Modifikation eine Kopie des Arrays. ltera-
tionen auf dem Array kénnen also auf dem unverédnderten Array zu Ende
gefiihrt werden. Ist sehr gut fiir nur-lese Strukturen mit seltenen Anderun-
gen geeignet.

Queue Queue Klassen implementieren eine FIFO (First In First Out) Queue. Ist die
Queue voll, dann blockiert ein put() Aufruf nicht sondern liefert einen Fehler.
Ist die Queue leer, dann blockiert auch take() nicht sondern liefert eine null-
Referenz.

BlockingQueue Diese Klassen implementieren ebenfalls eine FIFO (First In First Out)
Queue. Zusatzlich bliockieren hier die put() und take() Methoden bei voller
bzw. leerer Liste bis ein Element herausgenommen bzw. entfernt wird.

8.1.3. Weitere hilfreiche Klassen

8.1.3.1. ReentrantLock

Die Klasse java.util.concurrent.locks.ReentrantLock bietet einen erweiterten Locking-
Mechanismus im Vergleich zur Synchronisation mit dem synchronized Statement. Die Klasse bietet
einige Methoden, die Funktionen offerieren, welche nicht von synchronized Gbernommen werden
koénne. Hier eine Liste der wichtigsten:

Tabelle 32 Wichtige ReentrantLock Methoden

Methode Funktion
isLocked() Erlaubt die Abfrage, ob der Lock momentan bereits vergeben ist.
lock(Q Versucht den Lock zu bekommen. Der Aufruf hat denselben Effekt wie

das Einteten in einen synchronized Block.

lockInterruptibly() Erlaubt den nachtraglichen Abbruch wahrend der Thread auf den Lock
warten muss. Dies ist mit synchronized nicht méglich.

tryLock() Versucht den Lock zu bekommen. Falls dieser bereits vergeben ist blo-
ckiert die Methode nicht sondern meldet lediglich, dass der Versuch er-
folglos war.
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tryLock(timeout) Versucht den Lock zu bekommen, wartet aber nur maximal bis zum Ab-
lauf der Zeitiberschreitung und meldet dann einen erfolglosen Versuch
zurlick. Dies ist mit synchronized ebenfalls nicht mdglich.

Die Verwendung kann anhand des folgenden Codebeispiels verdeutlicht werden:
boolean success = lock.tryLock();
if(success) {

try {
System.out.print(“Reading value: " + sync.getA(Q));

} finally {
lock.unlock();
}

} else {
System.out.print(’" No lock acquired :-(");
by

Listing 29 Java, ReentrantLock (tryLock)

Analog dazu das Lesen mit Timeout:

boolean success = false;

try {
success = lock.tryLock(500, TimeUnit.MILLISECONDS);

} catch (InterruptedException el) {
// interrupted during lock-try

if (success) {
try {
System.out.print("'Reading value: " + sync.getA(Q));
} Ffinally {
lock.unlock();
be

} else {
System.out.print(’" No lock acquired :-('");
}

Listing 30 Java, ReentrantLock (tryLock mit Timeout)

In beiden Fallen ist es wichtig, dass der gesamte Code zwischen der Lock-Anfrage und der Lock-
Freigabe in einem try Block steht und die Lock-Freigabe im zugehorigen final ly Block. Dies stellt
sicher, dass der Lock auf jeden Fall wieder freigegeben wird. Bei synchronized Blocken ist dies
nicht nétig, da bei einer Exception der Block automatisch verlassen und der Lock freigegeben wird.
Bei der manuellen Lock-Behandlung wird ein vergessen gegangener Lock aber nicht automatisch
wieder freigegeben und bleibt bestehen.

Der Konstruktor der Klasse ReentrantLock bietet einen Parameter um die Fairness einzuschalten
(boolean Parameter). Fairness garantiert, dass die Threads in der Reihenfolge ihrer Anfragen den
Lock bekommen. Dies mag auf den ersten Blick verlockend klingen hat aber einen massiven Perfor-
mance-Einbruch zur Folge (siehe [4] S. 284). Der Geschwindigkeitsverlust (besonders bei vielen pa-
rallelen Anfragen) liegt in der zusétzlich nétigen Synchronisation der Threads und dem damit verbun-
denen Aufwand. Da die meisten Algorithmen nicht auf Fairness angewiesen sind sollte diese Option
nur in begriindeten Einzelfallen Verwendung finden.
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8.1.3.2. Atomic*

Java 5 bietet im java.util.concurrent.atomic Package neue Klassen fur die atomare Behand-
lung der grundlegenden Datentypen. Diese Klassen arbeiten nach dem nicht-blockierenden CAS Prin-
zip (siehe Kapitel 8.2.4) und arbeiten daher sehr effizient bei niedriger bis mittlerer lock contention.

Es folgt eine Liste der wichtigsten Methoden am Beispiel der AtomicInteger Klasse:

Tabelle 33 Wichtige Methoden der Atomicinteger Klasse

Methode Beschreibung

addAndGet() Diese Methode addiert in einem Atomaren Vorgang den angegebenen
Wert.

compareAndSet() Lasst den Benutzer die CAS-Funktion direkt ausfiihren. Damit lassen
sich CAS-Algorithmen implementieren (siehe Kapitel 8.2.4).

decrementAndGet() Entspricht der Integer-Operation ,--1“, bzw. ,++i“ wird aber atomar

incrementAndGet() ausgefuhrt.

getAndDecrement() Entspricht der Integer-Operation ,i--" bzw. ,i++" wird aber atomar aus-

getAndIncrement() gefuhrt.

getAndAdd() Addiert den angegebenen Wert und gibt das Resultat zurtck.

getAndSet() Setzt den angegebenen wert und gibt den alten Wert zuriick.
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8.2. Synchronisierung

In Java sind Elemente zur Synchronisation direkter Bestandteil des Sprachumfangs. Die Synchronisie-
rung ist die wohl heikelste Angelegenheit bei der parallelen Programmierung. Uberall wo ein gemein-
samer Zugriff stattfindet mussen diese Zugriffe synchronisiert werden um konsistente Daten zu ge-
wahrleisten. Die einfachste Form der Synchronisation ist ein Mutex (siehe Kapitel 8.2.1). Der Begriff
Mutex wird haufig als Synonym fiir Lock verwendet. Ein Mutex hat die Eigenschaft, dass nur eine ein-
zige Anfrage erfolgreich ist. Alle weiteren Anfragen den Mutex/Lock zu erhalten flihren zur Blockierung
des aufrufenden Threads bis der Mutex wieder freigegeben wird.

Finden nur wenige/vereinzelte Zugriffe auf diese Methode statt, so fallt die Synchronisierung kaum ins
Gewicht da der aufrufende Thread in der Regel sofort den Lock bekommen kann. Bei vielen parallelen
Zugriffen fOhrt dies natirlich zu einem Engpass (da nur ein Thread zeitgleich passieren darf). Der
Grad der konkurrierenden Zugriffe wird ,lock contention’ genannt. Eine hohe ,lock contention’ bedeu-
tet, dass viele Threads gleichzeitig versuchen in den kritischen Bereich einzutreten. Da dies immer nur
einem zur gleichen Zeit gelingen kann missen alle anderen Threads warten. Dies kann zu ungewoll-
ter Blockierung von Applikationsteilen fuhren. Ist die ,lock contention’ niedrig, so reduziert sich der
Aufwand im Optimalfall auf das setzen des Locks (ein einziger Thread fordert den Lock an).

Es ist also wiinschenswert die lock contention so niedrig wie mdglich zu halten. Dazu gibt es drei
wirksame Wege dies zu erreichen (aus [4] S. 233):

e Reduzierung der Dauer wahrend der ein Lock gehalten wird.
¢ Reduzierung der Anfragehaufigkeit eines Locks.

e Exclusive Locking Techniken durch andere Koordinationsmechanismen mit besserer Konkur-
rierungsfahigkeit ersetzen.

Der erste Punkt zielt darauf ab den Durchsatz zu erhéhen indem ein Lock méglichst schnell wieder
abgegeben wird. Damit kann der nachste Thread schneller in den geschiitzten Bereich eintreten.

Der zweite Punkt zielt auf Zwei Eigenschaften. Einerseits ist die Wahrscheinlichkeit eines Engpasses
und gleichzeitigen Zugriffs hoher, wenn mehr Anfragen auf denselben Lock stattfinden und anderer-
seits ist mit jeder Anfrage der Aufwand zur Priifung des aktuellen Lock-Status verbunden. Im Falle
eines bereits gesperrten Locks kommt noch der Aufwand der Blockierung und dem erneuten Versuch
hinzu.

Fir beide Punkte werden in den Kapiteln 8.2.1.1 und 8.2.1.2 die Methoden zur Realisierung vorge-
stellt. Kapitel 8.3 enthdlt eine praktische Analyse verschiedener Locking-Strategien.

Der dritte Punkt ist etwas komplexer zu realisieren aber es gibt Techniken um den gemeinsamen
Zugriff auch ohne Locks und der damit verbundenen Blockierung zu synchronisieren. Mehr dazu im
Kapitel 8.2.4.

Weiterfihrende Informationen:
e Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1: [4]
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8.2.1. Mutex

Die Bezeichnung Mutex ist eine Abkirzung fur den englischen Ausdruck ,Mutal Exclusion* und be-
zeichnet den wechselseitigen Ausschluss im Zusammenhang mit gleichzeitigem Zugriff. Ein Mutex
erlaubt immer nur einem einzigen Thread den Eintritt in einen geschitzten Bereich. Alle nachfolgen-
den Anfragen fuhren zur Blockierung des anfragenden Threads. Erst wenn die Sperrung wieder auf-
gehoben wird (durch Freigabe des Mutex durch den besitzenden Thread) kann der nachste Thread in
den Bereich eintreten.

Folgendes Code-Fragment verdeutlicht die Funktion:
public void sharedMethod() {
lock.acquire();
// do modification on shared data
lock.release();

}
Listing 31 Java, Mutex

Dieses Konstrukt stellt sicher, das sich immer nur ein einziger Thread zeitgleich im kritischen Bereich
aufhalt. In Java werden solche Bereiche mit dem Schlisselwort synchronized gekennzeichnet (sie-
he Kapitel 8.2.1.1 und 8.2.1.2).

Weiterfuhrende Informationen:
o Wikipedia, Mutex: [MUTEX]

8.2.1.1. Blocksynchronisation

Java stellt fir jedes Objekt einen Lock-Pool und einen Wait-Pool zur Verfiigung (siehe auch Kapitel
8.1.1). Diese Pools werden tiber Monitore verwaltet. Um einen Block mit exklusivem Zugriff zu definie-
ren wird zundchst ein Objekt benétigt welches den Lock-Pool zur Verfugung stellt. Dies kann ein be-
liebiges (auch ansonsten unverwendetes) Objekt sein:
package ch.skybeam.examples;
public class ObjectSync {
private Object lock = new Object();

public void methodWithLock() throws InterruptedException {
// some code
synchronized(lock) {
// some more code, Thread holds lock of "lock®™ object
lock.wait(); // here the lock is freed
// here the lock is gained again

}
}

Listing 32 Java, Blocksynchronisation

In diesem Code wird ein leeres Objekt mit dem Namen lock erzeugt. Die Methode method-
WithLock() kann von verschiedenen Threads gleichzeitig aufgerufen werden. Sobald einer der
Threads den synchronized Block erreicht versucht dieser den Lock auf das lock Objekt zu erhal-
ten. Derjenige Thread, der den Lock bekommt darf im Block weiterlaufen. Alle anderen Threads be-
kommen den Lock nicht und verbleiben im Lock-Pool. Sobald der Thread mit dem Lock den synch-
ronized Block verlasst wird der Lock wieder freigegeben. Damit kann ihn der néchste Thread erhal-
ten und in den Block eintreten. Die Modellierung entspricht dem gangigen Idiom der Mutex Synchroni-
sierung.

Wiirde innerhalb des synchronized Blocks die Methode wait() des lock Objektes aufgerufen, so
wirde der Thread in den Wait-Pool fallen und der Lock abgegeben. Somit kénnte der nachste Thread
den Lock bekommen und in den Block eintreten.
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Es kdnnen beliebig viele Threads im Lock- sowie im Wait-Pool eines Objektes liegen. Die Methode
notify() des Lock-Objektes holt dabei ein Objekt aus dem Wait-Pool heraus. Die Methode noti -
TfyAll () tut dasselbe, holt aber alle wartenden Threads aus dem Wait-Pool. Danach kann aber nur
derjenige Thread direkt weiterlaufen, der anschliessend den Lock wieder bekommt.

Hier muss daflir gesorgt werden, dass alle Threads das notify() Signal bekommen. Ansonsten
droht Starvation (siehe Kapitel 7.1).

Da jedes Objekt einen Wait- und einen Lock-Pool hat kann der oben stehende Code auch folgender-
massen geschrieben werden:
package ch.skybeam.examples;
public class ObjectSync {
public void methodWithLock() throws InterruptedException {
// some code
synchronized(this) {
// some more code, Thread holds lock of "lock®™ object
lock.wait(); // here the lock is freed
// here the lock is gained again

}
}

Listing 33 Java, Blocksynchronisation mit 'this'

In Diesem Fall wird kein separates Lock-Objekt erzeugt sondern auf der this Referenz synchroni-
siert. Dies bedeutet, dass die Threads den Lock- und Wait-Pool des ObjectSync Objektes verwen-
den. Im oben stehenden Code ist dies kein Nachteil. Wenn aber an mehreren Stellen immer auf das-
selbe Objekt (z.B. this) synchronisiert wird, so kann dies unter Umstanden zu verschlechterter Per-
formance fiihren weil alle synchronized-Blocke gleichzeitig gesperrt werden.

Da die Klassenvariabeln auf die zugegriffen wird in Java auch haufig Objekte sind bietet sich die direk-
te Synchronisation mit dem Datenobjekten an:

package ch.skybeam.examples;

public class ObjectSync {
private Object objectl
private Object object2

= new Object();
= new Object();
public void methodWithLockl() throws InterruptedException {
// some code
synchronized (this) {
// some more code, Thread holds lock of "lock®™ object
objectl.wait(); // here the lock is freed
// here the lock is gained again
}
be
public void methodWithLock2() throws InterruptedException {
// some code
synchronized (this) {
// some more code, Thread holds lock of "lock®™ object
object2.wait(); // here the lock is freed
// here the lock is gained again

}
}

Listing 34 Java, Locking Uber Klassenvariabeln

Dieser Code erlaubt den gleichzeitigen Zugriff auf methodWithLock1() und methodWithLock2()
durch unterschiedliche Threads ohne dazu zu fuhren, dass diese sich gegenseitig blockieren.
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8.2.1.2. Methodensynchronisation

In Java kénnen auch ganze Methoden anstatt nur einzelne Blocke synchronisiert werden. Dabei han-
delt es sich wie wir gleich sehen werden um den gleichen Mechanismus. Hier ein kleines Code-
Beispiel:
package ch.skybeam.examples;
public class MethodSync {
public synchronized void methodWithLockl() {
// some code
}

public synchronized void methodWithLock2() {
// some code
be

}

Listing 35 Java, Methodensynchronisation

Wie gut zu erkennen ist wird das Schliusselwort synchronized in der Methodendeklaration verwen-
det. Dies bewirkt, dass die gesamte Methode synchronisiert wird. Auffallig ist dabei die Tatsache, dass
kein Synchronisations-Objekt angegeben wird. Bei der Methodensynchronisation verwendet Java
implizit den Lock-Pool der this Referenz. Im Beispiel wére dies die Instanz der Klasse MethodSync.
Da es bei statischen Objekten keine this Referenz gibt wird in diesem Fall auf das dazugehoérende
class Objekt synchronisiert.

Der oben stehende Code kdnnte also auch folgendermassen geschrieben werden:

package ch.skybeam.examples;
public class MethodSync {
public void methodWithLockl() {
synchronized (this) {
// some code
}

}

public void methodWithLock2() {
synchronized (this) {
// some code
e

}
}

Listing 36 Java, Methoden und Blocksynchronisation

Der hauptsachliche Nachteil aus der Methodensynchronisation besteht in der Tatsache, dass alle
Locks auf dasselbe Objekt stattfinden. Somit werden mit dem Eintritt eines Threads in eine synchroni-
sierte Methode automatisch alle anderen synchronisierten Methoden fiir die anderen Threads ge-
sperrt. Derjenige Thread, welcher den Lock besitzt, kann aber diesen mehrmals bekommen (siehe
dazu auch Kapitel 8.2.1.3.

Aus diesem Grund sollte die Methodensynchronisation nur eingesetzt werden, wenn entweder der
gleichzeitige Zugriff auf alle Datenfelder gesperrt werden muss oder nur ein einziges Datenfeld exis-
tiert. Ansonsten ist die Objektsynchronisation vorzuziehen da dadurch unter Umstanden ein viel klei-
nerer Code-Block gesperrt werden kann.
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8.2.1.3. Weitere wichtige Hinweise

Java fuhrt intern einen Zahler auf Locks und eine Referenz auf den Thread, der den Lock aktuell be-
sitzt. Ein Objekt gilt bei der Erzeugung als ungesperrt (engl. unlocked). Erhalt ein Thread den Lock so
wird seine Referenz im Objekt vermerkt und der Lock-Zahler um 1 erhéht. Das Objekt gilt nun als ge-
sperrt. (engl. locked) Gibt der Thread den Lock ab, so wird der Zahler um 1 erniedrigt. Erreicht der
Zahler 0, dann wird der Lock geldscht und das Objekt gilt wieder als ungesperrt. Dabei kann ein
Thread den Lock mehrmals erhalten. Dann wird einfach der Zahler erhdht. Besitzt ein Thread den
Lock bereits so wird jeder weitere Lock auf dasselbe Objekt sofort erteilt (da ja niemand anders diesen
aktuell besitzen kann) und der Zahler erhoht.

Locking ist allgemein ,teuer” und kostet gleich in zweierlei Hinsicht Zeit und somit Performance. Einer-
seits ist der Ein- und Austritt in synchronisierte Bereiche aufwandig zu regeln und andererseits mus-
sen andere Threads warten wahrend einer sich im synchronisierten Bereich befindet. Deshalb sollte
nur dort synchronisiert werden wo dies auch wirklich nétig ist und die Synchronisations-Blécke sollten
moglichst klein gehalten werden. Beispielsweise macht es wenig Sinn die Methodensynchronisation
fur sehr grosse Methoden zu verwenden wenn diese aufwandigen Berechnungen durchfiihren aber
nur am Ende der Methode auf ein zu schiitzendes Datenfeld zugreifen. Wird ein solches Datenfeld
aber am Anfang der Methode gelesen und darf bis zum Ende der Berechnungen nicht modifiziert wer-
den, dann muss es leider die gesamte Berechnungsdauer Uber gesperrt bleiben. Man kdnnte jetzt in
Versuchung geraten jeweils nur ganz kurze Strecken zu synchronisieren. Dies wirkt sich aber
manchmal auch negativ aus, da haufige Ein- und Austritte aus synchronisierten Bereichen sich auch
auf die Performance auswirken. Fir einige Beispiele siehe Kapitel 8.3.

8.2.2. Unterbrechbare Locks

Die gezeigte Lock-Behandlung mit synchronized Bldcken ist recht statisch und auch unflexibel. Ein
Lock wird zu Beginn des synchronized Blockes angefragt und gehalten bis zum Ende des Blockes.
Bei einem unerwarteten Programmabbruch (Exception) wird der Block verlassen und der Lock auto-
matisch wieder freigegeben. In Manchen Fallen méchte man aber den Lock abhéngig von einer Be-
dingung oder gar in einer aufgerufenen Methode freigeben. Es gibt auch Situationen bei denen der
Lock angefragt werden soll ohne ewig darauf zu warten. Die Synchronisierung mit synchronized
bietet Keine Mdglichkeit der Definition einer Zeitiiberschreitung bei der Lock-Anforderung. Ausserdem
bietet synchronized keine Méglichkeit einen wartenden Thread zu unterbrechen.

Um diese Flexibilitdt zu bieten enthélt die Java-APIl ab Version 5 die ReentrantLock Klasse (siehe
Kapitel 8.1.3.1). Diese erlauben den Abbruch eines Threads, der auf einen Lock wartet. Ausserdem ist
es damit mdglich einen Zeitiiberschreitung bei der Lock-Anfrage zu definieren sowie auch die Anfrage
automatisch abbrechen zu lassen, wenn der Lock nicht sofort erteilt werden kann.

Weiterflihrende Informationen:
e Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1: [4]
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8.2.3. Lock Granularitat

Unter dem Begriff der Granularitat wird verstanden wie fein gegliedert die Locks verwendet werden.
Im Extremfall kdnnte in der gesamten Applikation ein einziges Lock-Objekt verwendet werden. Dies
hatte aber den Nachteil, dass bei jedem synchronisierten Zugriff der alleinige Lock benétigt wird und
gleichzeitig auch alle anderen kritischen Stellen gesperrt wirden. Der andere Extremfall wére, dass
jedes Datenfeld durch seinen eigenen Lock geschiitzt wirde. Dies hatte aber zum Nachteil, dass fir
viele Operationen mehrere Locks notwendig waren was die Wahrscheinlichkeit fur Deadlocks erhoht.
Ausserdem wirde solch extrem fein Granuliertes Locking zu viel Overhead bei Lock-Anfragen und
Lock-Freigaben fuhren.

Die optimale Granularitét liegt irgendwo dazwischen und ist von Anwendungsfall zu Anwendungsfall
unterschiedlich. Es gibt aber einige Techniken mit denen man die Granularitit verfeinern kann falls
dies notig ist. Mehr dazu in den folgenden Abschnitten.

Weiterfiilhrende Informationen:
e Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1: [4]

8.2.3.1. Lock Splitting

Lock Splitting ist haufig die einfachste Art die Lock-Granularitat zu verfeinern. Hierbei wird fur zwei
Objekte die dasselbe Lock-Objekt verwenden ein eigenes Lock-Objekt erzeugt. Durch die Aufteilung
von einem auf zwei Locks kann im Optimalfall die lock contention fiir beide Objekte halbiert werden.
Das Resultat sind weniger blockierende Zugriffe und einen dadurch gesteigerten Durchsatz.

Naturlich funktioniert Lock Splitting nur, wenn eine Operation nicht den Lock auf beide Objekte beno-
tigt, ansonsten misste dies Operation nach dem Split beide Locks anfordern. Wie bereits erwahnt
kann Lock Splitting das Risiko fur Deadlocks erhdhen.

8.2.3.2. Lock Striping und Lock Partitioning

Wie erwahnt stosst Lock Splitting an die Grenzen wenn entweder mehrere Objekte in eine Operation
involviert sind oder ein einzelnes Datenfeld bereits durch seinen eigenen Lock geschitzt ist. Bei-
spielsweise kann auf den ersten Blick ein Zugriff auf ein Array nicht weiter unterteilt werden und muss
durch ein einzelnes Lock-Objekt geschitzt sein.

Einen Ausweg bietet Lock-Striping. Hierbei wird das Objekt selbst noch in weitere Lock-Bereiche un-
terteilt. Beispielsweise kénnen Arrays in manchen Fallen in gleichgrosse Blocke aufgeteilt werden. Im
Extremfall erlaubt dies ein Locking auf Element-Ebene (wenn fir jedes Element ein eigener Lock zur
Verfligung steht.

Meistens ist Lock-Striping aber schwierig umzusetzen. Inshesondere verlangen eventuell einige Ope-
rationen wie Hash-Berechnungen den Lock auf alle Elemente. Diese Operationen wirden dann sehr
Lteuer” in der Ausfiihrung und wiirden mdéglicherweise den Programmfluss empfindlich stéren.

Der Betriff Lock-Partitioning wird haufig synonym verwendet und bezeichnet ebenfalls die Aufteilung
eines Lock-Bereiches in mehrere Scheiben/Blécke. Bei zweidimensionalen Datenstrukturen wird Lock-
Partitioning auch haufig fur die Aufteilung in Blocke verwendet.
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8.2.4. Compare and Swap / Compare and Set (CAS)

Alle bis jetzt kennen gelernten Methoden zur Synchronisierung basieren auf dem Prinzip des Aus-
schlusses und der Sperrung eines gewissen Bereiches durch einen Lock. Es gibt aber auch Methoden
zur Modifikation gemeinsamer Daten ohne diese zu sperren. Dazu bendétigt man so genannte atomare
Funktionen. Atomare Funktionen haben die Eigenschaft, dass sie in einer Operation ohne Unterbre-
chung durchgefiihrt werden. Konkret heisst das, dass ein Thread, der eine Atomare Operation aus-
fuhrt wahrend dieser nicht unterbrochen werden kann. Somit ist auch keine Modifikation des Wertes
wahrend der Operation mdglich.

Um eine solche Operation mdglichst effizient umsetzen zu kdnnen bendtigt man Hardwareunterstut-
zung. Eine dieser Operationen ist die Compare-and-Swap Funktion. Sie wird sowohl von der IA32 wie
auch von der Sparc-Architektur unterstiitzt. Die Funktion besitzt folgenden Syntax: compa-
reAndSwap(V, A, B). Hierbei ist V die Adresse des gespeicherten Wertes, A der erwartete Wert
und B der neue Wert. Die Funktion vergleicht nun den Wert A mit dem tatséchlich gespeicherten Wert
an der Adresse V. Sind die Werte V und A identisch, so wird V durch B ersetzt. Sind die Werte nicht
identisch, dann wird nichts ausgefiihrt. Im Erfolgsfall gibt die Funktion den neuen Wert zuriick, im Feh-
lerfall den alten.

In leicht abgewandelter Form mit den Namen Compare-and-Set findet das Konzept auch Anwendung
in Java. Java verwendet intern dieselben Methoden aber erst mit Java 5 wurden die Methoden Uber
die API zuganglich gemacht (siehe auch Kapitel 8.1.3.2).

CAS-Algorithmen sind nicht blockierend und eliminieren daher auch die Gefahr von Lock-Basierenden
Deadlocks. Ausserdem entféllt die Synchronisation des Zugriffes. Ein typischer CAS-Algorithmus sieht
wie folgt aus:

1. Lesen eines Originalwertes aus dem Speicher.
2. Berechnung des neuen Wertes basierend auf dem gelesenen Wert.
3. Zuruckschreiben des neuen Wertes mittels CAS. Dabei kdnnen folgende Félle eintreten:

o Der Originalwert wurde nicht verandert und der neue Wert somit geschrieben. Der Al-
gorithmus ist somit beendet.

o Der Wert wurde zwischenzeitlich durch einen anderen Thread verandert. In diesem
Fall wird wieder bei Schritt 1 weitergemacht.

Durch diesen Algorithmus sind konsistente Daten garantiert. Der Nachteil besteht in der Tatsache,
dass bei stark konkurrierendem Zugriff der Algorithmus natirlich haufiger durchlaufen werden muss.
Je langer der Algorithmus (Schritt 2) ist, desto wahrscheinlicher ist es, dass der Wert in der Zwischen-
zeit verandert wurde.

Die Vorteile Gberwiegen aber in den meisten Fallen. Insbesondere bei niedriger oder mittlerer Last
(was einer typischen Applikationsauslastung entspricht) sind CAS-Algorithmen meist deutlich effizien-
ter als Locks. In [4] S. 328 hat sich gezeigt, dass nur bei extremer Last ein ReentrantLock minimal
schneller war als ein Atomiclnteger (der auf CAS basiert, siehe dazu Kapitel 8.1.3.2). Bei niedriger
und mittlerer lock contention war ein Atomiclnteger deutlich schneller (ungefahr Faktor 2) und lag
damit im Mittelfeld zwischen unsynchronisiertem und mit Lock gesichertem Zugriff.

Ein Riesiger Vorteil bei CAS-Algorithmen ist wie gesagt die Minimierung des Deadlock-Risikos. Selbst
bei extremer Belastung ist mit CAS-Algorithmen sichergestellt, dass bei jedem Durchgang ein Thread
weiterkommt.

Nachteilig wirkt sich insbesondere die schwierige Handhabung und Entwicklung von CAS-Algorithmen
aus. Besonders beim Zugriff auf mehr als nur ein Datenelement muss die Konsistenz aller Datenfelder
sichergestellt werden.

Weiterflihrende Informationen:
e Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1: [4]
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8.3. Implementierung in Java

In diesem Kapitel werden anhand eines praktischen Beispieles einige Vor- und Nachteile der Syn-
chronisierung sowie einige Fallstricke fur Programmierer beleuchtet. Die Beispiele konzentrieren sich
auf eine Analyse der Performance und sollen ein Gefiihl fir die Wichtigkeit korrekter Synchronisierung
vermitteln.

8.3.1. Methodensynchronisation

package ch.skybeam.examples;

public class MethodSync {
private Object A;
private Object B;

public synchronized void methodWithLockl() {
// some code accessing A only
}

public synchronized void methodWithLock2() {
// some code accessing B only
be

}

Listing 37 Java, Methodensynchronisation (grobes Locking)

Dieser Code wirde beim Aufruf von methodWithLockl1() implizit das Objekt MethodSync fir einen
Thread sperren. Somit waren auch Zugriffe auf methodWithLock2() gesperrt obwohl diese nicht auf
dieselben Datenfelder zugreifen.

Besser ware:

package ch.skybeam.examples;

public class MethodSync {
private Object A;
private Object B;

public void methodWithLockl() {
synchronized(A) {
// some code accessing A only
}

}

public void methodWithLock2() {
synchronized(B) {
// some code accessing B only
}

}
}

Listing 38 Java, verfeinertes Locking)

Bei diesem Beispiel werden die Methoden unabhangig voneinander aufgerufen. Somit wirden sich
zwei Threads, welche eine Referenz auf dasselbe Objekt haben nicht blockieren sofern sie nicht die-
selbe Methode aufrufen.
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8.3.2. Uberlange Synchronisierung

package ch.skybeam.examples;
public class MethodSync {
private int A;
public synchronized void methodWithLockl() {
// lots of slow code
// even more slow code

// incrementing shared counter
A++;
}
by

Listing 39 Java, Uiberlange Synchronisierung

Hier wird das Objekt (this Referenz) fur die gesamte Berechnungsdauer gesperrt. Dies kann unter
Umstanden sehr lange dauern. Aufgrund der Methodensynchronisation kénnte auch keine weitere
synchronized Methode dieser Klasse durch einen anderen Thread aufgerufen werden. Dies kann je
nach Design der Anwendung zur Blockierung anderer Applikationsteile fihren.

Besser wére hier:
package ch.skybeam.examples;
public class MethodSync {
private int A;
public void methodWithLockl() {
// lots of slow code
// even more slow code

// incrementing shared counter
synchronized(this) {

A++;
}

}
}

Listing 40 Java, Synchronisiertung verktrzen

Hierbei wird nur der Zugriff auf die gemeinsame Variable A synchronisiert. Zu beachten ist auch, dass
die Methode methodWithLock1 () hier nicht mehr synchronisiert ist.

Das Funktioniert nattrlich nicht, wenn die Variable A in der Berechnung verwendet wiirde und wah-
rend der gesamten Berechnung nicht verandert werden darf:
package ch.skybeam.examples;
public class MethodSync {
private int A;
public synchronized void methodWithLockl() {
int tmp = A;
// lots of slow code
// even more slow code
int result = ___;

// incrementing shared counter
A = result;
}
}

Listing 41 Java, Synchronisierung verkirzen 2

Hier konnte allenfalls eine Synchronisierung auf ein anderes Objekt als die this Referenz gepruft
werden um nicht gleich auch alle anderen synchronized Methoden dieses Objektes zu sperren.
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8.3.3. Extrem haufiges Locking/Unlocking

Folgende Klasse bietet einen sicheren (synchronisierten) Zugriff auf einen Integer-Wert:

package ch.skybeam.examples;
public class MethodSync {
private int A = 0;

public synchronized int getAQ {
return A;
}

public synchronized void setA(int newA) {
this.A = newA;
}

}
Listing 42 Java, haufiges Locking/Unlocking

Hier macht die Methodensynchronisation sogar Sinn, da nur auf ein Datenfeld zugegriffen wird und
dieses Uber dasselbe Objekt (this) gesperrt werden kann.

Nun wird Gber den folgenden Code auf das Element zugegriffen:

MethodSync perfTest = new MethodSync();
long startTime = System.nanoTime();

for(int i=0; i<100000000; i++) {
perfTest.setA(perfTest.getAQQ+1);
}

long timeSpent = System.nanoTime() - startTime;
System.out.printIn("Value of perfTest: " + perfTest.getA(Q)):;
System.out.printIn("'Time spent: " + timeSpent/1000000 + "ms');

Listing 43 Java, Loking in einer Schleife

Wird dieser Code ausgefiihrt, so wird bei jedem Schleifendurchgang zwei Mal der Lock auf das perf-

Test Objekt angefordert. Sowohl setA() als auch getA() sind synchronisiert und verlangen daher
den Lock. Hier geschieht beides 100 Millionen Mal.

Die Ausgabe sieht auf meinem System wie folgt aus:

Value of perfTest: 100000000
Time spent: 2559ms

Listing 44 Ausgabe

Versuchen wir mal folgenden Code fiir den Objektzugriff:
MethodSync perfTest = new MethodSync();
long startTime = System.nanoTime();
synchronized (perfTest) {

for(int i=0; i<100000000; i++) {
perfTest.setA(perfTest.getA(Q+1);
}
b

long timeSpent = System.nanoTime() - startTime;
System.out.printIn(*Value of perfTest: " + perfTest.getA(Q)):;
System.out.printIn("'Time spent: " + timeSpent/1000000 + "ms');

Listing 45 Java, Synchronisierung ausserhalb der Schleife

Hier wird der Lock fur das perfTest Objekt schon vor der Schleife angefordert. Es ist also anzuneh-
men, dass der Aufwand des Lockings gegen Null geht. Erstaunlicherweise sieht die Ausgabe wie folgt
aus:
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Value of perfTest: 100000000
Time spent: 2386ms

Also keine ausserhalb der Messgenauigkeit liegende Veranderung. Durch das Ergebnis ist man ge-
neigt zu glauben, dass Locking offenbar doch nicht so viel Zeit in Anspruch nimmt. Doch Vorsicht: Wir
arbeiten hier nur mit einem Thread. Java muss den Lock eines Objektes erst wirklich abgeben und
neu anfordern wenn ein Kontextwechsel stattfindet. Offenbar wird hier von der Java VM optimiert. Um
das zu beweisen modifizieren wir den Zugriff leicht und erzeugen einen dummy-Thread. Dessen ein-
zige Aufgabe ist es hie und da mal auf das Objekt zuzugreifen und Java dadurch zu zwingen den Lock
abzugeben:

MethodSync perfTest = new MethodSync();
Thread dummy = new DummyThread(perfTest);
dummy.start(Q);
long startTime = System.nanoTime();
// synchronized (perfTest) {
for(int i=0; i<100000000; i++) {
perfTest.setA(perfTest.getA(Q+1);

}
/7 }
long timeSpent = System.nanoTime() - startTime;
System.out.printIn(*Value of perfTest: " + perfTest.getA()):;
System.out.printIn("'Time spent: " + timeSpent/1000000 + "ms');

Listing 46 Java, Locking in einer Schleife

Wie zu sehen ist wurde die Synchronisierung vor der Schleife hier auskommentiert. Dafiir wird ein
Thread erzeugt. Dessen Code sieht folgendermassen aus:

package ch.skybeam.examples;
public class DummyThread extends Thread {
private MethodSync sync;

public DummyThread(MethodSync s) {
this.sync = s;
this.setDaemon(true);

}

public void run() {
int count = O;
while (true) {
System.out.print("'Thread tick " + ++count);
System.out.print("" reads value: " + sync.getAQ));
System.out.printIn(’"");
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}

}
}

Listing 47 Java, Dummy-Thread zur Simulation von 'lock contention’

Wie gut zu erkennen ist bekommt dieser Thread eine Referenz auf das synchronisierte Objekt. An-
sonsten tut der Thread nichts ausser 500ms warten um dann einmal lesend auf das Objekt zuzugrei-
fen. Da dieses vorher ungeféhr 2.5 Sekunden lief sollte dies nur ungefdhr 5 Mal passieren. Den zu-
séatzlichen Aufwand durch den Kontextwechsel selbst und den Lesezugriff (nur ca. 5 Mal) vernachlas-
sigen wir hier. Der Thread wird im Ubrigen als Daemon konfiguriert. Damit beendet sich die Endlos-
schlaufe automatisch wenn das Programm zu Ende ist. Ohne diese Konfiguration wiirde sich das Pro-
gramm am Ende nicht beenden.

Das Ergebnis Uberrascht dann aber mit erstaunlich langer Laufzeit. Hier die Ausgabe (gekrzt):

Thread tick 1 reads value: 584218
Thread tick 2 reads value: 21971701
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Thread tick 3 reads value: 44552450
Thread tick 4 reads value: 45991802
L1

Thread tick 39 reads value: 98295964
Thread tick 40 reads value: 99761596
Value of perfTest: 100000000

Time spent: 19862ms

Listing 48 Ausgabe

Das Programm braucht also plétzlich etwa 8 Mal langer als erwartet. Was ist passiert? Am zusatzli-
chen Aufwand fur den Thread liegt es nicht. Wir kommentieren mal eine der Ausgabezeilen aus:

// System.out.print("” reads value: " + sync.getA(Q));
Listing 49 Java, Lock-verursachende Zeile entfernen

Und schon sieht das Ergebnis wieder wie vorher aus:

Thread tick 1

Thread tick 2

Thread tick 3

Thread tick 4

Thread tick 5

Value of perfTest: 100000000

Time spent: 2330ms

Listing 50 Ausgabe

Wir haben also vorhin die VM wirklich dazu gezwungen den Lock haufiger abzugeben und dadurch
entstand die langere Laufzeit. Das Ergebnis verschlechtert sich noch weiter, wenn nicht alle 500ms
sondern in kiirzeren Abstédnden zugegriffen wird. Doch selbst bei 40 konkurrierenden Zugriffen wie
oben entstand ein Performance-Einbruch von Faktor 8. Es ist anzunehmen, dass die VM so intelligent
ist den Lock so lange zu behalten wie der Thread mit der for Schleife im Status ,running“ ist.

Was kann man dagegen tun?

Eine Versuche ware es wert den Lock wéahrend der gesamten for-Schleife zu behalten indem man
ihn manuell (durch synchronized) anfordert:
MethodSync perfTest = new MethodSync();
Thread dummy = new DummyThread(perfTest);
dummy.start(Q);
long startTime = System.nanoTime();
synchronized (perfTest) {
for(int i=0; i<100000000; i++) {
perfTest.setA(perfTest.getA()+1);
}
}

long timeSpent = System._nanoTime() - startTime;
System.out.printIn(*Value of perfTest: " + perfTest.getA(Q)):;
System.out.printIn("'Time spent: " + timeSpent/1000000 + "ms');

Listing 51 Java, Synchronisation ausserhalb der Schleife

Leider fuhrt dies auch nicht zum erwiinschten Ergebnis:

Threat tick 1 reads value: 100000000
Value of perfTest: 100000000
Time spent: 19740ms

Listing 52 Ausgabe

Der einzig sichtbare Effekt ist, dass der Thread Uber den Gesamten Schleifen-Vorgang angehalten
wird weil er nie den Lock fir das perfTest Objekt erhélt. Das hélt die JVM aber nicht davon ab hie
und da einen Kontextwechsel vorzunehmen und zu priifen, ob der Lock nun zu haben sei (was natr-
lich Zeit kostet).
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Dieser Code wére aber insgesamt sicherer, weil es auch moglich wére, dass zwischen den Metho-
denaufrufen perfTest.getA() und perfTest.setA() ein Kontextwechsel stattfindet und der nun
ablaufende Thread dazwischen A aus der klasse MethodSync verandert. In diesem Fall wirde das
anschliessende perfTest.setA() den Wert schlicht wieder ersetzen. Durch die Synchronisierung
wird dies verhindert da wahrend der gesamten Verarbeitung der Lock an perfTest gehalten wird.

Eine Mdglichkeit zur Performance-Steigerung ware hier unter Umstédnden der unsynchronisierte
Zugriff durch den Thread. Dies beinhaltet aber weitere Gefahren. Siehe dazu den ndchsten Abschnitt.
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8.3.4. Teilweise unsynchronisierter Zugriff

Angenommen unser Thread aus der vorherigen Aufgabe ist nicht auf die Synchronisierung angewie-
sen sondern will lediglich einen giiltigen Wert erhalten (egal ob dieser gerade verandert wird). Dazu
implementieren wir eine weitere Methode in der Klasse MethodSync:

package ch.skybeam.examples;
public class MethodSync {
private int A = 0;

public synchronized int getA(Q) {
return A;
be

public synchronized void setA(int newA) {
this.A = newA;

}

public int getAsyncAQ) {
return A;

}

}

Listing 53 Java, teilweise unsynchronisierter Zugriff
Die Methode getAsyncA() gibt den aktuellen Wert von A zurlick ohne einen Lock zu verwenden.

Dazu passend wird der Thread-Code aktualisiert:

package ch.skybeam.examples;
public class DummyThread extends Thread {
private MethodSync sync;

public DummyThread(MethodSync s) {
this.sync = s;
this.setDaemon(true);

}

public void run() {
int count = O;
while (true) {
System.out.print("'Thread tick " + ++count);
System.out.print(’" reads value: " + sync.getAsyncAQ));
System.out.printIn(’"");
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}

+
}

Listing 54 Java, Dummy Thread liesst ohne Locking

Das Hauptprogramm bleibt unveréndert:

MethodSync perfTest = new MethodSync();
Thread dummy = new DummyThread(perfTest);
dummy.start();
long startTime = System.nanoTime();
synchronized(perfTest) {

for(int i=0; i<100000000; i++) {
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perfTest.setA(perfTest.getA()+1);
be
}
long timeSpent = System.nanoTime() - startTime;

System.out.printIn("'Value of perfTest: " + perfTest.getA());
System.out._printIn("'Time spent: ™ + timeSpent/1000000 + "ms'™);

Listing 55 Java, Unverandertes Hauptprogramm

Die Ausgabe sieht wie folgt aus (gekiirzt):
Thread tick 1 reads value: 1373453
Thread tick 2 reads value: 6793724
L1
Thread tick 19 reads value: 96867749
Value of perfTest: 100000000
Time spent: 2337ms

Listing 56 Ausgabe

Es sieht also so aus als wirde der konkurrierende Zugriff nicht mehr bremsend ins Gewicht fallen und
das obwohl der Thread jetzt alle 100ms eine Abfrage macht und nicht mehr nur alle 500ms.

Hier ist aber Vorsicht geboten. In diesem Beispiel sind wir davon ausgegangen, dass die neue Metho-
de getAsyncA() zwar nicht synchronisiert ist aber trotzdem immer einen giiltigen Wert liefert. Dies
trifft nicht immer zu. In der VM Spezifikation steht nicht, dass 64-bit Werte atomar aktualisiert werden
mussen. Fur 32-bit Werte trifft dies zu, da alle heutigen Prozessoren atomare 32-bit Operatoren ver-
wenden. Bei der Verwendung von 64-bi Datentypen (long, double) kann es vorkommen, dass die
ersten 32-bit der Variable vom neuen und die zweiten 32-bit der Variable vom alten Wert stammen
was mdglicherweise einem total ungultigen Wert entspricht. Um dies zu verhindern bietet Java das
Schlisselwort volati le. Also volati le gekennzeichnete Datentypen werden quasi Atomar aktua-
lisiert und nicht in lokalen Caches gehalten. Somit wird sichergestellt, dass bei jedem Lesezugriff ein
gultiger und aktueller (nicht im Cache vorhandener) Wert geschrieben wird. Leider kostet die nattrlich
auch wieder etwas Performance (aber nicht so viel wie die Synchronisierung):

package ch.skybeam.examples;

public class MethodSync {

private volatile int A = 0O;

public synchronized int getA(Q {
return A;
by

public synchronized void setA(int newA) {
this.A = newA;

3

public int getAsyncAQ) {
return A;

}

e
Listing 57 Java, volatile Schliisselwort

Die Ausgabe sieht dann wie folgt aus:
Thread tick 1 reads value: 1175145

[-1

Thread tick 19 reads value: 96067839
Value of perfTest: 100000000

Time spent: 2351ms

Listing 58 Ausgabe

Das Beispiel zeigt uns eindrucksvoll, dass die Synchronisierung mit Bedacht eingesetzt werden muss.
Es sollte generell nur da synchronisiert werden wo es auch wirklich nétig ist. In unserem Beispiel ist es
nicht zwingend notwendig, dass der parallel laufende Thread synchronisiert Zugreifen muss.
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Allerdings ist es in diesem Beispiel auch nicht nétig den Zugriff auf das MethodSync Objekt zu syn-
chronisieren da nur unser ,main“ Thread schreiben darauf zugreift. Deshalb wéare hier sogar ein un-
synchronisierter Zugriff denkbar (siehe nachster Abschnitt).
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8.3.5. Vollstandig unsynchronisierter Zugriff

Im Beispiel von oben wurde der Zugriff aus dem Thread unsynchronisiert behandelt. Allerdings ist hier
eigentlich gar keine Synchronisation mehr notwendig weil sowieso nur ein einziger Thread (der ,main”
Thread) auf das Objekt zugreift. Somit entfernen wir die Synchronisation mal komplett:

package ch.skybeam.examples;
public class MethodSync {
private volatile int A = 0;

public int getA(Q) {
return A;
ks

public void setA(int newA) {
this.A = newA;
}

}

Listing 59 Java, unsynchronisierter Zugriff

Der Thread kann nun ebenfalls wieder die nun unsynchronisierte Methode getA() verwenden.

package ch.skybeam.examples;
public class DummyThread extends Thread {
private MethodSync sync;

public DummyThread(MethodSync s) {
this.sync = s;
this.setDaemon(true);

}

public void run(Q) {
int count = O;
while (true) {
System._out._print("'Thread tick "™ + ++count);
System.out.print("” reads value: " + sync.getA(Q));
System.out.printin("");
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}

}
}

Listing 60 Java, Dummy Thread verwendet unsynchronisierte Methoden

Die Ausfihrungs-Methode sieht nun wie folgt aus:

MethodSync perfTest = new MethodSync();
Thread dummy = new DummyThread(perfTest);
dummy.start();
long startTime = System.nanoTime();
for(int i=0; i<100000000; i++) {
perfTest.setA(perfTest.getA(Q+1);
}

long timeSpent = System.nanoTime() - startTime;
System.out.printIn("'Value of perfTest: " + perfTest.getA());
System.out.printIn("'Time spent: " + timeSpent/1000000 + "ms');

Listing 61 Java, Haupt-Thread
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Die Ausgabe bescheinigt uns einen gesunkenen Overhead:
Thread tick 1 reads value: 10275874
Thread tick 2 reads value: 38403126
Thread tick 3 reads value: 68075974
Thread tick 4 reads value: 91267779
Value of perfTest: 100000000
Time spent: 439ms

Listing 62 Ausgabe

Der Nachteil dieser Methode liegt jetzt darin, dass keine Methode des Objektes perfTest synchroni-
siert ist. In unserem Code ist dies aber gar nicht notwendig, da gar niemand Zugriff auf diese Referenz
erhalten kann. Nur der Thread bekommt die Referenz mitgegeben, dessen Code kenne ich aber und
kann somit sicherstellen, dass keine konkurrierende Modifikation entstehen kann.

Beachtlich ist hierbei, dass durch die Entfernung der Synchronisation nhochmals eine um Faktor 5 ho-
here Geschwindigkeit erzielt werden konnte.

Angenommen es gabe mehrere Codestellen (beispielsweise noch eine innerhalb des Threads), die
schreibend auf das perfTest Objekt zugreifen missen, dann kdnnten alle Stellen durch eine manu-
elle Objektsynchronisation Thread-Safe gemacht werden. Beispielsweise in unserem Hauptprogramm:
MethodSync perfTest = new MethodSync();
Thread dummy = new DummyThread(perfTest);
dummy.start(Q);
long startTime = System.nanoTime();
synchronized(perfTest) {
for(int i=0; i<100000000; i++) {
perfTest.setA(perfTest.getAQQ+1);
}
}

long timeSpent = System.nanoTime() - startTime;
System.out.printIn("'Value of perfTest: " + perfTest.getA());
System.out.printIn("'Time spent: " + timeSpent/1000000 + "ms');

Listing 63 Java, manuelle Synchronisation aller relevanten Stellen

Der lesende Zugriff im Thread-Code braucht nicht unbedingt synchronisiert zu werden. Insbesondere
haben wir die Variable schon mit volati le gekennzeichnet. Deswegen wir auf jeden Fall ein gultiger
Wert ausgelesen.

Die Ausgabe sieht nun wie folgt aus:
Thread tick 1 reads value: 6815157
Thread tick 2 reads value: 32033000
Thread tick 3 reads value: 57297691
Thread tick 4 reads value: 82176413
Value of perfTest: 100000000
Time spent: 492ms
Thread tick 5 reads value: 100000000

Listing 64 Ausgabe
Und ist somit nur unwesentlich langsamer.

Wie oben erwahnt wird der lesende Zugriff innerhalb des Threads nicht synchronisiert. Tun wir dies
Trotzdem, dann fallt auf, dass der Thread nur ein einziges Mal durch die Schleife 1auft und entweder O
oder 100000000 ausgibt. Dies liegt daran, dass die gesamte Schleife Uiber der Lock firr das perfTest
Objekt gehalten wird und der Thread somit gar nie den Lock bekommen kdnnte. Ein Kompromiss
wirde daher die Synchronisation im innern der for Schleife darstellen. Dies wirde dem Thread pro
Schleifendurchgang einmal die Moglichkeit geben den Lock zu bekommen:

MethodSync perfTest = new MethodSync();

Thread dummy = new DummyThread(perfTest);

dummy.start();

long startTime = System.nanoTime();

for(int 1=0; §<100000000; i++) {
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synchronized(perfTest) {

}
}

long timeSpent = System.nanoTime() - startTime;
System.out.printIn('Value of perfTest: " + perfTest.getA());
System.out._printIn("'Time spent: ™ + timeSpent/1000000 + "ms'™);

perfTest._setA(perfTest.getA()+1);

Listing 65 Java, Lock abgeben

Der Thread kann folgendermassen angepasst werden:

package ch.skybeam.examples;

public class DummyThread extends Thread {

private MethodSync sync;

public DummyThread(MethodSync s) {

}

this.sync =
this.setDaemon(true);

S;

public void run(Q) {
int count = O;
while (true) {

}
}

Listing 66 Java, synchronisierter Java Thread

System._out.print("'Thread tick

synchronized(sync) {

}

System.out.print(" reads value: " + sync.getAQ));

System.out.printIn(’"");

try {
Thread.sleep(100);

} catch (InterruptedException e) {
e.printStackTrace();

}

+ ++count);

Somit muss der Thread fir den lesenden Zugriff jetzt auch den Lock bekommen. Leider hat diese

Anderung bereits deutliche Auswirkungen auf die Performance:

value:
value:
value:
value:
value:
value:
value:
value:

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

tick
tick
tick
tick
tick
tick
tick
tick

O~NO P~ WNPE

reads
reads
reads
reads
reads
reads
reads
reads

2351280

14515341
26834097
38733872
51882091
65153897
78421122
90772255

Value of perfTest: 100000000
Time spent: 1006ms
Thread tick 9

reads value:

Listing 67 Ausgabe

100000000

Der Grund liegt hier in der héheren Anzahl von Lock-Wechseln. Der main Thread gibt den Lock maxi-

mal einmal pro Schleifendurchgang ab was dem Thread ermdglicht diesen zu bekommen.

Abschliessend kann gesagt werden, dass Synchronisierung nur da eingesetzt werden soll wo es wirk-
lich nétig ist. In unserem Beispiel verlasst unser perfTest Objekt unseren eigenen Code nie und
kann auch nicht von aussen modifiziert werden. Somit kdnnen wir schon Uber den Code sicherstellen,
dass kein konkurrierender Zugriff stattfindet und die Synchronisation der Datenfelder kann entfallen.
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Wird das Objekt allerdings verdéffentlicht so kann nicht mehr sichergestellt werden, dass kein Fremd-
Code konkurrierend darauf zugreift.
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8.4. JVM Optimierung

Die Java-VM stell das Bindeglied zwischen der Programmiersprache Java und dem Betriebssystem
dar. Da Java Programme plattformunabhangig sind laufen diese auf jeder Plattform auf der eine Java
VM verflgbar ist. Diese wiederum muss natirlich die Funktionalitdten der Sprache Java auf die vom
Betriebssystem zur Verfligung gestellten Funktionalitaten abbilden. Da unterschiedliche Betriebssys-
teme und unterschiedliche Hardware-Architekturen sich teilweise stark unterscheiden oder gar gegen-
teilige Konzepte verfolgen ist dies eine nicht-triviale Aufgabe.

Als Beispiel sei eine JVM Implementierung auf einem Betriebssystem ohne Kernel-Level Threads
genannt. Der Java-Programmierer muss in seinem Programm trotzdem den vollen Sprachumfang
inklusive Threads nutzen kdnnen. Es ist nun die Aufgabe der JVM die vom Programmierer genutzte
Funktionalitdt mdglichst effizient an die zur Verfiigung gestellte Hardware und das Betriebssystem
anzupassen. Wenn das Betriebssystem keine Threads unterstitzt kann die JVM diese Aufgabe Uber-
nehmen und die Threads quasi in Software emulieren. Dazu implementiert die JVM einen Scheduler
und teilt die zur Verfiigung stehende Rechenzeit im Zeitscheiben-Verfahren (oder mittels einer ande-
ren Scheduling-Strategie) auf die Threads auf. Dies ist natirlich sehr ineffizient da die JVM hier nur
diejenige Zeit an die Threads verteilen kann, die dem Prozess der virtuellen Maschine vom Betriebs-
system zugewiesen wird. Ausserdem ist eine Verteilung auf mehrere Prozessoren somit unmdglich.

Das Beispiel zeigt deutlich, dass die Performance einer Java-Applikation von mehr abhangt als der
effizienten Programmierung der Java-Routinen. Vielmehr wird ein effizientes Zusammenspiel von
Java-Applikation, Java Virtual Machine (JVM), Betriebssystem und Hardware benétigt. Ein Entwickler
einer JVM ist natirlich darauf bedacht die Mdglichkeiten einer Plattform mdglichst effizient auszu-
schopfen. Die Optimierung der JVM ist eine Aufgabe, die selbst Sun Microsystems (als Schopfer von
Java) noch nicht abschliessend gel6st hat. Seit Java 1.0 in den friihen 90er Jahren vorgestellt wurde
hat Java in Sachen Performance einen gewaltigen Sprung nach vorne gemacht. Trotzdem haftet Java
noch das Image an extrem langsam und Ressourcenhungrig zu sein.

Dieses Kapitel gibt einen Uberblick iiber einige der wichtigsten Optimierungen der Java VM und wo
man eventuell noch selber etwas ,drehen” kann.

8.4.1. Just In Time (JIT) Compiler

Java ist prinzipiell eine interpretierte Sprache. Der Sourcecode wird durch den Java-Compiler in den
so genannten Bytecode Uberfihrt. Dabei handelt es sich im Sinne der Plattformunabhéangigkeit nicht
um Hardwareabhéangigen Binarcode sondern um eine Art Zwischenstufe. Die Java-Runtime interpre-
tiert dann diesen Bytecode um das Programm auszuftihren.

Um dies zu beschleunigen wird haufig genutzter Code zur Laufzeit im Hintergrund Kompiliert. Bei
erneuten Aufrufen derselben Methode/Klasse wird dann auf den Hardwarenahen, kompilierten Code
zurlickgegriffen.

Diese Methode bietet sogar Vorteile gegentiber statisch kompiliertem Code wie C/C++. Je nach Ver-
wendung der Klassen kann die kompilierte Variante mit Optimierungen re-kompiliert werden um eine
bessere Leistung zu erzielen.

Die Sun HotSpot VM erlaubt die Ausgabe des Kompilierungs-Status wahrend der Ausfihrung durch
die Angabe folgender Kommandozeilenoption beim Start:

-XX:+PrintCompilation
Listing 68 Java, JIT PrintCompilation

Durch die Angabe der Folgenden Option kann der JIT Compiler deaktiviert werden. In diesem Fall
lauft die VM dann im Interpreted-Mode:

-Xint
Listing 69 Java, JIT deaktivieren
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8.4.2. Thread-Modelle

Wie bereits erwahnt ist die JVM zustandig fur die Verwaltung der Threads und deren Abbildung auf
Betriebssystemebene. Fir Solaris ist bei Sun Microsystems eine Dokumentation des Thread-Modelles
in der Dokumentation zu finden (siehe [HOTSPOTTHRY]). Leider ist dieselbe Information fir Windows
nicht verfiigbar. Die Dokumentation zeigt auch, dass hier viele Versuche zur Optimierung gemacht
wurden. Unter Solaris 8 gibt es in Verbindung mit der Java HotSpot Runtime in der Version 1.4 ganze
4 Methoden der Thread-Abbildung:

e Many-to-Many, thread based synchronisation
e Many-to-Many, LWP based synchronisation
e One-to-One via Bound threads

e One-to-One via Alternate Threads library

Offensichtlich hat sich die letzte Variante durchgesetzt. Unter Solaris 9 ist ndmlich nur noch die ,One-
to-One via alternate Threads library* Methode verflgbar.

8.4.3. Garbage Collection

Beim Programmieren mit Java muss sich der Entwickler nicht selber um die Allokation und die Freiga-
be von Speicher kiimmern. Dies wird vollumféanglich vom Garbage Collector (GC) bernommen. Ver-
einfacht gesagt Uberpruft Java zur Laufzeit in unregelmassigen Abstanden (abhangig beispielsweise
vom freien Speicher, der aktuellen Systemlast usw.) welche Objekte entfernt werden kénnen um
Speicher freizugeben. Hierbei arbeitet Java mit einem Referenzzahler. Objekte, die nirgends mehr
referenziert sind kdnnen auch nicht mehr verwendet werden und kénnen somit entfernt werden. Bis
zur Version 1.3.1 unterstltzte Java keine parallele Garbage Collection. Dies fuhrte zu massiven Per-
formance-Einbriichen wéhrend die Garbage Collection durchgefuhrt wird.

Um die Performance zu verbessern wurden Methoden wie die Segmentierung des Speichers einge-
fuhrt. Da die meisten Objekte nur eine kurze Lebensdauer haben werden diese in einem fir ,junge”
Objekte reservierten Speicherbereich abgelegt (genannt ,Eden®). Dort findet auch eine haufigere Gar-
bage Collection statt. Uberleben die Objekte lange genug kommen diese in den ,Tenured” Bereich. Im
~Permanenten” Bereich werden allgemeine Datenstrukturen, Klassen- und Methodenbeschreibungen
abgelegt.

In Java 5 kann zwischen verschiedenen Garbage Collectoren gewahlt werden. Welcher der beste von
ihnen ist héngt von Verschiedenen Faktoren ab und kann haufig nur durch erweiterte Tests bestimmt
werden.

Die folgende Option aktiviert beispielsweise einen inkrementellen GC. Dieser erledigt den Grossteil
seiner Arbeit ohne die Applikation zu beeinflussen (parallel):

-Xincgc

Oder (selber Effekt):

-XX:+UseConcMarkSweepGC

Listing 70 Java, Incremental Garbage Collection
Um Mehr Informationen Uber die Vorgange innerhalb der JVM zu erhalten kénnen folgende Optionen
verwendet werden:

-XX:+PrintGCDetails

-XX:+PrintGCTimeStamps

Listing 71 Java, Debug Garbage Collection
Der folgende Parameter definiert die gewilinschte Garbage Collection Laufzeit im Verhéltnis zur An-
wendungs-Laufzeit:

-XX:GCTimeRatio=<nnn>

Listing 72 Java, Garbage Collection Ratio
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Wobei die Angabe prozentual erfolgt nach der Formel (1/(1+<nnn>)). Fir nnn=19 resultiert also eine
Zuweisung von 5% fir die Garbage Collection. Standardmassig ist 1% eingestellt.

Nur am Rande mit der Garbage Collection verbunden sind die Einstellungen fiir die Heap-Grosse.
Standardmassig gelten eine Minimalgrosse von 3.5MB und eine Maximalgrésse von 64MB fiir den
Heap. Insbesondere die Maximalgroésse reicht bei Server-Anwendungen schnell nicht mehr aus und
sollte erweitert werden. Ein Grosserer Wert bedeutet hier nicht, dass die VM mehr Speicher belegen
wird aber dass sie das kann falls nétig:

-Xms

- Xmx
Biespielsweise:
-Xms64M
-Xmx512M

Listing 73 Java, Heap Grosse
Das Beispiel wirde die Minimalgrosse auf 64MB und die Maximalgrdsse auf 512MB begrenzen.

Zwei weitere Parameter beeinflussen die Allozierung bzw. De-Allozierung von Speicher durch die VM:

-XX:MinHeapFreeRatio=40
-XX:MaxHeapFreeRatio=70

Listing 74 Java, Heap Grossenverhéltnis

Die VM versucht mit diesen Zahlen den Anteil des freien Speichers zwischen 40% und 70% zu halten.
Dies bedeutet, dass bei steigendem Speicherbedarf der Anwendung der Anteil unter 40% sinkt und
dadurch neuer Speicher alloziert wird. Umgekehrt wird der Heap wieder verkleinert wenn der Anteil
freien Speichers Uber 70% wachst. Diese Grdssenédnderungen sind natirlich auch aufwéndig. Insbe-
sondere bei grossen Anwendungen reicht die Initialgrosse von 3.5MB nicht und es muss haufig nach-
alloziert werden. Um dies zu vermindern ist es ratsam bei Anwendungen mit hohem Speicherbedarf
den -Xms Parameter zu verwenden und mdglicherweise gleich mit -Xmx ein hdheres Oberlimit zu
setzen.

Im Zusammenhang mit der Garbage Collection spielt auch ein weiterer Aspekt eine wichtige Rolle: Die
Hardware-Architektur. Auf NUMA/ccNUMA Systemen ist es von (eventuell entscheidendem) Vortell
wenn die Objekte im lokalen Speicher des ausfuhrenden Prozessors liegen (siehe Kapitel 5.2.1). Java
bietet zumindest im Moment auf API-Ebene keine Méglichkeit auf die Speicherverwaltung Einfluss zu
nehmen. Dies wirde angesichts der Plattformunabhdngigkeit auch kaum Sinn machen. Aus unserer
Sicht muss langerfristig die Java VM selber daflir sorgen, dass die Objekte im lokalen Speicher des
Prozessors liegen. Betriebssysteme wie MS Windows bieten dazu bereits diverse Affinitats-Optionen
um Threads an Prozessoren oder Prozessor-Gruppen zu binden. Wir gehen davon aus, dass wahr-
scheinlich der Garbage Collector auf lange Sicht die Aufgabe der Speicher-Relozierung tibernehmen
wird. Dazu brauchte der Garbage Collector nicht mal mehr viele zusatzliche Informationen. Im Mo-
ment wertet dieser aus ob ein Objekt einen Referenzzahler ungleich null hat um zu entscheiden, ob
das Objekt noch benétigt wird. Wisste der GC jetzt welcher Thread hauptsachlich auf das Objekt
zugreift so kénnte er dieses in den Lokalen Speicher desjenigen Prozessors verschieben auf dem
dieser Thread ausgefuhrt wird.

In die Selbe Richtung geht das Dokument von Mustafa M. Tikir mit dem Titel ,NUMA-Aware Java
Heaps for Server Applications”. Offenbar wurden hier bereits Messungen und Modifikationen in die-
sem Bereich gemacht. Der Vorschlag aus dem Dokument ist es den Heap nicht nur in junge und alte
Objekte aufzuteilen sondern diese wiederum in mehrere Prozessor-Lokale Bereiche. Da die meisten
Objekte bereits jung wieder sterben macht dort eine Verschiebung kaum Sinn. Viel mehr Sinn macht
es diese gleich im Richtigen Heap-Bereich zu erzeugen (lokal zum erzeugenden Thread). Uberlebt
das Objekt den ,Eden* Zyklus und kommt in den Tenued-Bereich so kann der Garbage Collector von
Zeit zu Zeit prifen ob das Objekt noch im lokalen Speicher des hauptséchlich zugreifenden Threads
liegt und dieses bei Bedarf verschieben. Da die Objekte dann schon langer existieren werden sie nicht
mehr so haufig Verschoben was einer nur unwesentlich erhdhten Belastung der internen Bus-
Systeme entspricht. Auf einem 32-CPU NUMA-System reduzierte sich die Ausfiihrungszeit beim
SPECjbb2000 um bis zu 40% was den Aufwand sicher rechtfertigen wirde.

Weiterfilhrende Informationen:
e Sun, HotSpot Garbage Colleciton Tuning with the 5.0 Java Virtual Machine: [HOTSPOTGC]
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e Mustafa M. Tikir, NUMA-Aware Java Heaps for Server Applications: [JAVANUMA]

8.4.4. Weitere Parameter

Die aktuelle Java HotSpot Virtual Machine unterstitzt eine Reihe weiterer Parameter um die Ge-
schwindigkeit zu optimieren. Eine Liste der offiziell dokumentierten Parameter ist unter
[HOTSPOTOPT].

Sun hat einige Optionen unter den folgenden Parametern zusammengefasst:

-client
-server

Listing 75 Java, Client/Server VM Parameter

Die Optionen lassen eine Optimierung auf Server oder Client Anwendungen zu und beeinflussen eini-
ge der oben bereits genannten Parameter. Die Client-VM ist auf einen schnellen Programmstart und
wenig Speicherverbrauch hin ausgelegt. Die Server-VM dagegen ist auf maximalen Durchsatz hin
optimiert. Meistens macht es keinen Sinn diese Option manuell zu setzen da fur Desktop-
Betriebssysteme meist nur Client-Applikationen gestartet werden und auf Servern nur Server-
Anwendungen laufen.

Hinweis: Unter Windows beinhaltet nur das JDK Package die Server-VM. Die JRE Variante beinhaltet
lediglich die Client-Version. Zu erkennen sind die Versionen daran, dass im <JRE_HOME>/bin/ je-
weils ein Unterverzeichnis ,client’ bzw. ,server’ liegt. Darin ist dann die jeweils angepasste
Jvm.dll zu finden.

8.4.5. Reordering

Die Java Spezifikation erlaubt explizit die Umsortierung von Programmcode wenn dadurch das Er-
gebnis nicht beeinflusst wird. Dies kann zu mdglicherweise unerwiinschten Effekten fihren wenn man
sich dessen nicht bewusst ist. Beispielsweise kénnte Java den folgenden Code auch umsortieren:

int a = x + 8;
int b = 10 * y;
intc=a+b ;

Listing 76 Java, Reordering 1

Der Code konnte also auch folgendermassen abgearbeitet werden:

int b = 10 * y;
int a = x + 8;
intc=a+b ;

Listing 77 Java, Reordering 2

Da das Ergebnis von c nicht von der Reihenfolge der einzelnen Instruktionen abhéngt ist diese Um-
sortierung erlaubt.

Bei der Ausfiihrung dirfen also auch keine Annahmen getroffen werden in welcher Reihenfolge der
Code abgearbeitet wird. Beispielsweise wenn ein Thread auf Daten eines Objektes zugreift und davon
ausgeht, dass ein anderer Thread entweder nichts gemacht hat oder die Anderungen in einer be-
stimmten Reihenfolge vornimmt. Wie oben zu sehen ist kénnte die Reihenfolge der Modifikationen
auch umsortiert werden.

Weiterfiihrende Informationen:
e Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1: [4] S. 340.

8.4.6. Lock elosion, Lock coarsening
Zwei weitere Beispiele von Optimierung kénnen anhand des folgenden Beispieles erklart werden:
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public String getStoogeNames() {
List<String> stooges = new Vector<String>();
stooges.add(*'Moe™) ;
stooges.add(*'Larry');
stooges.add(**'Curly'™);
return stooges.toString();

}

Listing 78 Java, Lock elosion, Lock coarsening

Dieser simple Code beinhaltet (zu) viel Synchronisation. Fuhrt die JVM diesen Code genau so aus wie
der hier aufgelistet ist, dann wird 4 Mal der Lock fur das ,stooges’ Objekt angefragt und wieder frei-
gegeben. Der Grund liegt in der Synchronisierung des Vektor Objektes. Sowohl die add() als auch
die toString() Methoden sind synchronisiert. Eine Intelligente JVM kénnte hier eine Optimierung
vornehmen und den Lock nur einmal zuweisen, die vier Instruktionen ausfiihren und dann den Lock
wieder abgeben. Dieses Verfahren wird ,lock elosion’ genannt. Die IBM JVM beherrscht dieses Ver-
fahren und die Sun HotSpot JVM soll es in Version 7 ebenfalls kénnen.

Eine weitere Mdglichkeit zur Optimierung liegt hier darin das Locking komplett wegzulassen. Da es
sich hier um eine Methodenvariable handelt und diese nie verdéffentlicht wird kann gar niemand anders
auf das stooges Objekt zugreifen. Somit wird auch nur ein Thread gleichzeitig auf diese Objektin-
stanz zugreifen und eine Synchronisation kann somit entfallen.

In diesem speziellen Fall wére sogar noch eine weitere Optimierung moglich. Die Methode getStoo-
geNames() wird immer denselben Rickgabewert haben. Somit ware es mdglich die Methoden bei
einem erneuten Aufruf gar nicht mehr abzuarbeiten sondern direkt denselben String zurlickzugeben.

Weiterfihrende Informationen:
e Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1: [4] S. 233.
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8.5. Zusammenfassung und Fazit

Dieses Kapitel hat einen Uberblick tiber die Architektur von Java. Dies beinhaltet sowohl! die Abstrak-
tion der Hardware als auch des Betriebssystems. Daher kénnen sich Java-Entwickler auch nur auf die
von der Java API zur Verfigung gestellte Funktionalitdt beschranken. Direktre Zugriffe auf Betriebs-
system-Funktionalitat oder gar auf die Hardware ist nicht direkt méglich. Dies wiirde auch die Platt-
formunabhangigkeit unterlaufen.

Somit liegt es insbesondere an der JVM die Java-Anwendungen mdglichst effizient auf der vorhande-
nen Hardware ablaufen zu lassen. Ob dabei beispielsweise Threads nur innerhalb der VM existieren
oder nach aussen an das Betriebssystem weitergereicht werden (mittels nativer Unterstitzung oder
Bibliotheken wie POSIX-Threads) ist dabei nicht von der Applikation beeinflussbar. Vielmehr geht es
hier darum die richtige JVM auszuwéahlen und diese richtig zu konfigurieren. Einerseits an die Anforde-
rungen der Applikation und andererseits an die Mdoglichkeiten und Eigenschaften des Betriebssys-
tems.

Fur den Applikationsentwickler gilt es natirlich trotzdem mdglichst effizient zu programmieren. Insbe-
sondere bei der Synchronisierung ist dies wie gezeigt eine sehr komplexe Aufgabe. Es ist zu vermu-
ten, dass bei Systemen mit mehr Prozessoren/Kernen/parallelen Threads der Synchronisierungsauf-
wand steigt (Stichwort ,lock contention’).

8.6. Auswirkungen auf die Aufgabenstellung

Gemass der Aufgabenstellung analysieren wir die Skalierbarkeit auf Multi-Prozessor und Multi-Core
Maschinen auf Java-Ebene. Die dazu verwendete Java-AP| wurde in diesem Kapitel vorgestellt. Diese
scheint keine tiefer greifende Kontrolle der Threads auf Betriebssystem- oder Hardware-Ebene zu
bieten. Beispielsweise bietet die APl von java.lang.Thread keine Moglichkeit die Thread-Affinitat
Zu setzen. Somit bleibt uns allenfalls der Umweg diese Uber externe Programme zu beeinflussen (so-
weit moglich). Mdglicherweise ist dies zur effizienten Skalierung aber gar nicht notwendig und kann
komplett der JVM Uberlassen werden. Der weitere Verlauf dieser Arbeit wird zeigen in wie fern Java-
Applikationen auf der geforderten Hard- und Software skalierbar ist und gegebenenfalls optimiert wer-
den kann.

Tabelle 34 Technologien mit direktem Einfluss auf die Arbeit

Technologie Beschreibung

Java Threading Es ist zu zeigen in wie fern Java-Threads auf der geforderten Hard- und Software-
Kombination skalierbar ist. Beispielsweise ob eine ausgesuchte JVM (berhaupt
Threads auf Betriebssystem-Ebene erzeugt oder diese nur ,emuliert* (Stichwort
,green Threads’).

JOMP Das JOMP (siehe [PROCEXP]) Projekt bietet eine OpenMP Schnittstelle fiir Java
um eine semi-automatische Parallelisierung zu erreichen. Diese Technologie soll
auf ihr Potential hin untersucht werden.

Tabelle 35 Technologien mit indirektem Einfluss auf die Arbeit

Technologie Beschreibung

JVM  Optimie- JVMs bieten Ublicherweise einige Konfigurationsparameter (siehe Kapitel 8.4).

rung Diese konnten die Performance natiirlich auch beeinflussen. Es ist aber nicht das
Ziel dieser Arbeit die Auswirkungen jedes Parameters auf die Skalierung einer
spezifischen Applikation zu untersuchen. Solche Messungen gehdren in den Be-
reich des Feintunings bei der Konfiguration einer Anwendung fur den produktiven
Einsatz.
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9. Glossar

In diesem Kaptitel werden die wichtigsten Begriffe kurz zusammengefasst um einen schnellen Uber-
blick Uber die Thematik zu ermdglichen.

Tabelle 36 Glossar

Begriff Beschreibung

Affinitat Bezeichnet die Zuordnung eines Prozesses/Threads zu physikalischen Recheneinhei-
ten. Durch die Definition einer Affinitditsmaske kann gesteuert werden auf welchen
Recheneinheiten die Anwendung ausgefihrt werden kann.

Siehe Kapitel 6.8.

API API (Application Programming Interface) defniert eine Schnittstelle zwischen verschie-
denen Software Systemen. Eine API definiert typischerweise eine Reihe von Metho-
den, Parametern, Datentypen und Datenfeldern.

Siehe z.B. POSIX Threads API, Kapitel 7.3.1.

AMD Advanced Micro Devices; Hersteller von Mikroprozessoren.
Siehe Kapitel 5.6.3.

ASMP Asymmetric Multi Processing (ASMP) bezeichnet die Verarbeitung mit parallel arbei-
tenden Einheiten wobei einzelne Einheiten Spezialaufgaben zugewiesen sind. Somit
sind nicht alle Einheiten gleichberechtigt.

Siehe Kapitel 5.2.
Cache- Bezeichnet die Synchronisierung des Caches bei Systemen mit mehreren Prozessoren
Coherence  und verteilten Caches.

Siehe Kapitel 5.2.1.

CAS Compare and Swap bzw. Compare and Set bezeichnet eine atomare (meist hardware-
unterstitzte) Operation in der ein gespeicherter Wert mit dem vermuteten Wert vergli-
chen wird. Stimmt dieser Uberein, so wird ein neuer Wert gesetzt. Ansonsten wird
nichts getan. CAS Funktionen erlauben Lock-freie Algorithmen.

Siehe Kapitel 8.2.4.

CIsC Complex Instruction Set Computing: Bezeichnet Prozessoren mit einem grossen Be-
fehlssatz. Dieser beinhaltet haufig auch komplexe Operationen, die somit mit einem
Befehl abgearbeitet werden kénnen. Vergleiche auch mit RISC.

Siehe Kapitel 5.4.

CMP Chip Multi Processing (CMP) bezeichnet einen Chip, der in der Lage ist mehrere Pro-
zesse gleichzeitig abzuarbeiten. Dies passiert aber auf einem Chip und nicht auf meh-
reren Prozessoren.

Siehe Kapitel 5.2.

CMT Chip Multi Threading (CMT) ist eine Technologie bei der ein Prozessor bei jedem

Taktzyklus n Instruktionen (je eine pro n-Threads) einlesen kann.
Siehe Kapitel 5.3.
Collections  Ein inshesondere mit der Programmiersprache Java gelaufiger Begriff fiir eine Samm-

lung von Daten(objekten) in einer Datenstruktur. Die einfachste Form einer Collection
ist ein Array.

Siehe Kapitel 8.1.2.
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Begriff

Beschreibung

Context-
Switch

CPU

Deadlock

Garbage
Collection
(GC)

Hyper-
Threading

IPC

Java

JIT

JOMP

JVM

Kernel

KLT

Kontext

Wechsel zwischen mehreren Prozessen oder Threads.
Siehe Kapitel 7.2.1.

Abkurzung fir Central Processing Unit. Wird synonym fiir die deutsche Bezeichnung
Hauptrpozessor bzw. Prozessor verwendet.

Ein Zustand in dem Prozesse in einer zyklischen Abhangigkeit stehen und gegenseitig
auf Ressourcen warten, die nur von einem anderen Prozess freigegeben werden kon-
nen.

Siehe Kapitel 7.1.

Bezeichnet den Prozess der Speicherverwaltung bzw. Speicher-Raumung durch die
Entfernung ungenutzter Objekte. Dies ist nétig, da in Java beispielsweise der Speicher
nicht in durch Destruktoren freigegeben werden kann.

Siehe Kapitel 8.4.3.

Eine von Intel bei einigen Pentium 4 Modellen eingefiihrte Technologie zur verbesser-
ten Auslastung der internen Pipeline. HyperThreading stellt gegeniiber dem Betriebs-
system einen zweiten (virtuellen) Prozessor zur Verfiigung. Dieser ist aber physikalisch
gar nicht vorhanden. Instruktionen an diesen Prozessor kénnen die Auslastung der
internen Rechen-Einheiten des Pentium 4 verbessern.

Inter-Prozess-Kommunikation: Die Kommunikation zwischen zwei Prozessen in ge-
trenntem Kontext.

Siehe Kapitel 7.2.1.

Eine von Sun Microsystems forcierte Programmtechnologie. Java-Programme werden
nicht wie klassische C/C++ Programme in Plattformabhangige Binaries kompiliert son-
dern in den so genannten Bytecode. Dieser wird dann von der Java Virtual Machine
interpretiert und zur Laufzeit optimiert. Java-Programme kénnen somit auf jeder Platt-
form ausgefiihrt werden, fur die eine Java Virtual Machine existiert.

Siehe Kapitel 8.

Wird meistens in Verbindung mit JIT-Compilern (Just In Time) verwendet. Dabei ist die
Eigenschaft gemeint, dass der Code (bei Java der Bytecode) zur Laufzeit der Pro-
grammes kompiliert und optimiert wird.

Siehe Kapitel 8.4.1.

Java-basierende Implementierung von OpenMP-Ahnlichen Direktiven zur Parallelisie-
rung.

Zu OpenMP siehe Kapitel 7.3.2.

Die Java Virtual Machine ist ein Interpreter flr Java Bytecode. Die JVM ist dabei das
Bindeglied zwischen Betriebssystem und den plattformunabhangigen Java Anwen-
dungen.

Siehe Kapitel 8.

Zentrale Teil eines Betriebssystems, der die wesentlichsten Funktionen realisiert und
sich zur Laufzeit permanent im Arbeitsspeicher befindet

Kernel Level Thread, Threads die auf Betriebssystemebene implementiert werden.
Sind dem OS bekannt und kénnen auf verschiedene CPUs verteilt werden

Thread- oder Prozesskontext reprasentiert den Zustand eines Threads oder Prozesses
und ist im Thread Control Block TCB oder Process Control Block PCB gespeichert
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Begriff Beschreibung

Livelock Ein Zustand in dem zwei oder mehr Prozesse ihren Status dauernd verdndern um
weiterzukommen aber trotzdem immer blockiert werden.

Siehe Kapitel 7.1.

Lock elosi- Bezeichnet zwei Techniken um unnétig haufiges Locking/Unlocking zu vermeiden.

on, Lock Dabei werden mehrere Locking-Anfragen hintereinander zusammengefasst. Wird ein

coarsening  Lock gar nicht benétigt und dieser automatisch wegrationalisiert, dann nennt man das
Lock coarsening.
Siehe Kapitel 8.4.6.

Lock Gra- Definiert wie feinkdrnig Locks auf Datenstrukturen vergeben sind. Dies kann sehr grob

nularitat (ein Lock fur alle Daten) oder sehr feinkdrnig (bis mehrere unterschiedliche Locks pro
Datenstruktur) sein.

Siehe Kapitel 8.2.3.

Lock Split- Bezeichnet allgemein die Mdoglichkeit einen Lock fiir mehrere Objekte in mehrere

ting Locks (fur jedes Objekt einen) aufzuteilen.
Siehe Kapitel 8.2.3.1.

Lock Stri- Bezeichnet die weitere Aufteilung eines Objektes durch mehrere Locks (z.B. Array-

ping Sektionen).

Siehe Kapitel 8.2.3.2.

MPI Das Message Passing Interface (MPI) wird zum Nachrichtenaustausch (Inter-Process-
Communication, IPC) verwendet. Dabei kann MPI transparent sowohl auf einem loka-
len Rechner als auch verteilt im Netzwerk verwendet werden.

Siehe Kapitel 7.3.4.
Mutex Mutual Exclusion (Mutex) ist ein Programmkonstrukt welches sicherstellt, dass nur ein
Lock einziger Prozess sich innerhalb eines geschiitzten Bereiches aufhalten kann.

Siehe Kapitel 8.2 und 8.2.1.

NetBurst Eine von Intel eingefihrte Architektur-Bezeichnung die im Wesentlichen eine lange
Pipeline und dadurch eine hohe Taktrate beinhaltet. Die Architektur wurde fir Penti-
um 4 Prozessoren entwickelt und verwendet, wird aber nicht mehr weiter verfolgt.
Siehe Kapitel 5.5 und 5.6.1.

NUMA Non-Uniform Memory Access (NUMA) bezeichnet eine Architektur in der jede Verar-
beitungseinheit lokalen Speicher besitzt und durch Kommunikation mit den anderen
Verarbeitungseinheiten auch deren Speicher ansprechen kann.

Siehe Kapitel 5.2.1.

OpenMP Eine Spezifikation der APl zur Parallelisierung von Programmen. OpenMP definiert
Compiler-Direktiven damit ein Compiler den bestehenden Code parallelisieren kann.
Siehe Kapitel 7.3.2

Package Ein bei der Programmiersprache Java gelaufiger Begriff fur die hierarchische Sortie-
rung von Klassen. Ahnlich den Namensraumen (engl. Namespace) bei C++. Bei der
Bezeichnung java.util.Vector handelt es sich um den voll qualifizierten Bezeichner flr
die Klasse Vector im Package java.util.

Siehe Kapitel 8.
Pipelining Bezeichnet die Abarbeitung einer Instruktion in vereinfachten Teilschritten. Dadurch

kann die folgende Instruktion bereits eingelesen werden sobald die vorhergehende die
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Begriff Beschreibung
nachste Stufe erreicht hat.
Siehe Kapitel 5.5.

POSIX POSIX definiert eine Schnittstelle zwischen Applikation und Betriebssystem. Die

Threads Schnittstelle ist plattformunabhéangig definiert und erlaubt somit die portable Program-
mierung. POSIX Threads bezeichnet die Behandlung von Threads mit POSIX-
Schnittstellen.

Siehe Kapitel 7.3.1.

Reordering  Bezeichnet eine Technik der Code-Optimierung. Hierbei darf der Compiler/Interpreter
Anweisungen umsortieren um ein optimiertes Laufzeitverhalten zu erziehen. Dabei
muss aber garantiert bleiben, dass das Endergebnis nicht verfalscht wird.

Siehe Kapitel 8.4.5.

RISC Reduced Instruction Set Computing: Bezeichnet Prozessoren mit einem kleinen Be-
fehlssatz. Komplexe Befehle werden im Gegensatz zu CISC Prozessoren in mehreren
Schritten ausgefuhrt. Befehle wie ,Wert an Speicherstelle XY inkrementieren* werden
zu ,Wert laden, wert Inkrementieren, Wert zuriickschreiben®.

Siehe Kapitel 5.4.

Scheduling  Bezeichnet die Tatigkeit des Betriebssystems beim Preemptiven Multitasking die Pro-
zessorzeit nach einem bestimmten Algorithmus den einzelnen Ausfihrungseinheiten
zuzuweisen (auf Ebene Thread oder Prozess).

Siehe Kapitel 6.7.

Skalar Ein Prozessor in Skalarem Design verarbeitet immer nur eine Instruktion gleichzeitig.
Siehe Kapitel 5.4.

SMP Symmetric Multi Processing (SMP) bezeichnet die Verarbeitung mit parallel arbeiten-
den Einheiten wobei jede Einheit gleichberechtigt behandelt wird.

Siehe Kapitel 5.2.

Starvation Starvation ist ein Zustand in dem ein Prozess auf Ressourcen oder Daten wartet und
diese nie bekommt. Der Prozess kann somit nie eine Arbeit anfangen oder erledigen.
Siehe Kapitel 7.1.

Superskalar Ein Prozssor in superskalarem Design versucht mittels Dispatcher alle Recheneinhei-
ten gleichzeitig auszulasten.

Siehe Kapitel 5.4.
Super- Super-Threading ist eine Technologie bei der ein Prozessor bei jedem Taktzyklus eine
Threading Instruktion eines Threads einlesen kann.

Siehe Kapitel 5.3.

Synchroni-  Allgemeine Bezeichnung fiir die Uberwachung von konkurrierenden Zugriffen.

Isierung Siehe Kapitel 8.2.

TBB Intel Thread Building Blocks. Eine C++ Bibliothek die Methoden zur parallelen Verar-
beitung bereitstellt (Schleifenparalleisierung).

Siehe Kapitel 7.3.3.
TDP Termal Design Power. Bezeichnet die typische Leistungsabgabe von elektronischen

Bauteilen. Bei der TDP handelt es sich um einen wichtigen Wert zur Dimensionierung
von Kihllésungen.
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Begriff Beschreibung
Siehe auch Kapitel 5.5 und 5.6.1.

Thread Ein leichtgewichtiger Prozess. Ein Thread teilt den Adressraum mit dem Prozess zu
dem er gehort. Dadurch werden einerseits die Kommunikation und andererseits der
Kontextwechsel beschleunigt.

Siehe Kapitel 7.2.2 und 8.1.1.

Thread- Thread-Safety ist ein Attribut, welches bei der parallelen Programmierung verwendet

Safety wird um zu spezifizieren, dass der parallele Zugriff auf ein Objekt selbst dann sicher
ist, wenn mehrere Zugriffe gleichzeitig stattfinden. Sicherheit bedeutet in diesem Zu-
sammenhang, dass keine unerwarteten Ereigenisse oder Zustande eintreten kénnen.

Siehe Kapitel 8.

UMA Uniform Memory Access (UMA) bezeichnet eine Architektur in der alle Verarbeitungs-
einheiten Uber ein gemeinsames Bussystem auf den Speicher zugreifen.

Siehe Kapitel 5.2.1.
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