
 
FHZ  FACHHOCHSCHULE ZENTRALSCHWEIZ 

HTA  HOCHSCHULE FÜR TECHNIK+ARCHITEKTUR LUZERN 

Abteilung Informatik 

HTA LUZERN T: 041-349-33-11 

Java 

Thread Skalierung 

Basisanalyse 
Grundlagen der Skalierung 

HTA Horw 

Diplomarbeit 2006 

Aregger Marcel 

Meier Rainer 

 
Technikumstrasse 21 

CH—6048 Horw 

F: 041-349-39-60 

W: www.hta.fhz.ch 



Diplomarbeit  Seite 2 

Änderungskontrolle 

Version Datum Ausführende Stelle Bemerkungen/Art der Änderung 

1.1 2006-10-16 Rainer Meier Initial Release 

1.2 2006-10-27 Rainer Meier Unzählige Änderungen (im CVS Log Dokumen-
tiert) 

1.3 2006-10-28 Rainer Meier 

Marcel Aregger 

Formatierungen, Querverweise 

Management Summary, Zusammenfassungen 

1.4 2006-11-16 Rainer Meier Code-Listings; Beschriftung + Verzeichnis, Kom-
mentare entfernt, SMP Zeichnungen aktualisiert, 
Glossar aktualisiert.  

Prüfung und Freigabe 

Vorname/Name Dokumentversion Status Datum Visum 

Rainer Meier 1.4 Final 2006-11-16  

Marcel Aregger 1.4 Final 2006-11-16   

  2006-11-20 



Diplomarbeit  Seite 3 

1. Management Summary 
Die vorliegende Basisanalyse legt den Grundstein der Diplomarbeit „Java-Thread-Skalierung“. Sie 
repräsentiert das notwendige Basiswissen aus dem Themenbereich „Skalierung von multithreaded 
Applikationen“ und vermittelt dem Leser spezifische Aspekte, welche diese beeinflussen. 

Gestützt auf eine layerorientierte Vorgehensweise ist dieses Dokument gegliedert in die Themenbe-
reiche Hardware, Betriebssystem, Applikation und Java-Virtual-Machine. Für jeden Bereich wurden 
Hintergrundinformationen rechechiert und in komprimierter Form dokumentiert. Faktoren die einen 
direkten oder indirekten Einfluss auf den weiteren Verlauf dieser Diplomarbeit haben, sind im Ab-
schluss jedes Themenbereichs aufgeführt. Sie werden entsprechend ihrer Bedeutung in die nachfol-
genden Phasen „Evaluation“ sowie „Umsetzung/Implementation“ eingearbeitet. 

Die Skalierung eines Systems beschreibt die Eigenschaft, durch verändern von Systemressourcen 
wie bspw. CPU die Leistung gezielt zu verändern. Hierbei kann vertikale von horizontaler Skalierung 
unterschieden werden. Die Basisanalyse beschränkt sich auf die Untersuchung der vertikalen Varian-
te, bei der Einflussgrössen in Bezug auf Single-Nodes (bspw. Server- oder Desktop-Systeme) be-
schrieben werden. 

Hardware 

Die Analyse im Bereich HW hat gezeigt, dass die parallele Verarbeitung von Programmen auf diesem 
Layer aufwändig und komplex ist. Es ist für Entwickler schwierig oder kaum nachvollziehbar wie „ihre“ 
Instruktionen auf der HW-Ebene ausgeführt werden. Die Einflussnahme auf die Verarbeitung be-
schränkt sich auf HW-nahe Sprachen wie C oder C++ und ist für Java-Programmierer sehr klein. 

Chiparchitekturen sind komplexe Gebilde, die mehrere Aspekte/Technologien in sich vereinen. Die 
Menge und Anordnung von Cores, die Art wie die Speicheranbindung erfolgt oder Instruktionen abge-
arbeitet werden, lassen viele variable Chipdesigns zu. Die Analyse zeigt die Anwendung relevanter 
Technologien anhand konkreter Chipdesigns wie Intel Pentium4, Intel Core/Core2, AMD Opteron oder 
SUN UltraSparc T1. Die Fokussierung auf eine spezifische Eigenheiten einer Architektur wie bei-
spielsweise die Anzahl FPU Einheiten oder die Anzahl Pipelines macht meist wenig Sinn da sie auf-
wendig ist, meist kleine Verbesserungen mit sich bringt und letztendlich auch die Portierbarkeit einer 
Anwendung negativ beeinflusst. 

Obwohl Java die hardwarenahe Programmierung nicht zulässt bietet sie doch den Vorteil, dass der 
Bytecode zur Laufzeit mittels Just-in-Time (JIT) Compiler in Maschinencode umgewandelt wird. Somit 
ist es möglich ein plattformunabhängiges Programm zur Laufzeit auf Hardware-Spezifische Eigenhei-
ten hin zu optimieren. Folgende Aspekte und Technologien im Bereich Hardware/Chipdesign haben 
direkten oder indirekten Einfluss auf die Umsetzungsphase und werden entsprechend berücksichtigt: 

Einfluss Aspekt/Technologie 

Direkt SMP, CMP, CMT 

Indirekt UMA/NUMA, Skalar/Superskalar, Pipeline 

Betriebssystem 

Die Anwendung von Threads auf Level Betriebssystem bringt den Vorteil der einfachen Erzeugung, 
Interprozesskommunikation oder schnellen Kontextwechsel dieser leichtgewichtigen Prozesse. Dabei 
sind jedoch zunehmende Verwaltungs- oder Synchronisationsaufwendungen zu berücksichtigen. 
Windows XP implementiert das Thread-Model bereits auf Kernel-Ebene. Bei einer 1:1-Zuordnung der 
Anwendungs-Threads laufen im gleichen Prozesskontext mehrere Kernel-Level Threads die vom Ker-
nel direkt verwaltet werden. Sie können so auf mehrere Kerne verteilt werden. Die Java-Virtual-
Machine (JVM) bildet als Layer zwischen Betriebssystem und Applikation die Laufzeitumgebung eines 
Java-Threads und bestimmt, ob diese direkt (Native Threads) oder indirekt (Green Threads) auf 
Threads des Betriebssystems abgebildet werden. 

Unter Windows 2000/XP mit einem „priority-driven – preemtive scheduling”-System wird die Zuord-
nung der Rechenzeit auf Threads über die Basispriorität dieser Threads gesteuert. Sie kann direkt 
über die Win32-API beeinflusst werden. Die indirekte Beeinflussung ist über die Priorisierung der Ja-

  2006-11-20 



Diplomarbeit  Seite 4 

va-Threads möglich unter Verwendung von Native-Threads (durch die JVM). Wie Prioritäten der Java-
Ebene auf Prioritäten der Betriebssystemebene abgebildet werden, soll mit dieser Arbeit ebenfalls 
gezeigt werden. 

Eine weitere Möglichkeit das Laufzeitverhalten in Bezug auf Threads zu beeinflussen, ist mit der Affini-
tät gegeben. Sie ermöglicht die explizite Zuordnung von Prozessoren auf Level Prozess oder Threads 
und kann ebenfalls über die Win32-API gesteuert werden. Die direkte Zuordnung über die Java-API ist 
nicht möglich. Alternativ können aber über Systemtools entsprechende Eingriffe vorgenommen wer-
den. Folgende Aspekte und Technologien im Bereich Betriebssystem werden weiter verfolgt: 

Einfluss Aspekt/Technologie 

Direkt Designprinzip Threads, WIN-32 Thread 

Indirekt Scheduling, Affinität 

Applikation 

Der Bereich Applikation beleuchtet Techniken und Probleme der parallelen Programmierung. Dabei 
sind Standards wie POSIX Threads, OpenMP, Thread Buliding Blocks (TBB) oder Message Passing 
Interfaces (MPI) Technologien, die explizit für eine parallele Programmierung entwickelt wurden oder 
diese unterstützen. Für die weitere Betrachtung sind Posix Threads sowie OpenMP von Bedeutung. 
Letzteres wurde für Java im Projekt JOMP umgesetzt und steht für diese Arbeit zu Verfügung. TBB 
besteht aus einer reinen C/C++ Bibliothek und MPI ist hauptsächlich für eine horizontale Skalierung 
interessant. 

Einfluss Aspekt/Technologie 

Direkt POSIX Threads, OpenMP 

Indirekt TBB, MPI 

Java Virtual Machine 

Der Bereich JVM bietet einen Überblick über die Java-API, die mit Threads ein funktionales und einfa-
ches Instrument der parallelen Programmierung bietet. Da dem Java-Entwickler nur diese API zu Ver-
fügung steht, ist der direkte Zugriff auf Betriebssystem-Funktionalität oder gar die Hardware nicht 
möglich. Konkret liegt es an der JVM die Java-Anwendungen möglichst effizient auf der vorhandenen 
Hardware ablaufen zu lassen. 

Trotz diesem eingeschränkten Handlungsspielraum für einen Java-Entwickler können im Sinne einer 
optimalen bzw. effizienten Programmierung spezifische Techniken und Packages angewendet um 
ideale Voraussetzungen für die Verteilung von Threads zu schaffen. Das Kapitel beleuchtet in diesem 
Zusammenhang beispielsweise das Package java.util.concurrent in Java 5, die Reentrant-
Lock-Klasse oder wichtige Methoden der AtomicInteger Klasse aus dem Package ja-
va.util.concurrent.atomic. 

Da eine multithreaded Applikationen unweigerlich mit dem Thema Synchronisation verbunden ist, wird 
sie in diesem Abschnitt ausführlich hinterfragt. Neben der bekannten Block- oder Methoden-
Synchronisation sind auch Themen wie „Unterbrechbare Locks“, „Granularität von Locks“ oder gar 
„Lockfreie Implementierungen (Compare and Swap; CAS)“ Gegenstand dieser Analyse. 

Die Performance einer Java-Applikation hängt nicht nur von der effizienten Programmierung der Java-
Routinen ab sondern auch vom effizienten Zusammenspiel von Java-Applikation, Java Virtual Machi-
ne (JVM), Betriebssystem und Hardware. Für spezifische Bereiche wie JIT-Compiler, Thread-Modell 
oder Garbage Collection werden einige Optimierungsmöglichkeiten aufgezeigt. 

Einfluss Aspekt/Technologie 

Direkt Java Threading, JOMP 

Indirekt JVM Optimierung 

  2006-11-20 



Diplomarbeit  Seite 5 

2. Inhaltsverzeichnis 
1. Management Summary ..................................................................................................................... 3 
2. Inhaltsverzeichnis ............................................................................................................................. 5 
3. Dokumentinformationen................................................................................................................... 8 

3.1. Referenzierte Dokumente.............................................................................................................. 8 
3.2. Definitionen und Abkürzungen....................................................................................................... 8 
3.3. Links............................................................................................................................................. 10 

4. Einleitung ......................................................................................................................................... 13 
4.1. Der Begriff der Skalierung............................................................................................................ 13 
4.2. Warum überhaupt Parallelisierung? ............................................................................................ 14 
4.3. Skalierung als System ................................................................................................................. 15 

5. Hardware .......................................................................................................................................... 16 
5.1. Skalierbarkeit der Hardware ........................................................................................................ 16 
5.2. SMP / ASMP / CMP..................................................................................................................... 18 

5.2.1. UMA/NUMA............................................................................................................................ 19 
5.3. Super-Threading, CMT ................................................................................................................ 20 
5.4. Skalar, Superskalar...................................................................................................................... 22 
5.5. Pipeline ........................................................................................................................................ 24 
5.6. Konkrete Prozessor-Designs ....................................................................................................... 26 

5.6.1. Intel Pentium 4 ....................................................................................................................... 26 
5.6.2. Intel Core/Core 2 .................................................................................................................... 27 
5.6.3. AMD Opteron / Athlon 64 ....................................................................................................... 28 
5.6.4. Sun UltraSparc T1 (Niagara).................................................................................................. 29 

5.7. Zusammenfassung und Fazit ...................................................................................................... 30 
5.8. Auswirkungen auf die Aufgabenstellung...................................................................................... 30 

6. Betriebssysteme.............................................................................................................................. 32 
6.1. Einleitung ..................................................................................................................................... 32 
6.2. Windows XP................................................................................................................................. 33 

6.2.1. Interne Struktur....................................................................................................................... 34 
6.3. Das Prozess Modell ..................................................................................................................... 35 

6.3.1. Begriff des Prozesses ............................................................................................................ 35 
6.3.2. Der Prozesskontext ................................................................................................................ 35 
6.3.3. Context-Switch ....................................................................................................................... 36 
6.3.4. Klassifizierung von Prozessen ............................................................................................... 37 
6.3.5. Privilegierungsstufen im OS................................................................................................... 37 

6.4. Das Thread-Modell ...................................................................................................................... 38 
6.4.1. Der Threadkontext.................................................................................................................. 39 
6.4.2. Klassifizierung von Threads ................................................................................................... 39 

  2006-11-20 



Diplomarbeit  Seite 6 

6.5. Prozessmodell Windows.............................................................................................................. 43 
6.5.1. Objekttypen ............................................................................................................................ 43 
6.5.2. Abbildung von Threads .......................................................................................................... 43 
6.5.3. Threadzustände ..................................................................................................................... 44 

6.6. Das Prozessmodell Java ............................................................................................................. 44 
6.6.1. Klassifizierung ........................................................................................................................ 44 
6.6.2. Erzeugung .............................................................................................................................. 44 
6.6.3. Kontrolle ................................................................................................................................. 45 
6.6.4. Laufzeitumgebung eines Thread............................................................................................ 45 
6.6.5. Abbildung auf OS-Threads..................................................................................................... 45 

6.7. Prozessverwaltung durch Scheduling.......................................................................................... 46 
6.8. Prozessverwaltung Windows....................................................................................................... 47 

6.8.1. Priority Class .......................................................................................................................... 47 
6.8.2. Priority Level........................................................................................................................... 48 
6.8.3. Base Priority ........................................................................................................................... 49 
6.8.4. Priority Boosts ........................................................................................................................ 50 
6.8.5. Prozesse erzeugen ................................................................................................................ 50 
6.8.6. Threads erzeugen .................................................................................................................. 52 
6.8.7. Affinität von Prozessen........................................................................................................... 52 
6.8.8. Affinität unter Windows XP..................................................................................................... 52 
6.8.9. Skalierbarkeit durch Affinität .................................................................................................. 54 

6.9. Prozessverwaltung Java.............................................................................................................. 55 
6.10. Windows API.............................................................................................................................. 56 
6.11. Prozesse überwachen ............................................................................................................... 57 
6.12. Profiling Prozesse ...................................................................................................................... 58 

6.12.1. Windows TaskManager........................................................................................................ 59 
6.12.2. Process Explorer .................................................................................................................. 60 
6.12.3. Performance Monitor............................................................................................................ 62 
6.12.4. Intel Thread Profiler.............................................................................................................. 63 

6.13. Zusammenfassung und Fazit .................................................................................................... 64 
6.14. Auswirkungen auf die Aufgabenstellung.................................................................................... 65 

7. Applikationen................................................................................................................................... 66 
7.1. Allgemeine Eigenschaften paralleler Programme ....................................................................... 66 
7.2. Technologien zur Parallelisierung................................................................................................ 67 

7.2.1. Prozesse ................................................................................................................................ 67 
7.2.2. Threads .................................................................................................................................. 67 
7.2.3. Verteilung ............................................................................................................................... 68 

7.3. Frameworks, Standards und Libraries......................................................................................... 69 
7.3.1. POSIX-Threads ...................................................................................................................... 69 
7.3.2. OpenMP ................................................................................................................................. 72 

  2006-11-20 



Diplomarbeit  Seite 7 

7.3.3. Thread Building Blocks (TBB) ................................................................................................ 75 
7.3.4. MPI ......................................................................................................................................... 77 

7.4. Zusammenfassung und Fazit ...................................................................................................... 78 
7.5. Auswirkungen auf die Aufgabenstellung...................................................................................... 78 

8. Java Virtual Machine (JVM) ............................................................................................................ 79 
8.1. Die Java API ................................................................................................................................ 80 

8.1.1. Threads .................................................................................................................................. 80 
8.1.2. Collections.............................................................................................................................. 83 
8.1.3. Weitere hilfreiche Klassen...................................................................................................... 83 

8.2. Synchronisierung ......................................................................................................................... 86 
8.2.1. Mutex...................................................................................................................................... 87 
8.2.2. Unterbrechbare Locks............................................................................................................ 90 
8.2.3. Lock Granularität .................................................................................................................... 91 
8.2.4. Compare and Swap / Compare and Set (CAS) ..................................................................... 92 

8.3. Implementierung in Java.............................................................................................................. 93 
8.3.1. Methodensynchronisation ...................................................................................................... 93 
8.3.2. Überlange Synchronisierung.................................................................................................. 94 
8.3.3. Extrem häufiges Locking/Unlocking ....................................................................................... 95 
8.3.4. Teilweise unsynchronisierter Zugriff....................................................................................... 99 
8.3.5. Vollständig unsynchronisierter Zugriff .................................................................................. 102 

8.4. JVM Optimierung ....................................................................................................................... 106 
8.4.1. Just In Time (JIT) Compiler .................................................................................................. 106 
8.4.2. Thread-Modelle .................................................................................................................... 107 
8.4.3. Garbage Collection............................................................................................................... 107 
8.4.4. Weitere Parameter ............................................................................................................... 109 
8.4.5. Reordering............................................................................................................................ 109 
8.4.6. Lock elosion, Lock coarsening ............................................................................................. 109 

8.5. Zusammenfassung und Fazit .................................................................................................... 111 
8.6. Auswirkungen auf die Aufgabenstellung.................................................................................... 111 

9. Glossar ........................................................................................................................................... 112 
10. Verzeichnisse............................................................................................................................... 117 

10.1. Tabellenverzeichnis ................................................................................................................. 117 
10.2. Abbildungsverzeichnis ............................................................................................................. 118 
10.3. Code Listings ........................................................................................................................... 118 
10.4. Index ........................................................................................................................................ 121 

 

  2006-11-20 



Diplomarbeit  Seite 8 

3. Dokumentinformationen 

3.1. Referenzierte Dokumente 

Tabelle 1 Referenzierte Dokumente 

Referenz Beschreibung 

[1] Diehl Roger, Parallele und verteilte Systeme, Sechste Auflage, 2005 

[2] Oliver Lau, c’t Ausgabe 15/2006, Seite 218ff, OpenMP 

[3] Oliver Lau, c’t Ausgabe 21/2006, Seite 234ff, Thread-Baukasten/TBB 

[4] Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1 

[5] Diplomarbeit 2006, Aufgabenstellung V1.0 vom 12. Oktober 2006 

3.2. Definitionen und Abkürzungen 

Tabelle 2 Abkürzungen 

Abkürzung Beschreibung 

AMD Advanced Micro Devices 

API Application Programming Interface 

ASMP Asymmetric Multi Processing 

CAS Compare And Swap / Compare And Set 

CISC Complex Instruction Set Computing 

CMP Chip Multi Processing 

CMT Chip Multi Threading 

CPU Central Processing Unit 

DDR-RAM Double Data Rate Random Access Memory 

EIST Enhanced Intel Speed Step Technology 

GC Garbage Collection 

GPL Gnu Public License 

IPC Inter Process Communication 

JIT Just In Time Compiler 

JOMP Java OpenMP 

JVM Java Virtual Machine 

MMX Multimedia Extension 

MPI Message Passing Interface 

  2006-11-20 



Diplomarbeit  Seite 9 

NUMA Non-Uniform Memory Architecture 

NUMA Non-Uniform Memory Access 

POSIX Portable Operating System Interface 

POSIX Portable Operating System Interface for UniX 

RD-RAM Rambus Dynamic Random Access Memory 

RISC Reduced Instruction Set Computing 

SD-RAM Synchronous Dynamic Random Access Memory 

SIMD Single Instruction Multiple Data 

SMP Symmetric Multi Processing 

SPARC Scalable Processor ARChitecture 

SSE Streaming SIMD extension 

TBB Thread Building Blocks 

TDP Termal Design Power 

UMA Uniform Memory Architecture 

UMA Uniform Memory Access 

  2006-11-20 



Diplomarbeit  Seite 10 

3.3. Links 

Tabelle 3 Links 

Referenz Beschreibung 

[AMD64] Wikipedia, AMD64: http://de.wikipedia.org/wiki/AMD64

[CACHECOH] Wikipedia, Cache coherency: http://en.wikipedia.org/wiki/Cache_coherence

[CISC] Wikipedia, CISC: http://en.wikipedia.org/wiki/CISC

[CMP] Wikipedia, Chip-level multiprocessing: 

http://en.wikipedia.org/wiki/Chip-level_multiprocessing

[CONTEXTSW] Wikipedia, Contect Switch: http://en.wikipedia.org/wiki/Context_switch

[CORE2] Wikipedia, Core 2: http://de.wikipedia.org/wiki/Core_2

[COREARCH] Intel, Core Microarchitecture: 

http://www.intel.com/technology/architecture/coremicro/demo/demo.htm

[CPUAFFINITY] TMurgent Technologies, White Paper Processor Affinity: 

http://www.tmurgent.com/WhitePapers/ProcessorAffinity.pdf

[DEADLOCK] Wikipedia, Deadlock: http://en.wikipedia.org/wiki/Deadlock

[DEVXINTEL] Devx, Intel Threading Tools and OpenMP: 

http://www.devx.com/go-parallel/Article/32724

[GCC] GNU, GCC, http://gcc.gnu.org/

[HOTSPOT] Sun, HotSpot Virtual Machine: http://java.sun.com/javase/technologies/hotspot/

[HOTSPOTGC] Sun, HotSpot Garbage Colleciton Tuning with the 5.0 Java Virtual Machine: 

http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html

[HOTSPOTOPT] Sun, HotSpot VM Options: http://java.sun.com/docs/hotspot/VMOptions.html

[HOTSPOTTHR] Sun, HotSpot Threading: http://java.sun.com/docs/hotspot/threads/threads.html

[HTT] Wikipedia, Hyper-Threading: http://de.wikipedia.org/wiki/Hyper-Threading

[HYPERTRANS] Wikipedia, HyperTransport: http://en.wikipedia.org/wiki/HyperTransport

[INTELC] Intel, Compilers : 

http://www.intel.com/cd/software/products/asmo-na/eng/compilers/

[INTELTBB] Intel, Thread Building Blocks 1.0 for Windows, Linux and Mac OS : 

http://www.intel.com/cd/software/products/asmo-na/eng/294797.htm

[JAPIREF] Sun, Java API Reference: http://java.sun.com/reference/api/

[JAVANUMA] Mustafa M. Tikir, NUMA-Aware Java Heaps for Server Applications: 

http://www.cs.umd.edu/~hollings/papers/ipdps05.pdf

[JLS] Sun, Java Language Specification: http://java.sun.com/docs/books/jls/

  2006-11-20 

http://de.wikipedia.org/wiki/AMD64
http://en.wikipedia.org/wiki/Cache_coherence
http://en.wikipedia.org/wiki/CISC
http://en.wikipedia.org/wiki/Chip-level_multiprocessing
http://en.wikipedia.org/wiki/Context_switch
http://de.wikipedia.org/wiki/Core_2
http://www.intel.com/technology/architecture/coremicro/demo/demo.htm
http://www.tmurgent.com/WhitePapers/ProcessorAffinity.pdf
http://en.wikipedia.org/wiki/Deadlock
http://www.devx.com/go-parallel/Article/32724
http://gcc.gnu.org/
http://java.sun.com/javase/technologies/hotspot/
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
http://java.sun.com/docs/hotspot/VMOptions.html
http://java.sun.com/docs/hotspot/threads/threads.html
http://de.wikipedia.org/wiki/Hyper-Threading
http://en.wikipedia.org/wiki/HyperTransport
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/
http://www.intel.com/cd/software/products/asmo-na/eng/294797.htm
http://java.sun.com/reference/api/
http://www.cs.umd.edu/%7Ehollings/papers/ipdps05.pdf
http://java.sun.com/docs/books/jls/


Diplomarbeit  Seite 11 

[JOMP] EPCC, OpenMP-like directives for Java: http://www.epcc.ed.ac.uk/research/jomp/

[JVMS] Sun, Java Virtual Machine Specification: http://java.sun.com/docs/books/vmspec/

[LIVELOCK] Wikipedia, Livelock: http://en.wikipedia.org/wiki/Deadlock#Livelock

[MMX] Wikipedia, MMX: http://en.wikipedia.org/wiki/MMX

[MOORE] Wikipedia, Mooresches Gesetz: http://de.wikipedia.org/wiki/Mooresches_Gesetz

[MPI] Wikipedia, Message Passing Interface: 

http://en.wikipedia.org/wiki/Message_Passing_Interface

[MPI-TRIER] Alexander Greiml, Universität Trier, Message Passing Interface (MPI): 

http://www.syssoft.uni-
trier.de/systemsoftware/Download/Seminare/Middleware/middleware.3.book.html

[MSDNSCHED] MSDN, Scheduling Priorities: 

http://windowssdk.msdn.microsoft.com/en-us/library/ms685100.aspx

[MSNUMA] Microsoft, NUMA Support für Windows Server 2003: 

http://www.microsoft.com/windowsserver2003/evaluation/features/comparefeature
s.mspx

[MULTIPROC] Wikipedia, Multiprocessing: http://en.wikipedia.org/wiki/Multiprocessing

[MUTEX] Wikipedia, Mutex: http://de.wikipedia.org/wiki/Mutex

[NETBURST] Wikipedia, Netburst: http://en.wikipedia.org/wiki/NetBurst

[NUMA] Wikipedia, Non-Uniform Memory Access: 

http://en.wikipedia.org/wiki/Non-uniform_memory_access

[OPENMP] OpenMP, Homepage: http://www.openmp.org/

[OPENMPSUN] Sun, OpenMP Support in Sun Studio Compilers and Tools: 

http://developers.sun.com/sunstudio/articles/studio_openmp.html

[OPENMPWP] Wikipedia, OpenMP: http://de.wikipedia.org/wiki/OpenMP

[OPENSPARC] OpenSparc, offene Hardware-Entwicklung auf der Basis der unter GPL freigege-
benen UltraSparc T1 Spezifikation: http://www.opensparc.net/

[OPTERON] Wikipedia, AMD Opteron: http://de.wikipedia.org/wiki/AMD_Opteron

[P4DTDP] Intel, Pentium D Processor Thermal Specifications (DualCore): 

http://www.intel.com/cd/channel/reseller/asmo-
na/eng/products/desktop/processor/processors/pentium-d/tech/216412.htm

[P4TDP] Intel, Pentium 4 Processor Thermal Specifications: 

http://www.intel.com/cd/channel/reseller/asmo-
na/eng/products/desktop/processor/processors/proc_dsk_p4_ee/tech/99346.htm

[PARALLELISM] Wikipedia, Parallel computing: http://en.wikipedia.org/wiki/Parallel_computing

[PENTIUM4] Wikipedia, Pentium 4: http://de.wikipedia.org/wiki/Pentium_4

[PERFTOOLS] ZDNet, System-Performance im Visier: Die besten Tools: 

http://www.zdnet.de/downloads/weekly/14/weekly_280-wc.html

  2006-11-20 

http://www.epcc.ed.ac.uk/research/jomp/
http://java.sun.com/docs/books/vmspec/
http://en.wikipedia.org/wiki/Deadlock#Livelock
http://en.wikipedia.org/wiki/MMX
http://de.wikipedia.org/wiki/Mooresches_Gesetz
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.syssoft.uni-trier.de/systemsoftware/Download/Seminare/Middleware/middleware.3.book.html
http://www.syssoft.uni-trier.de/systemsoftware/Download/Seminare/Middleware/middleware.3.book.html
http://windowssdk.msdn.microsoft.com/en-us/library/ms685100.aspx
http://www.microsoft.com/windowsserver2003/evaluation/features/comparefeatures.mspx
http://www.microsoft.com/windowsserver2003/evaluation/features/comparefeatures.mspx
http://en.wikipedia.org/wiki/Multiprocessing
http://de.wikipedia.org/wiki/Mutex
http://en.wikipedia.org/wiki/NetBurst
http://en.wikipedia.org/wiki/Non-uniform_memory_access
http://www.openmp.org/
http://developers.sun.com/sunstudio/articles/studio_openmp.html
http://de.wikipedia.org/wiki/OpenMP
http://www.opensparc.net/
http://de.wikipedia.org/wiki/AMD_Opteron
http://www.intel.com/cd/channel/reseller/asmo-na/eng/products/desktop/processor/processors/pentium-d/tech/216412.htm
http://www.intel.com/cd/channel/reseller/asmo-na/eng/products/desktop/processor/processors/pentium-d/tech/216412.htm
http://www.intel.com/cd/channel/reseller/asmo-na/eng/products/desktop/processor/processors/proc_dsk_p4_ee/tech/99346.htm
http://www.intel.com/cd/channel/reseller/asmo-na/eng/products/desktop/processor/processors/proc_dsk_p4_ee/tech/99346.htm
http://en.wikipedia.org/wiki/Parallel_computing
http://de.wikipedia.org/wiki/Pentium_4
http://www.zdnet.de/downloads/weekly/14/weekly_280-wc.html


Diplomarbeit  Seite 12 

[PIPELINE] Wikipedia, Pipeline: http://en.wikipedia.org/wiki/Pipeline_(computer)

[POSIXTUTOR] Mark Hays, POSIX hreads Tutorial: 

http://math.arizona.edu/~swig/documentation/pthreads/

[PROCEXP] Sysinternals Process Explorer Overv; 
http://www.microsoft.com/technet/sysinternals/utilities/ProcessExplorer.mspx

[PTEXPL] IBM, POSIX threads explained: 

http://www-128.ibm.com/developerworks/linux/library/l-posix1.html

[RISC] Wikipedia, RISC: http://en.wikipedia.org/wiki/RISC

[SCALABILITY] Wikipedia, Scalability: http://en.wikipedia.org/wiki/Scalability

[SCALAR] Wikipedia, Scalar processor: http://en.wikipedia.org/wiki/Scalar_processor

[SIMD] Wikipedia, SIMD: http://en.wikipedia.org/wiki/SIMD

[SMT] Wikipedia, Simultanous Multi Threading: 

http://en.wikipedia.org/wiki/Simultaneous_multithreading

[SSE] Wikipedia, Streaming SIMD Extensions: 

http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

[STARVATION] Wikipedia, Resource starvation: http://en.wikipedia.org/wiki/Resource_starvation

[STHREAD] Wikipedia, Super-Threading: http://en.wikipedia.org/wiki/Super-threading

[SUNSPARC] Wikipedia, Sun SPARC: http://de.wikipedia.org/wiki/Sun_SPARC

[SUPSCALAR] Wikipedia, Superscalar: http://en.wikipedia.org/wiki/Superscalar

[TASKMANOV] Microsoft, Task Manager Overview: 

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-
us/taskman_whats_there_w.mspx?mfr=true

[THREAD] Wikipedia, Thread: http://de.wikipedia.org/wiki/Thread_(Informatik)

[UMA] Wikipedia, Uniform Memory Access: 

http://en.wikipedia.org/wiki/Uniform_Memory_Access

[WIN2KDEV] Windows 2000 developers’s guide (ISBN 3-8272-5702-6): 

http://www.mut.de/media_remote/katalog/bsp/3827257026bsp.pdf

  2006-11-20 

http://en.wikipedia.org/wiki/Pipeline_(computer)
http://math.arizona.edu/%7Eswig/documentation/pthreads/
http://www.microsoft.com/technet/sysinternals/utilities/ProcessExplorer.mspx
http://www-128.ibm.com/developerworks/linux/library/l-posix1.html
http://en.wikipedia.org/wiki/RISC
http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/wiki/Scalar_processor
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/Simultaneous_multithreading
http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
http://en.wikipedia.org/wiki/Resource_starvation
http://en.wikipedia.org/wiki/Super-threading
http://de.wikipedia.org/wiki/Sun_SPARC
http://en.wikipedia.org/wiki/Superscalar
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/taskman_whats_there_w.mspx?mfr=true
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/taskman_whats_there_w.mspx?mfr=true
http://de.wikipedia.org/wiki/Thread_(Informatik)
http://en.wikipedia.org/wiki/Uniform_Memory_Access
http://www.mut.de/media_remote/katalog/bsp/3827257026bsp.pdf


Diplomarbeit  Seite 13 

4. Einleitung 

4.1. Der Begriff der Skalierung 

Mit der Skalierbarkeit eines Systems meint man allgemein die Fähigkeit die Leistung durch hinzufügen 
bzw. entfernen von Ressourcen zu verändern. Im Optimalfall ist die Skalierung linear. Dies würde 
bedeuten, dass eine Anwendung in einem System mit doppelten Ressourcen doppelt so schnell arbei-
ten kann. 

Skalierbarkeit sowohl auf Hardware- wie auch auf Software-Ebene ein gewünschtes Attribut. Insbe-
sondere sind bei der Entwicklung einer Applikation selten exakte Daten über die spätere Lastsituation 
vorhanden. Reicht die Leistung der Applikation nicht aus kann dies durch die Erweiterung des Sys-
tems (z.B. Hardware-Ausbau oder hinzufügen weiterer Cluster-Nodes) geschehen. Ist die Anwendung 
aber nicht skalierbar, so kann dadurch kein oder nur ein geringer Leistungszuwachs (im Extremfall 
sogar eine Leistungsverminderung) eintreten. 

Dabei ist die Skalierung grundsätzlich in zwei Kategorien unterteilbar: 

• Vertikale Skalierung 

• Horizontale Skalierung 

Unter dem Begriff der vertikalen Skalierung versteht man die Ressourcenerweiterung eines einzelnen 
Knotens (engl. Node) um dessen Leistung zu erhöhen. Diese Form der Skalierung ist essentiell wich-
tig für Applikationen, die auf einem einzigen Knoten ausgeführt werden. Beispielsweise für Single-
Node Server oder Desktop Anwendungen. 

Unter dem Betriff der horizontalen Skalierung versteht man in der Software-Technik die Möglichkeit 
weitere Knoten (engl. Nodes) zum System hinzuzufügen um die Leistung zu erhöhen. Hierbei spricht 
man auch von der Skalierung von verteilten Systemen wie High-Performance Cluster oder Grid. 

Im Optimalfall ist eine Anwendung natürlich sowohl vertikal als auch horizontal skalierbar. Insbesonde-
re wenn nicht alle Knoten über dieselben Ressourcen verfügen ist eine vertikale Skalierung auf den 
einzelnen Knoten auch dort wichtig. 

In unserer Arbeit werden wir uns auf die vertikale Skalierung von Software konzentrieren. Insbesonde-
re geht es um die Ausleuchtung der Skalierung auf modernen Multi-Core bzw. Multi-Prozessor Syste-
men. 

Weiterführende Informationen: 

• Wikipedia, Scalability: [SCALABILITY] 

  2006-11-20 



Diplomarbeit  Seite 14 

4.2. Warum überhaupt Parallelisierung? 

Die Parallelisierung basiert auf den Prinzip, dass sich eine Aufgabe meistens in mehrere Teilaufgaben 
zerlegen lässt, die dann unabhängig voneinander abgearbeitet werden können. Da die verteilten Teil-
aufgaben dann gleichzeitig abgearbeitet werden kann so das Resultat schneller zur Verfügung stehen. 

 
Abbildung 1 Grundprinzip paralleler Verarbeitung 

Der Nachteil der parallelen Verarbeitung liegt hier in der Synchronisation der Aufgaben und der Kon-
solidierung der Teilresultate. Häufig sind die Teilaufgaben auch nicht vollständig ganz unabhängig zu 
erledigen sondern benötigen Zwischenresultate anderer Teilaufgaben. Im ungünstigsten Fall kann 
diese Synchronisation und Konsolidierung mehr Zeit in Anspruch nehmen als durch die Parallele Ver-
arbeitung eingespart wird. 

Trotz diesen Problemen gewinnt die parallele Verarbeitung von Informationen aktuell immer mehr an 
Bedeutung. Dies liegt einerseits daran, dass die Hardware-Hersteller an physikalische Grenzen stos-
sen was die Verarbeitungsgeschwindigkeit der Recheneinheiten angeht. Hier spielen Faktoren wie 
Strukturgrössen, Schaltgeschwindigkeiten von Transistoren und Verlustleistung eine wesentliche Rol-
le. Aktuell geht der Trend klar weg vom Gigahertz-Rennen hin zu mehr und intelligenteren Verarbei-
tungseinheiten. Dadurch setzt sich auch das in der Informatik bekannte „Mooresche Gesetz“ (siehe  
auch [MOORE]) trotz physikalischer Grenzen fort. Es besagt, dass die Komplexität von integrierten 
Schaltkreisen sich etwa alle 18 Monate verdoppelt. 

Die Parallele Verarbeitung an sich ist ein Konzept, welches schon sehr lange existiert. Schon früh hat 
man erkannt, dass gewisse Aufgaben in externe Recheneinheiten ausgelagert werden können um die 
Haupteinheit (CPU) zu entlasten. Heutige Systeme besitzen eine Vielzahl von Prozessoren, die alle in 
einem gewissen Masse unabhängig voneinander arbeiten. Als Beispiele seien hier Grafikprozessoren, 
Netzwerkprozessoren, Hardware-RAID-Controller oder auch Sound-Prozessoren genannt. Diese Ver-
teilung der Aufgaben an unterschiedliche Hardware wird auch asymmetrisches Multi-Prozessing ge-
nannt (siehe Kapitel 5.2). 

Diese unterscheiden sich aber in so fern von Multi-Core bzw. Multi-Prozessor Systemen, dass sie alle 
eine spezialisierte Aufgabe erfüllen und dem Hauptprozessor diese Aufgabe abnehmen können. Das 
Hauptprogamm wird nicht aufgeteilt und läuft als einzelner Ausführungsstrang auf dem Prozessor ab. 

Da Multi-Core Prozessoren häufig mit niedrigeren physikalischen Taktraten betrieben werden als Sin-
gle-Core Prozessoren werden Anwendungen, welche nur eine Recheneinheit benutzen, durch deren 
Einsatz tendenziell langsamer. Die Gesamtleistung des Prozessors liegt aber aufgrund mehrfach vor-
handener Recheneinheiten höher. Die Kunst der Programmierung besteht nun darin die anstehenden 
Aufgaben sinnvoll auf die zur Verfügung stehenden Einheiten zu verteilen um schnellstmöglich zum 
Ergebnis zu kommen. 

Weiterführende Informationen: 

• Wikipedia, Parallel_computing: [PARALLELISM] 

• Wikipedia, Mooresches Gesetz: [MOORE] 

  2006-11-20 



Diplomarbeit  Seite 15 

4.3. Skalierung als System 

Hardware
(Prozessor-Architekturen SMP)

Thread-
Skalierung

Betriebssysteme
(Threadkonzepte u. -kontrolle)

Applikationen
(Konstrukte, Libraries, Pattern)

Testing
(Verfahren u. Parameter)

Tools
(Messbarkeit u. Sichtbarkeit)

Testklassen
(Implementierung Konzepte)

Resultate
(Auswertung u. Interpretation)

Aspekte

 
Abbildung 2 Skalierung als System 

Zum Begriff der Skalierung gehören Aspekte der Hardware, des Betriebssystems und der 
Applikationen. Dieses Dokument beleuchtet all diese Aspekte: 

• Hardware: Siehe Kapitel 5. 

• Betriebssysteme: Siehe Kapitel 6. 

• Applikationen: Siehe Kapitel 0 (allgemein) und Kapitel 8 (Java). 

Auf der anderen Seite steht die Belegbarkeit der Skalierbarkeit anhand von Tests. Dazu werden 
einerseits Verfahren und Parameter als auch wichtige Tools kurz erwähnt. Auf der Applikationsebene 
liegt der Fokus in dieser Hinsicht auf der Implementierung und allgemeinen Konzepten der 
Skalierbarkeit. 

  2006-11-20 



Diplomarbeit  Seite 16 

5. Hardware 
Dieses Kapitel vermittelt einen Eindruck über die Architektur aktueller Mikroprozessor-Systeme. Die 
Übersicht soll dabei helfen die Zusammenhänge und Möglichkeiten der Programmierung solcher Sys-
teme besser zu verstehen. Dabei liegt der Fokus auf den Hardware-Aspekten welche eine parallele 
Verarbeitung ermöglichen. 

5.1. Skalierbarkeit der Hardware 

Unter dem Begriff der Hardware-Skalierung wir allgemein die Fähigkeit verstanden durch hinzufügen 
von Ressourcen die Systemleistung zu erhöhen. Die Systemperformance skaliert aber grundsätzlich 
nie linear. Insbesondere wirkten sich Hardware-Erweiterungen in den seltensten Fällen 1:1 auf die 
Software-Performance aus. Dies liegt insbesondere darin begründet, dass einige Komponenten (Bus-
Systeme) sich nicht einfach erweitern lassen. Beispielsweise kann die menge des Speichers oder die 
Taktrate des Prozessors verdoppelt werden. Dies wird aber nur in Sonderfällen eine Verdoppelung 
der Anwendungsleistung zur Folge haben und zwar nur so lange bis ein Bussystem oder eine andere 
Komponente den Flaschenhals (engl. Bottleneck) darstellt.  

Wir wollen uns hier aber nicht auf die Skalierung der Hardware selber sondern auf die Hardware-
Aspekte, die eine Skalierung der darauf aufbauenden Software ermöglichen, konzentrieren. 

Aktuelle Hardware- und insbesondere Prozessor-Architekturen sind sehr komplexe Gebilde. 
Abbildung 3 gibt einen Überblick über die wichtigsten Komponenten und Architekturen. Im Folgenden 
werden die einzelnen Komponenten kurz erklärt. Es versteht sich von selbst, dass es sich hier nur um 
eine Übersicht und nicht um eine Detaillierte Spezifikation der Komponenten handelt. 

  2006-11-20 



Diplomarbeit  Seite 17 

SMP Symmetric Multi 
Processing
- 4 Packages
- 1 Die per package
- 1 Cores per package

CMP – Chip Multi 
Processing
- 1 Package
- 1 Die
- 4 Cores

CMP – Chip Multi 
Processing
- 1 Package
- 4 Dice
- 4 Cores

CoreCore

CMT: Chip Multi 
Threading

Super-Threading
(Hyper-Threading)

Thread

Thread

Thread

Thread

Superscalar Design
n instructions per clock

ALU

ALU

ALU

SIMD

Dispatcher

...

Scalar Design
1 instruction per clock

ALU

SIMD

...

Thread

Thread

Thread

Thread

Pipeline
Beispiel: 3-Stufig

ExecuteLoad Store

LOAD

Pipeline:

Takt 1:

MOVETakt 2: LOAD

MOVETakt 3: LOADADD

Core

CoreCore

Core

CoreCore

Speicheranbindung

UMA NUMA

Core Core

CoreCore

 
Abbildung 3 Hardware Architekturen 

  2006-11-20 



Diplomarbeit  Seite 18 

5.2. SMP / ASMP / CMP 

S
M

P
, C

M
P

 
Abbildung 4 SMP, ASMP, CMP 

Unter einem SMP (Symmetric Multi Processing) System versteht man eine Architektur bei der alle 
Prozessoren (2 oder mehr) gleichberechtigt arbeiten. Das heisst, dass jeder von ihnen jede Aufgabe 
übernehmen kann. Eine Modifikation davon stellen ASMP (Asymmetric Multi Processing) Systeme 
dar. Bei diesen Architekturen werden gewisse Aufgaben und/oder Ressourcen fest einer Rechenein-
heit zugewiesen. Beispielsweise ist es praktikabel alle Interrupt-Handling Routinen oder I/O Operatio-
nen auf einer dedizierten CPU abzuarbeiten. Der Vorteil von ASMP Architekturen liegt im einfacheren 
Design (z.B. nur eine CPU braucht Zugriff zum I/O Bus). Der Nachteil gegenüber SMP Systemen liegt 
darin, dass mit ASMP Systemen häufig nicht die optimale Performance erzielt werden kann. 

In gewisser Weise sind alle heutigen PC-Systeme ASMP Systeme da sie für diverse Aufgaben spezia-
lisierte Chips verwenden. Beispielsweise sitzt auf der Grafikkarte meist ein leistungsfähiger 3D-
Prozessor, im Chipsatz häufig ein Hardware-RAID Controller und bei Musikfans ein schneller Sound-
Chip. All diese Prozessoren nehmen der CPU einige Aufgaben ab sind aber dedizierte Prozessoren 
für diese Aufgabe. 

Chip Multi Processing (CMP) bezeichnet die in jüngster Zeit immer häufig gewordenen Multi-Core 
Architekturen. Hierbei teilen sich die einzelnen Cores häufig den Cache oder Teile davon. Um die 
Frage zu klären, ob Architekturen mit mehreren Kernen gleichzusetzen sind mit SMP Architekturen 
muss man den internen Aufbau mit einbeziehen. Einige Multi-Core Architekturen besitzen zwei physi-
kalisch getrennte Kerne in einem Chip-Gehäuse. Andere wiederum verwenden gemeinsame Caches 
oder gar Funktionseinheiten und sind auf einem Die vereint (siehe Abbildung 4). Getrennte Kerne 
verhalten sich nach aussen tendenziell eher wie SMP Systeme. Bei „verschmolzenen“ Kernen kann 
es dagegen einerseits zu Vorteile (gemeinsame und grössere Caches, schnelle interne Kommunikati-
on) als auch Nachteile (teure Produktion, ungewollte Laufzeit-Abhängigkeiten) kommen. 

Allen Architekturen gemeinsam ist aber die Tatsache, dass sie mehrere Recheneinheiten zur Verfü-
gung stellen und ihr volles Potential nur bei parallel abzuarbeitenden Aufgaben ausschöpfen können. 

Weiterführende Informationen: 

• Wikipedia, Multiprocessing: [MULTIPROC] 

• Wikipedia, CMP: [CMP] 

  2006-11-20 



Diplomarbeit  Seite 19 

5.2.1. UMA/NUMA 

Die Verarbeitungseinheiten müssen natürlich auch auf den (gemeinsamen) Speicher zugreifen kön-
nen. Dafür haben sich im Wesentlichen zwei Technologien durchgesetzt: UMA bzw. NUMA. 

Uniform Memory Access (UMA) bezeichnet eine Architektur bei der sich die Prozessoren einen ge-
meinsamen Speicherbus teilen. Aus diesem Grunde ist auch der Speicherzugriff auf alle Speicherzel-
len für alle Prozessoren gleich schnell. 

Non-Uniform Memory Access (NUMA) Architekturen arbeiten im Gegensatz dazu mit lokalem Spei-
cher. Jeder Prozessor (Node genannt) hat dabei schnellen Zugriff auf den an ihm direkt angeschlos-
senen Speicher. Trotzdem kann jeder Node über entsprechende Kommunikationskanäle auf den 
Speicher der anderen Nodes zugreifen. Dieser wird dann als „remote Memory“ bezeichnet. Prinzipbe-
dingt ist der Zugriff auf entfernten (remote) Speicher deutlich langsamer als auf lokal angebundenen. 
Dafür ist der Zugriff auf den lokalen Speicher üblicherweise schneller als bei einem UMA System. Den 
Zugriff auf entfernten Speicher und die getrennten Caches der Prozessoren werfen weitere Probleme 
bei der Cache-Synchronisierung auf. Dies wird auch als Cache Kohärenz bezeichnet (siehe auch 
[CACHECOH]). Um die Caches konsistent zu halten müssen die Nodes bei Veränderungen die ande-
ren Nodes informieren. Solche Aktualisierungen belasten den Systembus und können die Leistung 
durchaus auch beeinflussen. Hier soll aber nicht näher darauf eingegangen werden. Heute kümmern 
sich alle NUMA Systeme automatisch um die Cache Kohärenz, deshalb wird hier die Bezeichnung 
NUMA als Synonym für die korrekte Bezeichnung ccNUMA (Cache Coherent NUMA) verwendet. Trotz 
der automatischen Behandlung durch die Hardware kann durch die Verwendung von entferntem Spei-
cher ein Engpass auf dem Systembus und somit ein Leistungseinbruch auftreten. 

Beide Technologien haben ihre Vor- und Nachteile. Insbesondere bezogen auf die Geschwindigkeit 
der Speicherzugriffe. Bei einem UMA-System lässt sich die Geschwindigkeit besser voraussagen als 
auf einem NUMA System. Bei einem NUMA-System sollte das Betriebssystem die Architektur kennen 
um Prozesse mit vielen Speicherzugriffen auf einem Prozessor auszuführen an dem die benötigten 
Daten lokal vorhanden sind. Achtet das Betriebssystem nicht darauf, so kann es vorkommen, dass der 
Grossteil der Daten aus entferntem Speicher stammt und dadurch massiv langsamer zur Verfügung 
steht. Ausserdem werden dadurch die Bussysteme zwischen den Prozessoren unnötig belastet. Die 
Fähigkeit des Betriebssystems mit diesen NUMA-Eigenschaften umzugehen wird mit dem Attribut 
NUMA-Awareness bezeichnet. 

Leider ist die Betriebssystem-Unterstützung noch nicht durchgängig vorhanden. Nach unseren Er-
kenntnissen unterstützt Windows XP nur in der 64-bit Version und in der 32-bit Version mit dem Ker-
nel-Flag „/PAE“ NUMA. Ausserdem unterstützen einige Windows Server 2003 Versionen NUMA. Sie-
he dazu auch [MSNUMA]. 

Weiterführende Informationen: 

• Wikipedia, Uniform Memory Access: [UMA] 

• Wikipedia, Non-Uiform Memory Access: [NUMA] 

• Wikipedia, Cache coherency: [CACHECOH] 

• Microsoft, Windows Server 2003 NUMA Support: [MSNUMA] 

  2006-11-20 



Diplomarbeit  Seite 20 

5.3. Super-Threading, CMT 

 
Abbildung 5 Super-Threading, CMT 

Wie im Kapitel 5.2 beschrieben geht der Trend in Richtung mehrerer parallel arbeitender Prozessor-
kerne (Cores). Innerhalb des Prozessors setzt sich dieser Trend fort. Viele aktuelle Prozessoren sind 
Optimiert auf die parallele Abarbeitung der Instruktionen. Einige gehen aber noch einen Schritt weiter 
und bieten parallele Abarbeitungspfade für mehrere Threads. Auch hier gibt es mehrere unterschiedli-
che Implementierungen. 

Super-Threading ermöglicht dem Prozessor pro Taktzyklus eine Instruktion eines einzelnen Threads 
zu laden. Da dieser einerseits meist mehrere Zyklen zur Bearbeitung braucht und andererseits häufig 
auf Speicherzugriffe warten muss ist es oft nicht weiter tragisch, dass eine Thread-
Verarbeitungseinheit nicht bei jedem Zyklus eine neue Instruktion bekommt. Warten auf Speicher wird 
Memory Stall genannt (siehe Abbildung 6). Durch weitere Optimierung der Recheneinheit (siehe auch 
Kapitel 5.4)ist es aber durchaus möglich, dass die Verarbeitungseinheiten leer laufen und auf neue 
Instruktionen warten müssen. Beispielsweise arbeitet Intels Hyper-Threading Technologie (siehe auch 
[HTT]) nach einem modifizierten Super-Threading Verfahren. Beim Pentium 4 wurde das Hyper-
Threading eingeführt um die internen Verarbeitungseinheiten (ALU, FPU, SSE usw.) besser auslasten 
zu können. 

 
Abbildung 6 Verarbeitung gemäss Super-Threading 

Chip Mult Threading (CMT) erlaubt es pro Taktzyklus und Thread eine Instruktion zu lesen. Das 
heisst, dass bei einem 4-fach CMT System pro Taktzyklus 4 Instruktionen eingelesen werden können 
(siehe Abbildung 7). Dies stellt natürlich höhere Anforderungen an die innerhalb der Thread-
Ausführungseinheiten liegenden Rechenwerke, erhöht aber auch die Ausführungsgeschwindigkeit und 
Auslastung/Effizienz des Prozessors. 

  2006-11-20 



Diplomarbeit  Seite 21 

 
Abbildung 7 Verarbeitung gemäss CMT 

In der Praxis laufen natürlich beide Verfahren nicht ganz so geordnet ab wie auf den Illustrationen 
dargestellt. Die Speicherlatenzzeiten (Memory Stall) variieren je nach angesprochenem Speicher. 
Beim Super-Threading bedeutet dies, dass die Einheiten nicht optimal ausgelastet sind sobald zwei 
Threads rechenbereit sind und Instruktionen eingelesen werden sollten. Bei CMT könnten dann alle 
Thread-Verarbeitungseinheiten zeitgliech wieder mit Instruktionen versorgt werden. Wegen unter-
schiedlicher Latenzzeiten ist der Extremfall, dass 4 Threads gleichzeitig wieder Rechenbereit sind 
eher unwahrscheinlich. 

Weiterführende Informationen: 

• Wikipedia, Super-Threading: [STHREAD] 

• Wikipedia, Simultanous Multi Threading: [SMT] 

• Wikipedia, Hyper-Threading: [HTT] 

  2006-11-20 



Diplomarbeit  Seite 22 

5.4. Skalar, Superskalar 

S
ca

la
r, 

S
up

er
sc

al
ar

 
Abbildung 8 Skalar, Superskalar 

Skalare Prozessoren arbeiten immer nur an einer Instruktion gleichzeitig und benutzen dabei eine 
einzige Funktionseinheit. Dies ist zwar einfach, aber ineffizient. Insbesondere liegen alle unbenutzten 
Prozessorteile dabei brach. 

Durch eine superskalare Architektur wird versucht dieses Manko zu beheben. Dies geschieht indem 
mehrere Recheneinheiten von einem Dispatcher gefüttert werden. Die Aufgabe des Dispatchers ist es 
die Instruktionen an die freien Einheiten zu übertragen. Dies erlaubt die gleichzeitige Belegung von 
ALU, FPU oder weiteren Einheiten was einer höheren Effizienz zu Gute kommt. Der Nachteil darin 
besteht natürlich im höheren Hardware-Aufwand und dem komplexen Dispatching Mechanismus. 
Beispielsweise können nicht alle Instruktionen parallel auf verschiedenen Einheiten ausgeführt werden 
wenn sie Resultate einer anderen Instruktion benötigen. 

Um die Geschwindigkeit eines superskalaren Prozessors weiter zu erhöhen können auch mehrere 
Einheiten der gleichen Sorte eingebaut werden. Die meisten aktuellen CPUs besitzen beispielsweise 
mehrere ALUs. 

Aufgrund das einfacheren Designs eines RISC Prozessors (siehe auch [RISC]) ist die Implementie-
rung mehrere Recheneinheiten dort viel einfacher als bei CISC Prozessoren (siehe auch [CISC]). 
Deshalb wurde diese Technologie bei x86 Prozessoren erst ende der 90er Jahre mit dem Pentium Pro 
(P6) eingeführt wobei sie für RISC Prozessoren schon anfangs der 80er Jahre eingesetzt wurde. Erst 
die interne Umsetzung der CISC-Befehle in sogenannte „micr-ops“ erlaubte diese Architektur-
Änderung. Daraus ist auch noch ein weiterer wichtiger Aspekt abzuleiten: Heutige x86 Prozessoren 
zerlegen die x86 Instruktionen in Micro-OPs und arbeiten diese (soweit möglich) parallel ab. Dies kann 
insbesondere die Reihenfolge der Ausführung beeinflussen. 

In den Recheneinheiten selbst liegen ausserdem noch weitere Möglichkeiten der Parallelisierung. Die 
meisten heutigen x86 Prozessoren bieten einen erweiterten Befehlssatz der hauptsächlich auf die 
Manipulation grosser Datenmengen optimiert ist. Die erste Erweiterung dieses Typs war die MMX-
Erweiterung von Intel (siehe auch [MMX]). Weitere Instruktionen kamen dann mit dem SSE Befehls-
satz (siehe auch [SSE]) in diversen Versionen hinzu. Bei all diesen Erweiterungen handelt es sich um 
sogenannte SIMD (Single Instruction Multiple Data) Befehle (siehe auch [SIMD]). Insbesondere in der 
Multimediatechnik treten häufig Probleme auf bei denen mehrere Datensätze mit derselben Operation 
bearbeitet werden müssen. Beispielsweise wenn zu allen Komponenten eines RGBA-Pixels (32-bit) 
ein Wert addiert werden muss. Ohne SIMD-Instruktionen müssten die 8-bit Komponenten einzeln 
geladen, verändert und wieder abgespeichert werden. Was einer grossen Anzahl Instruktionen ent-
spricht. Für solche Operationen bieten sich SIMD-Instruktionen and welche dann die Modifikation aller 
Pixelkomponenten mit einem Befehl erledigt. Intern kann der Prozessor die Modifikation dann automa-
tisch parallel ausführen. 

Weiterführende Informationen: 

• Wikipedia, Skalare Architektur: [SCALAR] 

• Wikipedia, Superskalare Architektur: [SUPSCALAR] 

• Wikipedia, RISC: [RISC] 

  2006-11-20 



Diplomarbeit  Seite 23 

• Wikipedia, CISC: [CISC] 

• Wikipedia, MMX: [MMX] 

• Wikipedia, SSE: [SSE] 

• Wikipedia: SIMD: [SIMD] 

  2006-11-20 



Diplomarbeit  Seite 24 

5.5. Pipeline 

 
Abbildung 9 Pipeline 

Die Abarbeitung einer Instruktion erfordert meistens mehrere Stufen und dauert mehrere Taktzyklen. 
Die gesamte Arbeitsstrecke wird als Pipeline bezeichnet. Im Beispiel in Abbildung 9 wird exemplarisch 
eine 3-Stufige Pipeline dargestellt in der eine Instruktion grundsätzlich in 3 Schritten abgearbeitet wird. 
Die erste Stufe besteht aus dem laden der Instruktion und den dazu benötigten Daten. In der zweiten 
Stufe wird die Instruktion abgearbeitet und in der dritten wird das Ergebnis zurückgeschrieben. 

Würde der Prozessor im Beispiel kein Pipelining unterstützen, so könnte der nächste Befehl erst ein-
gelesen werden, wenn der vorherige beendet ist und die Pipeline verlassen hat. Alle heutigen Prozes-
soren implementieren aber das Pipelining. Hier kann die nächste Instruktion sofort geladen werden 
sobald die vorhergehende die erste Stufe verlassen hat. 

Als Beispiel kann folgender Code analysiert werden: 
LOAD  #40,A      ; load 40 to register A 
MOVE  A,B        ; copy register A to register b B 
ADD   #20,B      ; add 20 to register B 
STORE B, 0x300   ; store register B into memory cell 0x300 

Listing 1 Pipelining Assembler-Code Beispiel 

Tabelle 4 Abarbeitung einer Pipeline 

Taktzyklus Aktionen 

Takt 1 Der LOAD Befehlt wird aus dem Speicher gelesen (aber noch nicht ausgeführt) 

Takt 2 Der LOAD Befehl wird ausgeführt. Gleichzeitig wird der MOVE Befehl aus dem Spei-
cher gelesen. 

Takt 3 Der LOAD Befehl speichert den geladenen Wert in das Register A. Gleichzeitig wird 
der MOVE Befehl ausgeführt. Da dieser aber vom vorhergehenden LOAD Befehl 
abhängt muss dieser warten bis der LOAD Befehl abgearbeitet ist. Gleichzeitig wird 
in diesem Taktzyklus die nächste Instruktion (ADD) geladen. 

… … 

Wie gut zu erkennen ist erlaubt das Pipelining im Optimalfall die volle Auslastung aller Stufen der Pi-
peline. In der Praxis führen aber Abhängigkeiten (wie bei der LOAD/MOVE Kombination) zu mögli-
chen Wartezyklen. Im Beispiel handelt es sich um eine sehr kurz gehaltene, beispielhafte Pipeline. In 
der Praxis liegen typische Pipeline-Längen zwischen 10 und 20 Stufen. Es gibt aber auch Prozessor-
Designs mit über 1000 Stufen. Der Pentium 4 beispielsweise besitzt mit 31 Stufen eine extrem lange 
Pipeline. Darin liegt einer der Hauptgründe warum der Intel Pentium 4 sehr hohe Taktraten erreicht. 
Doch dazu gleich mehr. 

Der Vorteil einer langen Pipeline liegt darin, dass die einzelnen Stufen sehr einfach gebaut (einfachere 
Logik-Elemente) auf sind. Damit kann die Taktrate erhöht werden. Im Optimalfall kann so ein höherer 

  2006-11-20 



Diplomarbeit  Seite 25 

Durchsatz erreicht werden. In unserem Beispiel würde nach 3 Taktzyklen Verzögerung das erste Er-
gebnis bereitstehen (Ergebnis der LOAD-Operation). Danach wäre theoretisch pro Taktzyklus ein 
weiteres Ergebnis möglich (bei voller Auslastung der Pipeline). Die Verzögerung, die durch die Durch-
laufzeit entsteht wird Latenzzeit genannt. 

Der Nachteil von langen Pipelines liegt im Programmablauf begründet. Praktisch alle Programme ver-
zweigen sich intern durch bedingte Sprungbefehle (Branch). Tritt ein solcher Sprung im Programm auf 
gibt es zwei Möglichkeiten für den Prozessor. Einerseits kann er die Pipeline „anhalten“ und muss 
warten bis der letzte eingegebene Befehl abgearbeitet wurde. Dies ist nötig weil das Ziel des Sprun-
ges erst nach der Abarbeitung des letzten Befehles in der Pipeline feststeht. Dies kostet aber viel Zeit 
da der erste Befehl nach dem Sprung (bzw. der Sprungbefehl selbst) erst die gesamte Pipeline durch-
laufen muss und dadurch eine hohe Latenz im Programmfluss entsteht. 

Um das Problem der Sprünge zu entschärfen versucht der Prozessor anhand der bekannten Daten 
den Sprung vorherzusagen (Branch prediction). Dies funktioniert dank Moderner Algorithmen etwa in 
80% der Fälle. Der Prozessor kann dann also die Pipeline weiter befüllen und muss nicht auf das Er-
gebnis warten. Kritisch wird es nur, wenn der vorhergesagte Sprung falsch ist. In diesem Fall muss die 
gesamte Pipeline verworfen und neu befüllt werden. Dies hat natürlich für den nächsten Befehl wieder 
eine hohe Latenz zur Folge. 

Lange Pipelines sind also von Vorteil um die Taktrate hoch zu halten aber nachteilig wenn viele 
Sprünge eintreten. Für wissenschaftliche Berechnungen ohne viele Sprünge (bzw. gut vorhersehbare) 
ist eine lange Pipeline eher vorteilhaft. Für Desktop-Anwendungen mit schlecht vorhersehbaren Er-
eignissen können falsche Sprungvorhersagen aber einen massiven Einfluss auf den Durchsatz haben. 
Dies ist einer der Gründe warum beispielsweise die Leistung des Intel Pentium 4 Prozessors eng an 
extrem hohe Taktraten geknüpft ist. Auf der anderen Seite steigt mit der Taktrate üblicherweise auch 
die Betriebsspannung und somit die Verlustleistung eines Prozessors quadratisch. Dies führte zuletzt 
zu TDP (Thermal Design Power) Werten über 130W (siehe auch [P4TDP] und [P4DTDP]) was selbst 
Intel dazu bewegte Abstand von der verwendeten NetBurst (siehe auch [NETBURST]) Architektur zu 
nehmen. 

Weiterführende Informationen: 

• Wikipedia, Pipelining: [PIPELINE] 

• Wikipedia, Netburst: [NETBURST] 

• Intel Pentium 4 Processor Thermal Specifications: [P4TDP] 

  2006-11-20 



Diplomarbeit  Seite 26 

5.6. Konkrete Prozessor-Designs 

In Diesem Kapitel werden einige der wichtigen Prozessor-Designs mit ihren speziellen Vorzügen und 
Nachteilen etwas genauer betrachtet. 

5.6.1. Intel Pentium 4 

 
Abbildung 10 Intel Pentium 4 

Im Jahre 2000 stellte Intel einen komplett überarbeiteten 
Prozessor vor. Er bot einige Neuerungen im Vergleich zur 
bereits 5 Jahre alten Architektur des P6 (Pentium Pro, Pen-
tium II, Pentium III).  

Damals war das Gigahertz-Rennen noch in vollem Gange und böse Zungen behaupten, dass Intel die 
NetBurst Architektur mit ihrer überlangen Pipeline (siehe auch Kapitel 5.5) nur eingeführt hat um mit 
höheren Taktraten gegenüber der Konkurrenz zu glänzen. Tatsächlich erwies sich die NetBurst Tech-
nologie als Sackgasse. Mit der Taktrate stieg auch die Verlustleistung (steigt Quadratisch zur Be-
triebsspannung und linear zur Taktrate) und führte zu unlösbaren Kühlproblemen. Die ursprünglich 
geplanten 6 GHz und mehr wurden nie erreicht. Die überlange Pipeline setzte ausserdem einen ge-
waltigen Aufwand in der internen Architektur voraus. Ausserdem benötigt der Prozessor eine schnelle 
Speicheranbindung weshalb Intel auf die RD-RAM Technik setzte. Diese erwies sich aber als zu teu-
er. Mit herkömmlichem SD-RAM wurde die CPU massiv ausgebremst und auf den fahrenden DDR-
Zug sprang Intel viel zu spät auf. 

All diese Probleme haben dazu geführt, dass Intel das NetBurst Konzept über Bord geworfen hat und 
auf Basis des ursprünglichen Pentium 3 zuerst den Pentium-M und anschliessend die Core/Core 2 
(siehe Kaptiel 5.6.2) Mikroarchitektur entwickelt hat. Neue Prozessoren basierend auf der NetBurst 
Architektur werden nicht mehr produziert. Insbesondere für die Marketingstrategen wirkt sich dies aber 
katastrophal aus. Bis anhin vertrauten sie darauf den Kunden die einfache Formel „Hohe Taktra-
te=Hohe Leistung“ zu verkaufen. Insbesondere war dies effektiv da der Konkurrent AMD mit ihrer Ar-
chitektur zwar die Leistung aber nie die Taktraten der NetBurst Prozessoren erreichte. Jetzt müssen 
die selben Marketing-Strategen ihren Kunden beibringen, dass ihre neuen Core 2 Prozessoren mit 
noch niedrigeren Taktraten als der Konkurrent trotzdem mehr Leistung bringen. 

Trotz aller Probleme brachte der Pentium 4 einige Interessante Konzepte und Neuerungen. Insbeson-
dere ist hier das Hyper-Threading (HTT) zu erwähnen. Der Pentium 4 mit HTT war der erste virtuelle 
Multi-Corre Porzessor für den Desktop-Einsatz. Die zweite Recheneinheit war aber physikalisch nicht 
vorhanden sondern wurde nur durch einige zusätzliche Register und Einheiten (ca. 5% zusätzliche 
Chip-Fläche) bereitgestellt. Dadurch konnte die interne Auslastung verbessert werden wodurch eine 
Geschwindigkeitsvorteil von 15-30% (je nach Applikation auch massiv weniger) erzielt werden konnte. 

Hyper-Threading basiert auf dem Prinzip des Super-Threading (siehe Kapitel 5.3). 

Weiterführende Informationen: 

• Wikipedia, Pentium 4: [PENTIUM4] 

• Wikipedia, NetBurst: [NETBURST] 

• Wikipedia, Hyper-Threading: [HTT] 

• Intel, Pentium 4 TDP: [P4TDP] 

• Intel, Pentium D TDP (DualCore): [P4DTDP] 

  2006-11-20 



Diplomarbeit  Seite 27 

5.6.2. Intel Core/Core 2 

 
Abbildung 11 Intel Core 2 

Wie in Kapitel 5.6.1 erwähnt hat sich für Intel die NetBurst 
Architektur als Sackgasse erwiesen. Basierend auf der 
Architektur der P6 (Pentium Pro, Pentium II, Pentium III) 
wurde ein Prozessor namens Pentium-M entwickelt. Der 
Pentium-M wurde als reiner Mobil-Prozessor vermarktet 
und stellt die Basis der Centrino-Plattform dar. Die Weiter-
entwicklung wurde von Intel „Core“ getauft und kommt in 
der zweiten Generation als Desktop-Prozessor auf den 
Markt. 

Die Core 2 Prozessoren unterscheiden sich wesentlich vom Design des Pentium 4. Insbesondere 
basieren sie wie erwähnt nicht mehr auf NetBurst sondern auf der Core Mikroarchitektur. Die Pipeline 
(siehe Kapitel 5.5) wurde massiv verkürzt. Dies beschränkt einerseits die maximale Taktrate, erlaubt 
aber andererseits eine Effizienzsteigerung (Operationen pro Megahertz). Die Abkehr von den Strom-
fressenden Pentium 4 Boliden wird auch durch die erstmalige Integration von EIST (Enhanced Intel 
Speed Step) untermauert. Bisher war SpeedStep nur in Mobilprozessoren verfügbar. EIST erlaubt die 
dynamische Regulierung der Taktfrequenz und Spannungen im Betrieb um bei geringer Last die 
Stromaufnahme (und somit die Wärmeabgabe) zu reduzieren. 

Um die Effizienz des Prozessors weiter zu erhöhen hat Intel eine Reihe von neuen Technologien ent-
wickelt. Beispielsweise die so genannte „Macro-OP Fusion“. Dadurch kann der Prozessor mehrere 
Instruktionen zu einer einzigen zusammenfassen und diese in einem Schritt erledigen (z.B. Addition 
und Multiplikation). 

Insgesamt erreicht die Core Architektur eine massiv höhere Effizienz als die NetBurst Architektur was 
auch der Grund ist warum Intel diese nicht mehr weiterentwickelt und keine neuen Prozessoren mit 
NetBurst mehr auf den Markt wirft. 

Hyper-Threading für den Core/Core 2 sind allerdings nicht in Sicht weil dies im aktuellen Design nicht 
vorgesehen ist. Stattdessen ist der Core 2 auf Multi-Core Anwendung ausgelegt und ist anfangs auch 
nur als „Core 2 Duo“ Prozessor in Dual-Core Ausführung erhältlich. Später soll aber auch ein günsti-
ger Core 2 Solo folgen. Noch vor Ende 2006 wird bereits der Core 2 Quad im Einzelhandel erwartet. 
Dieser wird intern als zwei zusammengeschaltete Core 2 Duo aufgebaut sein (1 Package, 2 Dice, 4 
Kerne). Bei den aktuellen Core 2 Duo Prozessoren sind beide Kerne auf einem einzigen Die aufge-
baut (1 Package, 1 Die, 2 Kerne). Siehe dazu auch Kapitel 5.2. 

Weiterführende Informationen: 

• Intel, Core Microarchitecture: [COREARCH] 

• Wikipedia, Core 2: [CORE2] 

  2006-11-20 



Diplomarbeit  Seite 28 

5.6.3. AMD Opteron / Athlon 64 

 
Abbildung 12 AMD Opteron 

Beim Opteron handelt es sich um die Server-Version des 
für Desktop-PCs bekannten Athlon 64 Prozessors (auch als 
K8 bekannt). Im Gegensatz zum Desktop-Prozessor bein-
haltet der Opteron nur minimale Anpassungen wie einen 
modifizierten Speicherkontroller und zusätzliche Kommuni-
kationskanäle für die Mehrprozessor-Kommunikation. 

Der Auffälligste Unterschied der K8 Architektur gegenüber der K7 Architektur (Athlon Classic, Athlon, 
Athlon XP) besteht in der 64-bit Erweiterung. Im Gegensatz zu Intels Itanium wurde der Prozessor 
nicht komplett 64-bittig aufgebaut sondern lediglich der 32-bit Prozessor um 64-bit Instruktionen erwei-
tert. Dadurch entfällt bei der Ausführung von 32-bit Code die sehr langsame Emulationsschicht. Des-
wegen handelt es sich im Grunde auch nicht um einen „echten“ 64-bit Prozessor sondern um einen 
32-bit Prozessor mit 64-bit Erweiterungen. AMD hat erkannt, dass die Umstellung auf 64-bit nicht 
durch einen klaren Schnitt der Architektur machbar ist und die Umstellung der Anwendungen einige 
Zeit in Anspruch nehmen wird. Mittlerweile hat Intel dies auch eingesehen und die nach AMD benann-
ten AMD64 Erweiterungen (siehe auch [AMD64]) unter dem Namen „Intel 64“ (vormals EM64T ge-
nannt) lizenziert. 

Mehrprozessorsysteme (SMP) auf Basis des Opteron Prozessors stellen die aktuell bekannteste 
Implementation eines ccNUMA Systems dar (siehe Kapitel 5.2.1). Die Prozessoren kommunizieren 
dabei über direkte HyperTransport Kanäle miteinander (siehe [HYPERTRANS]). 

Sowohl vom Opteron als auch vom Athlon 64 sind Dual-Core Varianten erhältlich. einzelner Ein Dual-
Core Prozessor (Opteron 1xx Serie oder Athlon 64 X2) verhält sich dabei wie ein UMA System, da der 
gesamte Speicher lokal angebunden ist. In Multi-Sockel Umgebungen (Opteron 2xx, 4xx, 8xx mit 2-8 
CPUs) können zwar auch Dual-Core Prozessoren eingesetzt werden, dort verhält sich aber jeder So-
ckel wie ein Node im ccNUMA System. Beide Kerne können den lokal angebundenen Speicher 
schnell ansprechen aber müssen entfernten Speicher über die HyperTransport Links ansprechen. 

Weiterführende Informationen: 

• Wikipedia, AMD Opteron: [OPTERON] 

• Wikipedia, AMD64: [AMD64] 

• Wikipedia, HyperTransport: [HYPERTRANS] 

  2006-11-20 



Diplomarbeit  Seite 29 

5.6.4. Sun UltraSparc T1 (Niagara) 

 
Abbildung 13 UltraSparc T1 

Die Bezeichnung SPARC steht für “Scalable Processor 
ARChitecture“ und bezeichnet eine Prozessorarchitektur. 
Die Architektur wurde ursprünglich von Sun Microsystems 
entwickelt und später als offene Architektur von der Non-
Profit Organisation SPARC International weiterentwickelt. 

Dank der offenen Spezifikation konnten auch andere Her-
steller wie Texas Instruments oder Fujitsu SPARC-
Kompatible Prozessoren herstellen. 

 

Der aktuellste Prozessor dieser Serie ist der UltraSparc T1 (Codename „Niagara) der Firma Sun Mic-
rosystems. Der Prozessor beinhaltet einige sehr Interessante Design-Aspekte. Beispielsweise verfügt 
er mit 8 integrierten Kernen und 4-fach Chip Multi-Threading über 32 logische Einheiten auf einem 
Chip. Zu beachten ist dabei aber, dass Sun zwar von CMT (Chip Multi-Threading) spricht aber der 
Chip pro Taktzyklus nur eine Instruktion decodieren kann. Dies entspricht streng genommen dem 
Super-Threading und nicht CMT (siehe Kapitel 5.3). 

Bemerkenswert ist bei dem Chip insbesondere die Leistungsaufnahme. Trotz den 8 Kernen und 32 
logischen Thread-Verarbeitungseinheiten benötigt der Chip weniger als 80 Watt. Dieser Umstand hat 
Sun wohl auch zum Marketing-Schlagwort „CoolThreads“ geführt. Sun führt in Vergleichen auch im-
mer wieder gerne die Einheit „Watt pro Thread“ an. Hier liegt der Chip mit ~2Watt pro Thread den 
Faktor 20 unter aktuellen Intel Xeon oder den „Power“-Prozessoren von IBM. 

Die Speicheranbindung geschieht über einen gemeinsamen Crossbar-Switch. Daher verhält sich der 
Prozessor wie ein UMA System (siehe Kapitel 5.2.1) 

Es versteht sich von selbst, dass ein solcher massiv paralleler Prozessor entsprechend programmiert 
werden muss. Single-Threaded Applikationen laufen darauf nur sehr zäh ab. Dies hängt auch mit der 
moderaten Taktrate von 1.0 bis 1.2GHz zusammen. Sein gesamtes Leistungspotential kann dieser 
Prozessor nur ausspielen wenn er mit vielen (unabhängigen) Threads arbeiten kann. Somit ist er prä-
destiniert für parallele Anwendungen wie Webserver und Datenbankserver wo sehr viele einzelne 
Anfragen bearbeitet werden müssen. 

Sun hat das Design des Prozessors anfangs des Jahres 2006 unter der Open-Source Lizenz GPL 
veröffentlicht. Seither hat sich eine beachtliche Community gebildet um die Weiterentwicklung voran-
zutreiben. 

Weiterführende Informationen: 

• OpenSPARC, Offene Weiterentwicklung: [OPENSPARC] 

• Wikipedia, Sun SPARC: [SUNSPARC] 

  2006-11-20 



Diplomarbeit  Seite 30 

5.7. Zusammenfassung und Fazit 

Es ist gut zu erkennen, dass die parallele Verarbeitung auf Hardware-Ebene extrem aufwändig ist. Für 
den Programmierer ist kaum mehr nachvollziehbar wie die Instruktionen einer High-Level Entwick-
lungsumgebung in Hardware ausgeführt werden. Am ehesten geht das noch mit hardwarenahen 
Sprachen wie C oder C++ aber selbst auf Assembler-Ebene sind die Verarbeitungen kaum mehr 
Nachvollziehbar. Beispielsweise können mehrere Operationen zu einer zusammengefasst (Macro-OP 
Fusion) oder eine einzelne Instruktion in mehrere zerlegt und parallel verarbeitet werden (Micro-OPs). 

Eine Optimierung auf eine spezifische Hardware-Architektur macht nur selten Sinn da sie sehr auf-
wändig sein kann, unter Umständen nur eine kleine Verbesserung bringt und die Ausführungsge-
schwindigkeit auf ansonsten kompatiblen Prozessoren beeinträchtigen kann. Kaum ein Software Her-
steller bietet auf eine spezielle CPU optimierte Software an. Das führt auch dazu, dass häufig nur der 
kleinste, gemeinsame Nenner der Funktionen benutzt wird. Heutige Compiler bieten zwar häufig die 
Möglichkeit auf gewisse Architekturen zu optimieren. Soll das Programm aber beispielsweise auf allen 
x86 gleichermassen laufen so wird man eher darauf verzichten. Vereinzelt bieten Software-Hersteller 
von Performancekritischen Anwendungen (Compiler-)optimierte Binärdateien an aber das stellt eher 
die Ausnahme dar. 

Allgemein kann man sagen, dass die Hersteller viel unternehmen um bestehenden Code auf neuer 
Hardware schneller ablaufen zu lassen. Diese Optimierung hat aber mittlerweile (physikalische und 
technische) Grenzen Erreicht. Nun versuchen die Hardware Hersteller durch Bereitstellung mehrere 
Parallel arbeitende Einheiten die zur Verfügung stehende Gesamtleistung zu erhöhen. Dies funktio-
niert aber nur, wenn die Software sich auch parallel verarbeiten lässt (Stichwort: Multi-Threading). 

Der Grosse Vorteil von Multi-Threading besteht darin, dass die Software auch noch funktioniert, wenn 
die Hardware keine parallele Verarbeitung unterstützt. In diesem Fall werden einfach alle Threads 
Sequenziell (bzw. scheibchenweise) abgearbeitet. Der dadurch erhöhte Verwaltungsaufwand und die 
resultierende sinkende Gesamtleistung auf Uni-Prozessor Maschinen kann meist in Kauf genommen 
werden. Ausserdem kann die Anzahl Threads dynamisch (auch zur Laufzeit) an die Hardware ange-
passt werden. Somit sind bei entsprechender Programmierung keine Sonderversionen für spezielle 
Systeme nötig. 

5.8. Auswirkungen auf die Aufgabenstellung 

Gemäss der Aufgabenstellung untersuchen wir die Skalierbarkeit von Anwendungen auf aktueller 
Multi-Core/Multi-Threading Hardware unter Windows mit Fokus auf die Java-Programmierung. Insbe-
sondere die Java-Programmierung lässt sehr wenig Spielraum für die hardwarenahe Programmierung 
(siehe Kapitel 8). Java bietet aber eine sehr gute Basis zur Multi-Threaded Programmierung. Dies 
beinhaltet eine breite Basis vorhandener Klassen (auch Thread-Safe) und die relativ einfache Hand-
habung von Threads. Somit liegt es nahe hauptsächlich die Skalierung auf Thread-Ebene zu betrach-
ten. 

Java bietet ausserdem noch den Vorteil, dass der Bytecode zur Laufzeit mittels Just-in-Time (JIT) 
Compiler (siehe Kapitel 8.4.1) in Maschinencode umgewandelt wird. Somit ist es möglich ein plattfor-
munabhängiges Programm zur Laufzeit auf Hardware-Spezifische Eigenheiten hin zu optimieren. 

Die in diesem Kapitel aufgeführten Hardware-Architekturen und Eigenschaften können dabei helfen 
die Theoretischen Möglichkeiten auf einer Plattform abzuschätzen und die Ergebnisse besser zu ver-
stehen. 

Einige der hier aufgeführten Technologien werden für den weiteren Verlauf dieser Arbeit direkte Be-
deutung haben und einige werden nur am Rande (beispielsweise bei der Interpretation der Resultate) 
eine Rolle spielen 

 

Tabelle 5 Technologien mit direktem Einfluss auf die Arbeit 

Technologie Beschreibung 

  2006-11-20 



Diplomarbeit  Seite 31 

SMP, CMP Gemäss der Aufgabenstellung (siehe [5]) ist die Software-Entwicklung auf Mehr-
prozessor und Multi-Core Maschinen zu betrachten. Diese Technologien gehören 
also zur zentralen Aufgabenstellung. 

CMT Sollte die Testplattform CMT unterstützen, dann ist dies sicher zu berücksichtigen 
und abzuklären in wie Fern die einzelnen Threads auf einer CPU parallel ablaufen 
können. 

 

Tabelle 6 Technologien mit indirektem Einfluss auf die Arbeit 

Technologie Beschreibung 

UMA/NUMA Je nach Verfügbarer Hardware und der darauf laufenden Software kann die Spei-
cher-Architektur einen Einfluss auf die Ausführungsgeschwindigkeit haben. Da uns 
aber eh kein System bekannt ist, welches auf derselben Hardware UMA und NU-
MA anbietet ist ein direkter Vergleich sowieso nicht möglich. Die Architektur der 
Testplattform sollte aber bei den Tests im Hinterkopf behalten werden. Dies einer-
seits um die Ergebnisse interpretieren zu können und andererseits um eventuelle 
Optimierungen vornehmen zu könen. 

Skalar 

Superskalar 

Da heutige CPUs alle superskalar sind braucht dies nicht näher betrachtet zu wer-
den. Die Performance der CPUs hängt aber zu einem guten Teil von der dadurch 
erzielten Auslastung der Recheneinheiten ab. Bis so tief in die Hardware-Ebene 
werden wir aber aus zeitlichen Gründen keine Analyse machen können. 

Pipeline Auch hier gilt dasselbe wie für die Skalarität. Aus zeitlichen Gründen werden wir 
keine Analyse bis auf die Stufe der Pipeline durchführen können. 

  2006-11-20 



Diplomarbeit  Seite 32 

6. Betriebssysteme 

6.1. Einleitung 

Neben der Aufgabe vorhandene Geräte zu verwalten und verschiedenen Softwareanwendungen eine 
abstrakte Schnittstelle zur Hardware zu Verfügung zu stellen, übernimmt das Betriebssystem auch die 
Prozess- und Prozessorverwaltung. Im Kontext der Skalierung paralleler Software-Anwendungen be-
deutet dies, dass die Zuweisung von Rechenzeit eines oder mehrerer Prozessoren bzw. Prozessor-
kerne an mehrere Prozesse über das Betriebssystem optimiert gesteuert wird. Im Hinblick auf diese 
Verwaltung von Prozess und Prozessoren ergeben sich folgende Aufgabenbereiche: 

• Prozesserzeugung und Prozessterminierung 

• Prozesswechsel 

• Verwaltung der Prozesskontrollblöcke 

• Prozessablaufplanung und Zuteilung (Scheduling und Dispatching) 

• Prozesssynchronisation und Interprozesskommunikation 

• Zuteilung von Adressraum an Prozesse 

• Interrupt- und Trapbehandlung 

Ziel dieses Kapitels ist es, die grundlegenden Aspekte im Bereich Betriebssystem, Prozesse und Pro-
zessmanagements zu vermitteln um die Threadkontrolle auf Level OS beurteilen zu können. Dieser 
Abschnitt soll das Threadhandling unter Windows XP offen legen und letztendlich Möglichkeiten auf-
zeigen wie dieses beeinflusst werden kann. 

  2006-11-20 



Diplomarbeit  Seite 33 

6.2. Windows XP 

Die Analyse der Skalierbarkeit einer Java-Applikation soll gemäss Vorgaben auf dem OS Windows XP 
untersucht werden. Windows XP (NT 5.1) ist ein Betriebssystem der Firma Microsoft und wurde im 
Oktober 2001 lanciert. Es ist der technische Nachfolger von Windows 2000 (NT 5.0) mit Windows NT-
Kern. Zusätzlich löste es Windows ME der MS-DOS-Linie in der Version „Home Edition“ als Nachfol-
ger in der Produktlinie für Heimanwender bzw. Privatnutzer ab. Die MS-DOS-Linie wurde von Micro-
soft eingestellt. Von Windows XP existieren zahlreiche Varianten. Für diese Arbeit sind folgende Aus-
führungen denkbar: 

Die „Professional Edition“ 

Für den Einsatz in Unternehmen entwickelt, enthält Funktionen wie bspw. Fernverwaltung (Remote 
Control), Dateiverschlüsselung (EFS), zentrale Wartung mittels Richtlinien oder die Nutzung von meh-
reren Prozessoren (SMP). 

Die „Home Edition“ 

Preiswerte Variante um einige Eigenschaften der Professional Edition gekürzt, basiert jedoch auf 
demselben NT-Kern. 

Windows XP „x64 Edition“ 

Eine spezielle 64-Bit Version, die ausschliesslich für AMD- und Intel-Prozessoren mit x86-64-
Erweiterung entwickelt wurde. Sie läuft nicht auf 64-Bit-Prozessoren anderer Hersteller und ist an-
sonsten identisch zu Windows XP Professional. Die x64 Edition ist als OEM- und als System-Builder-
Lizenz erhältlich. Im Zusammenspiel zwischen Prozessor und Betriebssystem kann auch eine konven-
tionelle 32-Bit-Software ausgeführt werden. Somit ist es nicht erforderlich, dass die auszuführenden 
Programme als 64-Bit-Version vorliegen müssen. Dieses Verfahren des x64-Prozessors wird auch 
Mixed-Mode genannt - also das Ausführen von 64- und 32-Bit-Software gleichzeitig auf einem Pro-
zessor. Jedoch ist es erforderlich, dass die Treiber als 64-Bit-Version vorliegen. Die Treiber werden 
vom Hardware-Hersteller für das Betriebssystem hergestellt und zur Verfügung gestellt. 

  2006-11-20 



Diplomarbeit  Seite 34 

6.2.1. Interne Struktur 

Windows 2000/XP ist als Schichtenarchitektur implementiert. Hierbei können die Schichten des Ker-
nel- und User-Mode unterschieden werden. Der Hardware Abstraction Layer (HAL), die Ausführungs-
schicht (Executive) und der eigentliche Kernel laufen im „Protected-Mode“. Sie haben einen geschütz-
ten Speicherbereich der gegen „schädliche“ Prozesse aus dem Userspace abgeschottet ist (bspw. 
fehlerhafte Applikationen). Windows NT/2000/XP ist in C, zu kleineren Teilen in C++ programmiert. 
Wenige Softwareteile, die direkt die Hardware ansprechen, sind auch in Assemblersprache kodiert. 

 
Abbildung 14 Interne Struktur Windows NT/2000/XP 

Der Windows Kernel 

Der Kernel von Windows 2000/XP ist die zentrale Kommunikationsschnittstelle für die Module der 
Ausführungsschicht die Aufgaben wie Interrupt- oder Exceptionhandling oder das Scheduling wahr-
nimmt. Der Kernel ist objektorientiert implementiert und nutzt Dispatcher- und Control-Objekte um 
seine Aufgaben zu erledigen. Thread-Objekte sind dabei Dispatcher-Objekte die immer zu einem spe-
zifischen Prozess assoziiert werden können und vom Kernel direkt koordiniert werden. Das Timer-
Objekt ist ein weiteres wichtiges Dispachter-Objekt, welches die verbrauchte CPU-Zeit überwacht und 
über allfällige Timeouts oder abgelaufene Zeitscheiben (Scheduling) informiert. 

  2006-11-20 



Diplomarbeit  Seite 35 

6.3. Das Prozess Modell 

6.3.1. Begriff des Prozesses 

Ein Prozess wird im allgemeinen Sprachgebrauch als „Programm in Ausführung“ bezeichnet. Er benö-
tigt eine Anzahl physikalischer und logischer Ressourcen wie bspw. Prozessor (CPU), I/O-Geräte, 
Arneitsspeicher, damit er ablaufen kann. 

Eine andere, nachvollziehbare Definition eines Prozesses ist „Der Prozess als Code und Daten im 
Arbeitsspeicher plus zugehöriger Kontext (Register im Prozessor, Stack, Puffer, Filehandles)“ also 
Programmanweisungen und Daten, die im Hauptspeicher liegen sowie der Registerbelegung und 
Verwaltungsinformationen für diesen Prozess. 

Pro betrachtete Zeiteinheit kann in einer Einprozessor-Architektur ohne spezielles Zutun (bspw. Chip 
Multi Threading) gleichzeitig nur ein Prozess ausgeführt werden. Die Prozesse können aber „logisch-
parallel“ ablaufen indem der Prozessor nach einer festgelegten Strategie zwischen den Prozessen 
umschaltet wird (Multiplexing). Die Strategie mit der diese Prozesse auf CPUs verteilt werden wird 
durch den Scheduler des Betriebssystems bzw. deren Scheduling-Algorithmus bestimmt. 

6.3.2. Der Prozesskontext 

Die Vergabe von Rechenzeit von einem laufenden an einen lauffähigen Prozess wird als Kontext-
wechsel (engl. Context-Switch) bezeichnet. Das verwaltende Betriebssystem muss dabei in der Lage 
sein, den  aktuellen „Zustand“ eines Prozesses zu speichern, um diesen zu einem späteren Zeitpunkt 
wieder aktivieren bzw. reproduzieren zu können. Die Implementierung auf Level OS erfolgt über Pro-
zesstabellen mit einem „Process Control Block“ (PCB) für jeden Prozess. 

Der PCB wird auch als Kontext eines Prozesses bezeichnet und enthält die 4 Elemente: 

 
Abbildung 15 Process Control Block 

  2006-11-20 



Diplomarbeit  Seite 36 

Hardware Kontext 

• Zustand des Prozessors, Abbild der Register 

• Programm-Counter (PC) 

• Prozess-Status-Register (PS) 

• Stack-Pointer (SP) 

• Allgemeine Prozessor-Register (R#) 

Software Kontext 

• Verwaltungsdaten für Prozess-Ressourcen 

• Prozess-ID 

• Zustand Prozess (running, ready, blocked) 

• Informationen über I/O (bspw. Offene Files) 

• Privilegien 

Memory Kontext 

• Beschreibung des Adressraumes des Prozessors (bspw. Obere/untere Grenze des zugeteil-
ten Speicherbereichs) 

6.3.3. Context-Switch 

Ein Context-Switch nennt man den Vorgang, wenn das OS die Abarbeitung eines Prozesses nach 
einem Interrupt unterbricht und mit einem anderen Prozess bzw. Routine weiterfährt. Für einen Con-
text-Switch, muss das OS den Zustand des bestehenden Prozesses im PCB speichern und den PCB 
des neuen Prozesses laden. Dieser Vorgang kostet Zeit und kann als „nichtproduktiver Overhead“ 
bezeichnet werden. Mann kann daher für solche Prozesse folgendes festhalten: 

• Die Erzeugung von Prozessen ist sehr aufwendig 

• Der Context-Switch ist Abhängig vom PCB ebenfalls aufwendig 

save state into PCB0

reload state from PCB1

save state into PCB1

reload state from PCB0

Process P0 Process P1

executing

executing

executing

idle

idle

idle

 
Abbildung 16 PCB 

  2006-11-20 



Diplomarbeit  Seite 37 

6.3.4. Klassifizierung von Prozessen 

Mit Bezug auf den bei der Initialisierung zugewiesene Adressraum eines Prozesses werden im Allge-
meinen folgende zwei Kategorien gebildet: 

Schwergewichtige Prozesse 

• Besitzt eigenen Adressraum 

• Prozesswechsel erfordert auch einen Wechsel des Adressraumes 

Leichtgewichtige Prozesse (Threads) 

• Besitzen gemeinsamen Adressraum 

• Prozesswechsel erfordert keinen Wechsel des Adressraumes 

Kernel

Prozess-Kontext Prozess-Kontext

Schwergewichtiger 
Process

Leichtgewichtiger 
Prozess (Thread)

 
Abbildung 17 Schwer- und leichgewichtige Prozesse 

6.3.5. Privilegierungsstufen im OS 

In älteren Generationen von Betriebssystemen war es möglich, Programme zu schreiben die auch auf 
Speicherbereiche des Betriebssystems zugreifen konnten. Durch bewusste oder unbewusste Pro-
grammierfehler konnte das Betriebssystem so zum Absturz gebracht werden. Diese Problematik führ-
te zur Einführung von Privilegierungsstufen für Prozesse mit denen Benutzerprozesse in einer Art 
„Sandbox“ gekapselt werden können. Das Verständnis dieses Models ist wichtig, weil es ein essentiel-
ler Unterschied zwischen einem Prozess und Thread darstellt. 

In einem „autoritären“ Betriebssystem erfolgt die Implementierung von Prozessen unter Verwendung 
verschiedener Privilegierungsstufen, die den sichtbaren bzw. verwendbaren Adressraum und Befehls-
satz eines Prozesses eingrenzen. In diesem Sicherheitskonzept kann ein so genannter „unprivilegier-
ter“ Prozess (bspw. Ring 3) nicht direkt auf HW-Ressourcen zugreifen oder gar den Speicher eines 
„privilegierteren“ Prozesses im Ring 0-2 beschreiben. 

Intel-Prozessoren seit dem 386er unterscheiden 4 verschiedene Sicherheitsstufen (Modi) über welche 
die Privilegierung stufenweise eingeschränkt wird. Der Modus mit dem stärksten Schutz wird als Ker-
nel-Mode und der mit dem geringsten als User-Mode bezeichnet. 

  2006-11-20 



Diplomarbeit  Seite 38 

Die verbreiteten Betriebssysteme für x86 (dazu gehören Linux und Windows) nutzen lediglich 2 der 4 
möglichen CPU-Ringe. Im Ring 0 werden der Kernel und alle Hardwaretreiber ausgeführt, während 
die Anwendungssoftware im unprivilegierten Ring 3 arbeitet. 

Kernel-Mode

Ring 3

Ring 2

Ring 1

Ring 0

< User-Mode >

Gate-Deskriptor
 

Abbildung 18 User- und Kernel-Mode 

Will nun ein Benutzerprozess die Dienste des Betriebssystems nutzen, kann er dies über Systemcalls 
realisieren. Dabei erfolgt ein Context-Switch bei dem die Kontrolle des Programms auf das Betriebs-
system übergeht. Das OS im Kernel-Mode hat Zugriff auf alle Ressourcen und Speicherbereiche und 
kann so die geforderte Aufgabe erfüllen. Nach erfolgreichem Abschluss erfolgt ein erneuter Context-
Switch und der Übergang in den User-Mode. 

Das “Schlupfloch” oder die Möglichkeit für einen weniger privilegierten Prozess, die API des Kernels 
zu nutzen, wird über Gate-Deskriptoren realisiert. Sie repräsentieren einen kontrollierten Übergang 
von einem privilege-Niveau zu einem anderen. Die Deskriptoren sind in der Global Deskriptor Table 
(GTD) gespeichert, die für alle Prozesse zugänglich ist. 

6.4. Das Thread-Modell 

Ein Thread ist die ausführbare Einheit (execution) eines Prozesses. Threads erweitert die oben be-
schriebene Prozessdefinition um die Möglichkeit, mehrere voneinander unabhängige „Ausführungsfä-
den“ in einer Prozessumgebung (Prozesskontext) laufen zu lassen. 

Threads sind leichtgewichtig, d.h. sie bestehen aus einem Programm-Counter (PC), einem Register-
Set und einem Stack. Sie laufen im Kontext eines Prozesses ab und teilen dabei mit einem „Peer-
Thread“ (Thread im gleichen Prozess-Kontext) Elemente wie bspw. Adressraum, globale Variabeln, 
oder geöffnete Dateien. 

  2006-11-20 



Diplomarbeit  Seite 39 

Multithreaded-Process

Heap

Data

Code
PC

PC

PC

Multithreaded-Process

Heap

Data

Code

Thread 1 Register Stack

Thread 2 Register Stack

 
Abbildung 19 Multithreaded Process 

In einem Multithreaded-Process (ein Prozess mit 2...n Threads) werden vom Prozesskontext gemein-
sam genutzte Elemente der Threads bereitgestellt. Durch die gemeinsame Nutzung entsteht der Vor-
teil, das Threads mit wenig Aufwand erzeugt werden können (unter der Voraussetzung, dass der Pro-
zess bereits existiert). Der Context-Switch von Threads ist ebenfalls effizienter da nicht der “ganze” 
Prozesskontext ausgetauscht werden muss. Bei einem Threadwechsel muss lediglich der Threadkon-
text berücksichtigt werden. 

Da Threads, die demselben Prozess zugeordnet sind, den gleichen Adressraum verwenden, ist eine 
Kommunikation zwischen diesen Threads von vorneherein möglich (Interprozesskommunikation). 
Diese Vorteile durch gemeinsam genutzte Kontexte, birgt aber den Nachteil, dass mit Synchronisati-
ons-Massnahmen gezielt Konflikte im Zugriff auf Speicherbereiche abgefangen werden müssen.  

6.4.1. Der Threadkontext 

Der Threadkontext hängt im Wesentlichen von der Prozessor-Architektur ab. Ein Kontextwechsel um-
fasst im Allgemeinen das Sichern und Laden folgender Daten eines Threads: 

Threadkontext 

• Program counter 

• Statusregister des Prozessors 

• Weitere Register des Prozessors 

• User- und Kernel-Stackpointer 

• Pointer zum Adressraum in dem der Thread läuft 

6.4.2. Klassifizierung von Threads 

Es existieren zwei grundsätzlich verschiedene Arten, wie Threads implementiert werden können. 
„Richtiges“ Threading wird die Methodik genannt, in der Threads im Kernel implementiert werden 
(Kernel-Space). Dabei kennt der Kernel jeden Thread was eine Voraussetzung für die Verteilung die-
ser Threads auf mehrere CPUs ist. 

  2006-11-20 



Diplomarbeit  Seite 40 

Eine Spezialisierung ist die Implementation im User-Space. Dabei sieht der Kernel nur den Prozess 
mit dem Initialthread, nicht aber die 2...n Threads die möglicherweise in diesem einen Prozesskontext 
laufen. Es ist offensichtlich, dass die Verwaltung solcher Threads nicht vom Kernel übernommen wer-
den können. User-Level-Threads benötigen eine Runtime-Umgebung welche die Verwaltung dieser 
Threads übernimmt. Da die Verwaltung bei der Runtime-Umgebung liegt, kann der Kernel diese User-
Threads auch nicht auf mehrere CPUs verteilen. 

Als Mischform der beiden oben genannten Varianten kann die Hybride Implementierung betrachtet 
werden. Sie verbindet die Vorteile beider Implementierungsarten. 

Kernel-Level-Threads (Abbildung 1:1) 

Die Verwaltung dieser Thread erfolgt über eine Thread-Tabelle, die im Kernel angelegt ist. Analog der 
üblichen Prozesstabelle mit den PCBs, ist im Kernadressraum auch die Threadtabelle angelegt. Der 
Kernel-Thread besitzt folgende charakteristische Eigenschaften: 

• Thread Im Kerneladressraum 

• Kernel verwaltet Prozesse und Threads 

• Operation zur Verwaltung von Threads über Systemcalls 

• Kernel besitzt Prozesstabelle (PCB) und Threadtabelle 

• Ausführung der Threads erfordert keine Laufzeitumgebung 

U
se

r-
S

pa
ce

K
er

ne
l-

S
pa

ce

 
Abbildung 20 Kernel-Level-Thread 

Vorteile Kernel-Level-Threads 

• Keine blockierenden Systemaufrufe 

• Threads können vom Kernel direkt auf CPUs verteilt werden 

• Portierbarkeit der Applikationen geringer (Threadoperationen über Systemcalls) 

Nachteile Kernel-Level-Threads 

• Threadwechsel benötigt Mode-Wechsel zum Kern (Kontext-Switch) 

• Erzeugen, Beenden, etc. benötigt Systemcall (Kontext-Switch) 

• Aufwand für Erzeugung grösser (bspw. Solaris/Sparc2;): 

  2006-11-20 



Diplomarbeit  Seite 41 

o Benutzer-Thread 52 μSec 

o Kernel-Thread  350 μSec 

o Prozess  1700 μSec 

Kernel-Level-Threads (KLT) finden in Windows NT/2000/XP und Linux Anwendung 

User-Level-Threads (Abbildung 1:n) 

Die Implementierung und Verwaltung dieser Threads erfolgt über ein Runtime-System auf Library-
Ebene. Analog dem Kernel verwaltet die Runtime-Umgebung Thread mittels Thread Control Blocks 
(TCBs). Diese Art Threads zu realisieren, hat den Vorteil, dass sie unabhängiger vom OS gestaltet 
werden kann und somit die Poritierbarkeit einer Applikation eher gegeben ist. Der Context-Switch ist 
ebenfalls performanter da er ohne Einwirkung des Kernels gemacht werde kann. 

Im Kontext der Skalierbarkeit von Applikationen zeigt sich hier aber der klare Nachteil, dass mehrere 
User-Threads (im gleichen Prozesskontext) vom Kernel nicht auf CPUs verteilt werden können. Der 
Kernel kennt lediglich den Initialthread des Prozesses. Ein weiterer Nachteil zeigt sich dadurch, dass 
bei einem blockierenden Systemaufruf eines Threads seine Peer-Threads ebenfalls blockieren. 

Der User-Level-Thread hat folgende charakteristische Eigenschaften: 

• Thread im Benutzeradressraum 

• Kernel kennt Threads in Prozess nicht 

• Kernel verwaltet nur „gewöhnlicher“ Prozess (PCB) 

• Threads durch Laufzeitumgebung verwaltet (TCB) 

U
se

r-
S

pa
ce

K
er

ne
l-

S
pa

ce

 
Abbildung 21 User-Level-Thread 

  2006-11-20 



Diplomarbeit  Seite 42 

Vorteile User-Level-Threads 

• Für Thread Wechsel benötigt kein Kernel-Mode Privilegien 

• Anwendungsspezifisches Scheduling der Threads möglich 

• Unabhängig vom Betriebssystem. 

Nachteile User-Level-Threads 

• Blockierender Systemaufruf möglich 

• Scheduling muss von der Laufzeitumgebung sichergestellt werden 

• Keine Verteilung auf mehrere CPU möglich 

User-Level-Threads finden unter Unix und Linux Anwendung. 

Hybride-Threads (Abbildung m:n) 

Hybride Threads sind eine Kombination von Kernel- und User-Level-Threads. Ziesetzung ist dabei, die 
Vorteile beider Modelle zu vereinen. In einem kombinierten System erfolgt die Thread-Erzeugung 
vollständig im Userspace, ebenso Teile des Scheduling und der Synchronisation. 

Die User-Level- Threads werden einer geringeren oder gleichen Anzahl von Kernel-Level-Threads 
zugeordnet. Möglich wird dies durch das Konzept der „leichtgewichtigen Prozesse“ (LWP), die „Mittler“ 
im Userspace für die Kernel Threads sind. Der Entwickler hat die Möglichkeit zu bestimmen, welche 
und wie viele Threads auf einen LWP abgebildet werden sollen. 

Die Threads sind in diesem Fall ungebunden, da sie nach der Implementierung um einen LWP kon-
kurrieren. Die LWPs besitzen zu den User-Level- Threads eine 1:n Beziehung und eine1:1 Beziehung 
zu den Kernel-Level-Threads. Sie werden analog der 1:1-Abbildung als Kernel-Level-Threads behan-
delt. 

 
Abbildung 22 Hybride Threads 

  2006-11-20 



Diplomarbeit  Seite 43 

6.5. Prozessmodell Windows 

Unter Windows werden Prozesse als Objekte implementiert. Die Prozesse sind gleichgestellt, d.h. sie 
stehen auf der gleichen Ebene. Die baumartige Prozesshierarchie wie unter UNIX, in der 1 Vaterpro-
zess 1..n Kindsprozesse haben kann, existiert unter Windows nicht. Windows kennt in Bezug auf ihr 
Prozessmodell die Objekttypen Job, Prozess, Thread und Fiber. 

6.5.1. Objekttypen 

Job 

Ein Job ist eine Menge von Prozessen, die gemeinsame BM-Quoten, Zeitbegrenzungen und ev. 
Zugriffsbeschränkungen haben. 

Prozess 

Ein Prozess ist ein Objekt, das Betriebsmittel (Ressourcen) einschliesslich eines Adressraums hat. 
Jeder Prozess hat einen geschützten Adressraum von 4 GB. 

Thread 

Ein Thread ist ein Ausführungspfad innerhalb eines Prozesses. Jeder Prozess startet mit einem Initi-
althread. Anschliessend können beliebige zusätzliche Threads erzeugt werden. Diese Thread-
Funktionalität auch bekannt als Win32-Thread ist direkt in die Kernel32.dll eingefügt und steht für die 
Windows Betriebsystem der NT-Familie (Win2000, XP, Vista) zu Verfügung. 

Da die Entwicklung von .NET-Anwednungen mit .NET-Threads von Microsoft gezielt gefördert wird, 
verliert der Win32-Thread in diesem Bereich an Bedeutung. Allerdings ist für nicht .NET-Applikationen 
und im Bereich der Echtzeitprogrammierung der Win32-Thread nach wie vor wichtig. 

Win32-Threads bieten auch eine grosse Funktionsvielfalt von Mutexen und Semaphoren bis Messa-
ge-Queues und Task-Pools. Win2000 und WinXP realisieren diese Threads als Kernel-Threads. 

Fiber 

Ein Fiber kann unter Windows als „Thread in einem Thread“ betrachtet werden. Er liegt vollständig im 
Benutzerbereich und ist somit für den Kernel nicht sichtbar. Das Scheduling eines solchen Fibers ist 
nonpreemtive, d.h. dass ein Fiber muss die Kontrolle über ein Win32-Thread selbständig übergeben. 
Der aktuelle Fiber übernimmt für die Zeit der Ausführung die Identität des Threads in dem er läuft. 
Blockiert ein Fiber, blockieren auch die anderen Fibers dieses Threads bzw. der Thread selbst. 

Fibers können schnell gestartet und auf eine CPU verteilt werden, da es sich um eine vom Kernel 
unabhängige User-Level Implementierung handelt. Die Umschaltung von Fibers ist wesentlich effizien-
ter als eine Threadumschaltung. 

Die Unterstützung nur einer CPU fällt dabei nicht ins Gewicht, da man bereits durch eine geeignete 
Aufteilung der Win32-Threads für eine gute Lastenbalancierung sorgen kann. Geeignet sind Fibers für 
Anwendungen, bei denen kurze Antwortzeiten im Vordergrund stehen. 

6.5.2. Abbildung von Threads 

Windows 2000/XP realisiert mit seiner Prozess/Thread-Architektur das Kernel-Level-Thread-Modell 
(1:1-Zuordnung) in dem in einem Prozesskontext mehrere Kernel-Level-Threads laufen die vom Ker-
nel direkt verwaltet werden. Der Kernel verteilt dabei nach einem „priority-driven, preemtive scheduling 
system,“ die CPU(s) an mehrere Threads unterschiedlicher Prozesse. 

  2006-11-20 



Diplomarbeit  Seite 44 

6.5.3. Threadzustände 

Windows 2000/XP definiert in Bezug auf Threadzustände folgende Möglichkeiten: 

Tabelle 7 Threadzustände in Windows 

Zustand Code Beschreibung 

Waiting 5 Thread wartet auf I/O, falls Ressource verfügbar folgt Zustand Ready 

Ready 1 Thread ist lauffähig (vom Scheduler berücksichtigt) 

Running 2 Thread in Ausführung 

Standby 3 Nächster Thread in Ausführung (ausser es folgt Änderung Priorität 
oder Interrupt) 

Transition 6 Ablaufbereiter Thread, dessen Ressourcen nicht verfügbar sind 

Terminated 4 Beendeter Thread 

Zu einem bestimmten Zeitpunkt kann nur ein Thread pro Prozessor(kern) im Zustand Running sein. 
Alle anderen lauffähigen Threads sind dann im Zustand Waiting oder Ready. Ein laufender Thread 
wird ausgeführt bis eine der folgenden Übergangsbedingung eintritt: 

• Der Thread überschreitet die zulässige Ausführungszeit (Timesclice, Quantum) 

• Ein höher priorer Thread geht in den Zustand Waiting über 

Der laufende Thread wird durch ein I/O-Ereignis in den Zustand Waiting versetzt 

6.6. Das Prozessmodell Java 

Seit Java 1.0 sind Threads fester Bestandteil der Java-Standardbibliothek. Durch verschiedene Imp-
lementierungen der JRE gibt es aber auch Unterschiede im verwendeten Thread-Modell. Ältere Imp-
lementierungen beispielsweise nutzen noch keine Kernel-Threads womit die Voraussetzung für Multi-
Prozessor-Unterstüzung nicht gegeben ist. 

6.6.1. Klassifizierung 

In einem Java-System gibt es zwei Arten von Threads: User Threads und Daemon Threads. Norma-
lerweise werden Daemon Threads durch das System erzeugt. Daemon Threads werden bis auf eine 
Ausnahme gleich behandelt wie User Threads. Sie haben eine Priorität, haben dieselben Methoden 
und Zustände. Das einzige Mal wo die Java Virtual Machine prüft ob es sich bei einem Thread um 
einen Daemon- oder einen User Thread handelt, ist wenn ein Thread terminiert. Handelt es sich bei 
diesem Thread um einen User Thread, so wird geprüft, ob noch weitere User-Threads vorhanden 
sind. Ist dies nicht der Fall, sind also keine oder nur noch Daemon-Threads vorhanden, so terminiert 
das Programm. Der Grund dafür ist einfach. Daemon Threads sind als Server-Threads für die User 
Threads gedacht. Gibt es keine User-Threads mehr, so gibt es nichts mehr zu bedienen. Ein typisches 
Beispiel für einen Daemon Thread ist der Garbage Collector. 

6.6.2. Erzeugung 

In Java ist ein Thread eine Instanz einer von der Klasse Thread abgeleiteten Klasse. Dabei wird die 
Methode run() überschrieben und darin definiert, was der Thread tun soll. Eine solche Klasse kann 
weitere Methoden haben, die nichts mit dem Thread zu tun haben. All diese Methoden, sowie alle 
Instanzvariablen einer solchen Klasse werden, abgesehen von den Sichtbarkeiten, gleich behandelt 
wie andere Klassen. Ein Thread kann nur einmal gestartet werden! Soll die run()-Methode ein zwei-
tes Mal ausgeführt werden, muss zuerst eine neue Instanz erzeugt werden. 

  2006-11-20 



Diplomarbeit  Seite 45 

Eine andere Möglichkeit besteht darin, dass die Thread-Klasse das Interface Runnable implemen-
tiert. Dieses Interface definiert eine einzige Methode run() ohne Parameter. Die Klasse Thread sel-
ber implementiert Runnable. Dies wird insbesondere dann benötigt, wenn die Thread-Klasse bereits 
von einer anderen Klasse abgeleitet ist (Java unterstützt keine Mehrfachvererbung) 

Siehe dazu  auch Kapitel 8.1.1. 

6.6.3. Kontrolle 

Die Kontrolle bzw. das Laufzeitverhalten von Java-Threads kann durch den Aufruf mehrerer Methoden 
gezielt gesteuert werden. 

Siehe dazu auch Kapitel 8.1.1. 

Die Wichtigsten Methoden der Threadkontrolle sind ebenfalls im Kapitel 8.1.1 erklärt. 

6.6.4. Laufzeitumgebung eines Thread 

Die Java Virtual Machine (JVM) bildet die Laufzeitumgebung der Threads in Java. Sie ist in Software 
realisiert und bildet einen Layer zwischen der Hardware-Plattform und dem Java-Programm. Der JVM 
obliegen für die korrekte und sichere Ausführung von Java-Programmen zahlreiche Aufgaben. Eine 
zentrale Aufgabe ist die Verwaltung von Java-Threads. Da die JVM nicht a priori auf Multithreading-
Funktionalität des darunterliegenden Betriebssystems zählen kann, muss diese Aufgabe selber in die 
Hand nehmen können. Über einen Threadverwalter werden Threads in einem Zeitmultiplex-Verfahren 
„zwangssequenzialisiert“. Das bedeutet, dass zur Laufzeit laufende Threads zu Gunsten eines ande-
ren unterbrochen werden und der Bytecode-Ausführer immer nur ein Thread gleichzeitig ausführt. 

6.6.5. Abbildung auf OS-Threads 

Die Art und Weise wie Java Threads auf OS-Threads abgebildet werden, entscheidet letztendlich 
darüber ob eine Skalierung dieser Threads bzw. Applikation überhaupt möglich ist. Sind die Java-
Threads für das Betriebssystem nicht sichtbar, können diese auf einem SMP-System auch nicht ver-
teilt werden. Die Kombination JVM-/OS-Ausführung führt in diesem Zusammenhang zu „green“- oder 
„native“ Threads. 

Green-Threads 

Green Threads sind simulierte Threads innerhalb des Virtual-Machine-Prozesses. Sie werden in der 
Virtual Machine selbst realisiert weil das Betriebssystem keine Threads unterstützt. 

Native Threads 

Unterstützt das Betriebssystem des Rechners, auf dem die JVM läuft, Threads direkt, so nutzt die 
Laufzeitumgebung diese Fähigkeit in der Regel. In diesem Fall haben wir es mit nativen Threads zu 
tun. Unter Windows NT/2000/XP werden Java-Threads auf Threads im Betriebssystem abgebildet, die 
innerhalb des Virtual-Machine-Prozesses ablaufen 

  2006-11-20 



Diplomarbeit  Seite 46 

6.7. Prozessverwaltung durch Scheduling 

In einem Multi-Threaded Anwendung konkurrieren mehrere lauffähige Prozesse um die Rechenzeit 
des Prozessors. Das Scheduling-Modul der Ausführungseinheit des Betriebssystems hat die Aufgabe 
diese Rechenzeit an die Prozesse in der Ready-Queue zu verteilen. Die Zuweisung erfolg dabei nicht 
willkürlich sonder bspw. nach dem Optimierungsprinzip folgender Bereiche: 

• Fairness der Prozesse (kein Starving) 

• Berücksichtigung der Wichtigkeit von Prozessen (Priority) 

• Maximale HW-Auslastung 

• Maximaler Durchsatz des Systems (kleine Abarbeitungszeit) 

• Minimale Scheduling Aufwand 

• Tolerierbare Antwortzeit (Turaround-Time) 

Diese Aspekte werden in individuellen Scheduling-Algorithmen umgesetzt, die Aufgrund verschiede-
ner Prozess-Messgrössen entscheiden, ob und wann ein Prozess die Rechenzeit abgeben muss. Die 
effektive Laufzeit eines Prozesses bis zum nächsten Context-Wechsel wird (dynamisch) beeinfluss 
durch: 

• Laufzeitverhalten des Prozesses (I/O- oder CPU-lastig) 

• Aktuelle (relative) Wichtigkeit des Prozesses 

• Zulässigkeit einer Unterbrechung (preemtion) 

• Ressourcenbedarf und effektiver –verbrauch des Prozesses 

6.7.1.1. Scheduling-Strategien 
Die Theorie definiert grundsätzlich zwei verschiedene Ansätze, wie einem Prozess die Rechenzeit 
entzogen werden kann: 

Nonpreemtives Scheduling 

Einem Prozess kann die CPU nicht entzogen werden. Diese wird nur freiwillig abgegeben bspw. bei 
einem I/O-Request oder nach der Terminierung 

Preemtives Scheduling 

Einem Prozess kann die CPU jeder Zeit zu Gunsten eines anderen Prozesses entzogen werden 
bspw. durch einen höher prioren Prozess oder nach Ablauf der Zeitscheibe. 

6.7.1.2. Scheduling-Algorithmen 
Die nachfolgende Ausführung über 3 bekannte Scheduling-Algorithmen hat nicht den Anspruch einer 
vertieften Beschreibung dieser Verfahren. Ziel ist es hier, dem Leser die Begriffe wieder ins Bewusst-
sein zu rufen für eine spätere Zuordnung. 

FIFO-Scheduling 

Diese Verfahren nimmt keine Rücksicht auf Wichtigkeit oder Laufzeitverhalten von Prozessen. Ein neu 
erzeugter Prozess wird in der Ready-Queue eingeordnet und muss mit der Ausführung warten, bis 
alle vor ihm liegenden Prozesse abgearbeitet sind. Die Prozessorzeit wird hier nach dem nonpreemti-
ve-Ansatz nur freiwillig abgegeben. Falls ein Prozess aus einem blocked-in den ready-Zustand ge-
langt wird er wieder am Ende der Queue eingereiht (FCFS; first come first served) 

Round Robin-Scheduling 

Das Round-Robin-Verfahren kann vom letztgenannten FIFO-Verfahren abgeleitet werden. Die Pro-
zesse werden der Reihe nach in die Ready-Queue abgelegt und wie geordnet auch abgearbeitet (FI-

  2006-11-20 



Diplomarbeit  Seite 47 

FO). Der entscheidende Unterschied zum Round-Robin liegt darin, dass die maximale Ausführungs-
zeit eines Prozesses durch die Timeslice (Zeitscheibe, Quantum) begrenzt ist. Einem Prozess der 
diese Grenze erreicht, wird die CPU auf jeden Fall entzogen. Die Systemcharakteristik hängt hier von 
der Grösse dieser Timeslice ab – wird sie gross gewählt verhält sich das System wie FI-
FO_Scheduled, wird sie (zu) klein gewählt wird das System durch Context-Wechsel überladen. 

Priority-Scheduling 

Das Priority-Verfahren ordnet die Ready-Queue nicht nach der Ankunftszeit eines Prozesses sondern 
nach deren Priorität. Prozesses erhalten unter Berücksichtigung der oben genannten Prozess-
Messgrössen (bspw. Laufzeitverhalten) Prioritäten zwischen 0 bis 31. Diese bestimm die Reihenfolge 
in der Queue und den Zeitpunkt der Abarbeitung. Das Verhalten während der Laufzeit des Prozesses 
ist preemtive oder nonpreemtive: 

• Preemtive: Erscheint ein höher priorer Thread wird dem laufenden Thread die CPU entzogen. 

• Nonpreemtive: Ist die ready-Queue nach Prioritäten geordnet, verhält sich dieses Verfahren 
wie FIFO-Scheduled. 

Das letztgenannte birgt das Problem des Starving (Verhungern von Prozessen mit tiefer Priorität). 
Lösung bietet hier die Erweiterung in Form von „Priority-Feedback-Scheduling“ bei dem die Priorität 
wartender Prozesse laufend inkrementiert wird oder Prozessen mit Laufzeit die Priorität dekrementiert 
wird. 

6.8. Prozessverwaltung Windows 

Das Scheduling unter Windows 2000/XP erfolgt auf der Ebene von Threads und nicht auf Prozess-
ebene. Windows implementiert ein „priority-driven – preemtive scheduling”-System wo jener lauffähige 
Thread mit der höchsten Basispriorität die Prozessorzeit erhält. Wird ein Thread selektiert, läuft er 
maximal den festgelegten Timeslice (Quantum) ab und wird von einem gleichen oder höher prioren 
Thread abgelöst. Windows 2000/XP implementiert mit diesen Mechanismen der klassische Round-
Robin-Ansatz. 

Windows definiert insgesamt 32 Prioritätsstufen (0...31) wobei 0 die tiefste- und 31 die höchste Priori-
tät repräsentiert. Die Priorität eines Threads setzt sich zusammen aus: 

• der Priority Class seines Prozesses und 

• dem Priority Level des Threads im Kontext dieses Prozesses 

Priority Class und Priority Level werden kombiniert um die Base Prority des Threads zu bestimmen. 
Diese Base Priority wird verwendet um die Scheduling Entscheidungen zu treffen. 

6.8.1. Priority Class 

Unter Windows 2000/XP gehört jeder Prozess zu einer der folgenden Priority Classes: 

Tabelle 8 Priority Class 

Prioritätsklassen 

IDLE_PRIORITY_CLASS

BELOW_NORMAL_PRIORITY_CLASS

NORMAL_PRIORITY_CLASS

ABOVE_NORMAL_PRIORITY_CLASS

HIGH_PRIORITY_CLASS

REALTIME_PRIORITY_CLASS

  2006-11-20 



Diplomarbeit  Seite 48 

Per Default ist die Priority Class eines Prozesses mit NORMAL_PRIORITY_CLASS definiert. Mit der 
SetPriorityClass-Methode kann die die Priority Class eines Prozesses verändert werden. Die 
GetPriorityClass-Methode gibt die aktuelle Priority Class zurück. 

SetPriorityClass Priority Class setzen  

 
BOOL WINAPI SetPriorityClass( 
 HANDLE hProcess, 
 DWORD dwPriorityClass 
); 

Listing 2 SetPriorityClass 

 

Attribut Beschreibung 

dwPriorityClass Siehe Tabelle 8 Priority Class

 

GetPriorityClass Priority Class abfragen 

 
DWORD WINAPI GetPriorityClass( 
 HANDLE hProcess 
); 

Listing 3 GetPriorityClass 

6.8.2. Priority Level 

Die nachfolgende Liste zeigt die möglichen Priority Levels innerhalb der Priority Classes der Prozes-
se: 

Tabelle 9 Priority Level 

Prioritätslevel 

THREAD_PRIORITY_IDLE

THREAD_PRIORITY_LOWEST

THREAD_PRIORITY_BELOW_NORMAL

THREAD_PRIORITY_NORMAL

THREAD_PRIORITY_ABOVE_NORMAL

THREAD_PRIORITY_HIGHEST

THREAD_PRIORITY_TIME_CRITICAL

Threads werden per Default mit dem Priority Level THREAD_PRIORITY_NORMAL erzeugt. Das bedeu-
tet, dass die Thread Priorität der Prozess Priorität entspricht. Mit der SetThreadPriority-Methode 
kann nach der Erzeugung der Threads die relative Priorität eines Threads innerhalb der Threads die-
ses Prozesses verändert werden. Den aktuelle Priority Level gibt die GetThreadPriority-Methode 
zurück. 

  2006-11-20 



Diplomarbeit  Seite 49 

 

SetThreadPriority Priority Level setzen  

 
BOOL WINAPI SetThreadPriority( 
  HANDLE hThread, 
  int nPriority 
); 

Listing 4 SetThreadPriority 

Attribut Beschreibung 

nPriority Siehe Tabelle 9 Priority Level

 

GetThreadPriority Priority Level abfragen 

 
DWORD WINAPI GetPriorityClass( 
  HANDLE hProcess 
); 

Listing 5 GetThreadPriority 

6.8.3. Base Priority 

Die Base Priority eines Threads ist eine Kombination aus Priority Class und Priority Level. Sie be-
stimmt ob ein Thread im Vergleich zu einem anderen Thread den Vorzug erhält oder nicht. Die Werte 
können aus der folgenden Auflistung entnommen werde (Auszug aus Gesamtliste) 

Tabelle 10 Auszug aus der Thread-Priority Tabelle 

# Process Priority Class Thread Priority Level 

1 IDLE_PRIORITY_CLASS THREAD_PRIORITY_IDLE 

1 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_IDLE 

1 NORMAL_PRIORITY_CLASS THREAD_PRIORITY_IDLE 

1 ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_IDLE 

1 HIGH_PRIORITY_CLASS THREAD_PRIORITY_IDLE 

2 IDLE_PRIORITY_CLASS THREAD_PRIORITY_LOWEST 

3 IDLE_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL 

4 IDLE_PRIORITY_CLASS THREAD_PRIORITY_NORMAL 

4 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_LOWEST 

5 IDLE_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL 

5 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL 

5 Background NORMAL_PRIORITY_CLASS THREAD_PRIORITY_LOWEST 

[…] 

  2006-11-20 



Diplomarbeit  Seite 50 

20 REALTIME_PRIORITY_CLASS -4 

21 REALTIME_PRIORITY_CLASS -3 

22 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_LOWEST 

23 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL 

24 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_NORMAL 

25 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL 

26 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST 

27 REALTIME_PRIORITY_CLASS 3 

28 REALTIME_PRIORITY_CLASS 4 

29 REALTIME_PRIORITY_CLASS 5 

30 REALTIME_PRIORITY_CLASS 6 

31 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_TIME_CRITICAL 

Die Gesamtliste ist unter [MSDNSCHED]einsehbar. 

Weiterführende Informationen: 

• MSDN, Scheduling Priorities: [MSDNSCHED] 

6.8.4. Priority Boosts 

Jeder Thread besitzt eine dynamische Priorität, die Base-Priority. Sie wird vom Scheduler benutzt um 
Entscheidungen zu treffen. Das System kann diese Base-Priority dynamisch verändern um die Opti-
mierungsprinzipien wie Fairness oder maximaler Durchsatz zu realisieren. Es findet keine dynamische 
Anpassungen im Bereich von Priority Level 16...31 statt. 

6.8.5. Prozesse erzeugen 

Die Erzeugung eines Prozesses unter Windows 2000/XP erfolgt mit der CreateProcess-Methode. 
Sie besitzt zahlreiche Parameter, von denen hier nicht alle dokumentiert werden. 

  2006-11-20 



Diplomarbeit  Seite 51 

 

CreateProcess Erstellt und startet einen Prozess  

Beispiel; Erzeugen und starten eines Prozesses mit eigener Konsole 
STARTUPINFO si; 
ZeroMemory(&si, sizeof(STARTUPINFO)); 
si.cb = sizeof(STARTUPINFO); 
PROCESS_INFORMATION pi; 
BOOL fCreated = CreateProcess(_T(“C:\\foo.exe”), 
     NULL, 
     NULL, 
     NULL, 
     FALSE, 
     CREATE_NEW_CONSOLE, 
     NULL, 
     _T(“C:\\ ”). 
     &si, 
     &pi); 
HANDLE hProcess = pi.hProcess; //Process-Handle 

Listing 6 CreateProcess 

Es werden nur diejenigen Attribute/Werte beschrieben, die einen Einfluss auf die Skalierung haben 
können.  

Tabelle 11 Prozessattribut dwCreationFlag 

Attribut Beschreibung 

dwCreationFlag Steuert die Prioritätsklasse und die Erzeugung des 
Prozesses. Kann diverse Werte annehmen. 

Tabelle 12 Werte von dwCreationFlag 

Mögliche Werte von dwCreationFlag Beschreibung 

CREATE_NEW_CONSOLE Prozess erhält eine eigene Konsole, erbt die Konsole 
des übergeordneten Prozesses nicht 

IDLE_PRIORITY_CLASS Threads laufen nur falls System im Leerlauf 

BELOW_NORMAL_PRIORITY_CLASS Threads laufen auf Prioritätsstufe zwischen 

IDLE_PRIORITY_CLASS und 

NORMAL_PRIORITY_CLASS

NORMAL_PRIORITY_CLASS Thread ohne bestimmte Anforderungen 

an den Scheduling 

ABOVE_NORMAL_PRIORITY_CLASS Thread laufen auf Prioritätsstufe zwischen 

NORMAL_PRIORITY_CLASS und 

HIGH_PRIORITY_CLASS

HIGH_PRIORITY_CLASS Thread für zeitkritische Aufgaben innerhalb einer mi-
nimalen Zeitverzögerung 

REALTIME_PRIORITY_CLASS Threads mit höchst möglicher Priorität (mit Vorsicht 
anzuwenden!) 

  2006-11-20 



Diplomarbeit  Seite 52 

6.8.6. Threads erzeugen 

Threads unter Windows 2000/XP können auf 4 verschiedene Arten erzeugt werden: 

• Starten eines neuen Prozesses 

• Aufrufen der Win32-API-Funktion CreateThread 

• Aufrufen der Funktion _beginthread aus der C-Laufzeitbibliothek 

• Aufrufen der Funktion _beginthreadex aus der C-Laufzeitbibliothek 

Nachfolgend wird aufgezeigt, wie mit der CreateThread-Methode ein Thread erzeugt werden kann. 
Die Priorität der Threads wird über die CreateProcess-Methode bestimmt oder nachfolgend mit 
SetThreadPriority dynamisch geändert. 

CreateThread Erstellt und startet einen Thread 

Beispiel; Erzeugen und starten eines Threads mit eigener Konsole 
long WINAPI ThreadEntry(LPARAM lparam) 
{ 
 //  … 
} 
unsigned long nThreadID; 
HANDLE hThread = CreateThread(NULL, 
      0, 
      (LPTHREAD_START_ROUTINE)ThreadEntry, 
(      void*)szHello, 
      0, 
      &nThreadID); 

Listing 7 CreateThread 

6.8.7. Affinität von Prozessen 

Unter einer Prozess-Affinität versteht man die logische Zuordnung eines Prozesses zu einem Prozes-
sor. Sie wird bspw. angewendet um auf SMP-Architekturen das CPU-Hopping (stetiger CPU-Wechsel 
eines Threads) oder das Cache-Trashing (stetiger Wechsel des Cache-Inhalts durch wechselnde 
Threads) zu verhindern. 

6.8.8. Affinität unter Windows XP 

Unter Windows 2000/XP wird per Default ein Prozess oder Thread irgendeinem verfügbaren Prozes-
sor zugeordnet. Will man hier korrigierend eingreifen, kann auf Level Prozess oder Thread eine Pro-
zess-Affinität realisiert werden. Auf einem Mehrprozessorsystem kann so erreicht werden, dass Pro-
zesse oder Threads auf verschiedenen, zugewiesenen Prozessor(kernen) laufen können. 

Die Affinitätsmaske ist eine DWORD-Variable für die gilt: 

• Bit 0 (niederwertigste) entspricht erster CPU 

• Bit 1   entspricht zweiter CPU 

Die Affinitätsmaske unter Windows lässt sich für den ganzen Prozess oder einzelne Threads eines 
Prozesses definieren. Soll die Thread-Affinität gesetzt werden, kann folgende Methode verwendet 
werden: 

  2006-11-20 



Diplomarbeit  Seite 53 

 

SetThreadAffinityMask Setzt die Affinität eines Threads  

Beispiel; Ausführen eines Thread auf der zweiten CPU erzwingen 
#include <windows.h> 
#include <tchar.h> 
 
Int _tmain() 
{ 
 // Pseudohandle für Thread ermitteln 
 HANDLE hThread = GetCurrentThread(); 
 DWORD dwAffinity = 0x02; // Nur auf zweitem Prozessor ausführen! 
 DWORD dwOldAffinity = SetThreadAffinityMask(hThread, dwAffinity); 
 _tprintf(_T(“Allte Affinitätsmaske: %x\n”, dwOldAffinity); 
 […] 
 return 0; 
} 

Listing 8 SetThreadAffinityMask 

Soll die Prozess-Affinität gesetzt werden, kann folgende Methode verwendet werden: 

SetProcessAffinityMask Setzt die Affinität eines Prozesses  

Beispiel; Ausführen eines Prozesses auf der zweiten CPU erzwingen 
#include <windows.h> 
#include <tchar.h> 
 
Int _tmain() 
{ 
 // Pseudohandle für Thread ermitteln 
 HANDLE hProcess = GetCurrentProcess(); 
 DWORD dwAffinity = 0x02; // Nur auf zweitem Prozessor ausführen! 
 BOOL fSetAffinity = SetProcessAffinityMask(hProcess, dwAffinity); 
 […] 
 return 0; 
} 

Listing 9 SetProcessAffinityMask 

Die unbedingte Zuweisung eines Threads oder Prozesses auf einen bestimmten Prozessor kann vor-
teilhaft sein, kann aber auch zu unerwarteten Performanceeinbussen führen. Wenn bspw. ein Thread 
mit Prozessor-Affinität durch einen anderen Thread auf diesem Prozessor blockiert wird, kann er nicht 
auf andere Systemressourcen ausweichen. 

Dieses Problem kann umgangen werden indem mit der Funktion SetThreadIdealProcessor nur 
ein bevorzugter Prozessor definiert wird. Ist der Thread auf „seinem“ Prozessor blockiert verhindert 
das System die Nutzung eines anderen Prozessors nicht. 

  2006-11-20 



Diplomarbeit  Seite 54 

 

SetThreadIdealProcessor Setzt den idealen Prozessor für einen Thread  

Beispiel; Ausführen eines Threads auf einem bevorzugten Prozessor 
#include <windows.h> 
#include <tchar.h> 
 
Int _tmain() 
{ 
 // Pseudohandle für Thread ermitteln 
 HANDLE hThread = GetCurrentThread(); 
 DWORD dwPrefferedProc = 0x02; // Prozessor 2 bevorzugen 
 DWORD dwPrevious = SetThreadIdealProcessor(hThread, dwPrefferedProc); 
 if( dwPrevious == -1 ) 
  ReportError(); 
 […] 
} 

Listing 10 SetThreadIdealProcessor 

Weiterführende Informationen: 

• Windows 2000 developers’s guide (ISBN 3-8272-5702-6): [WIN2KDEV] 

6.8.9. Skalierbarkeit durch Affinität 

Die Skalierbarkeit unter Anwendung der Prozess-Affinität ist durchaus denkbar. Das zu erwartende 
Systemverhalten ist aber nicht immer offensichtlich. System-Threads die im „Verborgenen“ laufen und 
deren Scheduling können zu unerwarteten Ergebnissen führen. 

Weiterführende Informationen: 

• TMurgent Technologies, White Paper Processor Affinity: [CPUAFFINITY] 

  2006-11-20 



Diplomarbeit  Seite 55 

6.9. Prozessverwaltung Java 

Werden Java Threads nicht auf Betriebssystem-Threads abgebildet, übernimmt die JVM das Schedu-
ling der Threads. Die Java Virtual Maschine Specification definiert nicht abschliessend, welche Sche-
duling-Methode anzuwenden ist. Folglich ist die Verteilung unter Verwendung von „Green Threads“ 
abhängig von der effektiven Implementierung der JVM. 

Das am häufigsten umgesetzte Verfahren basiert auf der „priority-driven“-Entscheidung, ob ein Thread 
Rechenzeit erhält oder nicht. Hierbei besitzt jeder Thread eine Priorität aus einem festgelegten Werte-
bereich. Kommt ein höher priorisierter Thread, wird ihm die CPU zu Verfügung gestellt. Falls Threads 
gleicher Wichtigkeit aufeinandertreffen, wendet der Scheduler das „Round-Robin“-Verfahren an 
(Quantum). 

Die Priorität eines Threads wird bei der Erzeugung des Threads vergeben (vererbt) und kann vom 
Programmierer bewusst verändert werden. Die Java-Laufzeitumgebung ändert aber die einmal ge-
setzte Priorität von Threads nicht selbständig (vergl. Priority-Levels unter Windows). Die Abstufung 
der Prioritäten umfasst: 

Tabelle 13 Thread Prioritäten 

Prioritätswert Beschreibung 

public final static int MIN_PRIORITY = 1 Minimalpriorität eines Threads 

public final static int NORM_PRIORITY = 5 Standardpriorität eines Threads. 

public final static int MAX_PRIORITY = 10 Maximalpriorität eines Threads 

Die Priorität eines aktiven Threads kann abgefragt und innerhalb des oben genannten Bereiches nach 
belieben gesetzt werden: 

Tabelle 14 Thread Prioritäten abfragen 

Methode Beschreibung 

public int getPriority() Aktuelle Priorität abfragen 

public void setPriority(int newPriority) Neue Priorität setzen 

Mehr Informationen im Kapitel 8.1.1. 

Java bietet auch Methoden, mit denen das Laufzeitverhalten bzw. der Scheduler beeinflusst werden 
kann (bspw.): 

Tabelle 15 Java Scheduler 

Methode Beschreibung 

public static void yield() Vorschlag Threadwechsel 

public final void join() 

public final void join(long millis) 

(max.) warten bis Thread beendet ist 

public static void sleep(long millis) Thread pausieren lassen 

Siehe dazu auch Kapitel 8.1.1. 

  2006-11-20 



Diplomarbeit  Seite 56 

6.10. Windows API 

In Bezug auf die Windows Prozesse werden von der API folgende Methoden zu Verfügung gestellt: 

Tabelle 16 Windows API zur Prozessverwaltung (Auszug) 

Funktion Beschreibung 

CreateProcess Erzeugt einen neuen Prozess und Thread mit der security 
identification des Aufrufers 

CreateProcessAsUser Erzeugt einen neuen Prozess und Thread mit einem spezi-
fischen security token 

OpenProcess Gibt den Handle dieses Prozess-Objektes zurück 

ExitProcess Beendet Prozess mit notify aller eingebundenen DLLs 

TerminateProcess Beendet Prozess ohne notify aller eingebundenen DLLs 

GetProcessTimes Sammelt Zeitinformationen wie lange der Prozess im User-
/Kernelmode gelaufen ist 

In Bezug auf die Windows Threads werden von der API folgende Methoden zu Verfügung gestellt: 

Tabelle 17 Windows API zur Thread Verwaltung (Auszug) 

Funktion Beschreibung 

CreateThread Erzeugt neuen Thread 

CreateRemoteThread Erzeugt einen neuen Thread in einem anderen Prozess 

OpenThread Öffnet einen Thread 

ExitThread Normales Beenden eines Thread 

TerminateThread Terminiert ein Thread 

GetThreadTimes Gibt Zeitinformationen eines Threads zurück 

GetCurrentProcess Gibt den Pseudo-Handle eines Threads zurück 

GetCurrentProcessID Gibt die ID des aktuellen Threads zurück 

GetThreadId Gibt die ID eines spezifischen Threads zurück 

Get/SetThreadContext Liefert oder ändert die CPU-Register eines Threads 

  2006-11-20 



Diplomarbeit  Seite 57 

6.11. Prozesse überwachen 

Performance Counter für Prozesse 

Windows stellt einige Leistungsindikatoren (Counter) zu Verfügung mit dem Prozesse überwacht wer-
den können: 

Tabelle 18 Windows Performance Counter für Prozesse (Auszug) 

Counter Beschreibung 

Process: % Privileged Time Prozentuale-Laufzeit der Threads eines Prozesses im Ker-
nel-Mode in einem spezifischen Intervall 

Process: % User Time Prozentuale-Laufzeit der Threads eines Prozesses im User-
Mode in einem spezifischen Intervall 

Process: % Processed Time Prozentuale-Laufzeit der Threads eines Prozesses in einem 
spezifischen Intervall (Privileged-Time + User-Time) 

Process: % Elapsed Time Verstrichene Zeit seit der Erzeugung des Prozesses 

Process: % ID Process Definiert die Prozess-ID (Achtung Wiederverwendung!) 

Process: % Thread Count Gibt die Anzahl Threads eines Processes zurück 

Performance Counter für Threads 

Windows stellt auch einige Leistungsindikatoren (Counter) zu Verfügung mit dem Threads überwacht 
werden können: 

Tabelle 19 Windows Performance Counter für Threads 

Counter Beschreibung 

Process: Priority Base Gibt die aktuelle Base Priority des Prozesses zurück (Start-
Priorität des Threads) 

Thread: % Privileged Time Prozentuale-Laufzeit der Threads im Kernel-Mode in einem 
spezifischen Intervall 

Thread: % User Time Prozentuale-Laufzeit der Threads im User-Mode in einem 
spezifischen Intervall 

Thread: % Processor Time Prozentuale-Laufzeit der Threads in einem spezifischen 
Intervall (Privileged-Time + User-Time) 

Thread: % Context Switches/Sec Anzahl Kontextwechsel per Sekunde des Systems 

Thread: % Elapsed Time Gibt die CPU-Zeit in Sekunden zurück die ein Thread ins-
gesamt konsumiert hat  

Thread: % ID Process Definiert die Prozess-ID eines Threads (Achtung Wieder-
verwendung!) 

Thread: % ID Thread Definiert die Thread-ID eines Threads (Achtung Wieder-
verwendung!) 

Thread: Priority Base Gibt die aktuelle Base Priority des Threads zurück (Kann 
ungleich Start-Priorität des Threads sein) 

Thread: Priority Current Gibt die dynamische Priorität des Threads zurück 

  2006-11-20 



Diplomarbeit  Seite 58 

Thread: Thread State Gibt den aktuellen Status/Zustand des Threads zurück 
(Wert 0...7) 

Thread: Thread Wait Reason Gibt den Grund für den Zustand WAIT zurück (Wert 0...19) 

6.12. Profiling Prozesse 

Das Profiling des Systems hat zum Ziel, die oben genannten Leistungsindikatoren von Prozessen und 
Threads sichtbar zu machen um das Systemverhalten analysieren zu können. 

Für diese Tätigkeit gibt es zahlreiche Tools die mit mehr oder weniger Leistungsumfang Hinweise 
über folgende Grössen liefern können: 

• Prozess-/Thread-ID 

• Konsumierte CPU-Zeit Prozess/Thread 

• Anzahl Threads pro Prozess 

• Priorität von Threads (Basis) 

Nachfolgend werden mehrere Beispiele solcher Instrumente grob vorgestellt ohne eine vertiefte Ana-
lyse deren Funktionalität durchzuführen. 

  2006-11-20 



Diplomarbeit  Seite 59 

6.12.1. Windows TaskManager 

Der Windows Task Manager ist auf jedem Windows 2000/XP System verfügbar und bietet im Wesent-
lichen Informationen über Programme und Prozesse die auf dem System laufen. Er zeigt weiter einige 
Indikatoren in Bezug auf die aktuelle Systemleistung. 

Performance 

 
 

Das Performance Tab zeigt in dynamischer Form 
Werte der CPU-Performance wie bspw. CPU-
Auslastung (insgesamt) oder der Verlauf dieser 
Auslastung. 

Aktive Prozesse 

 
 

Das Process Tab zeigt die aktiven Prozesse des 
System. In dieser Spaltenübersicht können Pro-
zesse selektiert, beendet oder nach belieben 
Leistungsindikatoren angezeigt werden. 

Leistungsindikatoren 

 
Der Taskmanager bietet Leistungsindikatoren 
gemäss Auflistung. 

Priorität von Prozessen 

 
Für jeden Prozess kann die Priority Class des 
Prozesses geändert werden (siehe 6.8.1) 

 

  2006-11-20 



Diplomarbeit  Seite 60 

Grundfunktionalität 

Tabelle 20 Funktionalitäten Windows Task Manager 

Windows Task Manager Ja Nein 

Prozess-ID   

Thread-ID   

Konsumierte CPU-Zeit Prozess   

Konsumierte CPU-Zeit Thread   

Anzahl Threads pro Prozess   

Prozess Affinität (SMP)   

Weiterführende Informationen: 

• Microsoft, Task Manager Overview: [TASKMANOV] 

6.12.2. Process Explorer 

„Process Explorer“ eine Freeware von SysInternals ist eine Spezialisierung des Windows-Task Mana-
gers. Er erweitert das oben beschriebene Tool um zahlreiche Zusatzfunktionen und bietet im Wesent-
lichen mehr Informationen über die Threads eines spezifischen Prozesses. 

Aktive Prozesse u. Leistungsindikatoren 

 
Symbole ergänzen die Übersicht der Prozesse wodurch diese besser identifiziert werden können. Es 
können zahlreiche Leistungsindikatoren in die Spalten eingefügt oder entfernt werden. 

 

  2006-11-20 



Diplomarbeit  Seite 61 

 

Performance-Übersicht 

 
Der Performance Graph kann für alle oder einen 
spezifischen Prozess angezeigt werden. In der 
Gesamtansicht kann ein Peak selektiert werden 
wodurch die spezifische CPU-Usage angezeigt 
wird. 

Thread-Übersicht 

 
Im Tab Threads werden zahlreiche Informatio-
nen über die Threads eines Prozesses gezeigt. 

Grundfunktionalität 

Tabelle 21 Funktionalitäten Process Explorer 

Windows Task Manager Ja Nein 

Prozess-ID   

Thread-ID   

Konsumierte CPU-Zeit Prozess   

Konsumierte CPU-Zeit Thread   

Anzahl Threads pro Prozess   

Prozess Affinität (SMP)   

Weiterführende Informationen: 

• Sysinternals Process Explorer Overview: [PROCEXP] 

  2006-11-20 



Diplomarbeit  Seite 62 

6.12.3. Performance Monitor 

Der Performance Monitor ist ebenfalls auf Windows 2000/XP verfügbar. Mit diesem Systemmonitor 
kann die Leistung des lokalen Computers sowie anderer Computer im Netzwerk gemessen werden. 
Im Speziellen können mit dem Systemmonitor Leistungsdaten in Echtzeit gesammelt werden. 

 

Leistungsobjekte 

 
 

Die Überwachung erfolgt für mehrere frei wählba-
re Leistungsobjekte (bspw. Process, Thread, Pro-
cessor) 

 

Leistungsindikatoren 

 
Für jedes Leistungsobjekt können zahlreiche Leis-
tungsindikatoren (Counter) angezeigt werden 
(siehe 6.11) 

 

Darstellung Resultate 

 
Die Daten können in Form eines Grafen oder in 
Form eines Berichtes angezeigt werden. 

 
 

 

  2006-11-20 



Diplomarbeit  Seite 63 

Grundfunktionalität 

Tabelle 22 Funktionalitäten Performance Monitor 

Performance Monitor Ja Nein 

Prozess-ID   

Thread-ID   

Konsumierte CPU-Zeit Prozess   

Konsumierte CPU-Zeit Thread   

Anzahl Threads pro Prozess   

Prozess Affinität (SMP)   

Weiterführende Informationen: 

• ZDNet, System-Performance im Visier: Die besten Tools: [PERFTOOLS] 

6.12.4. Intel Thread Profiler 

Der Intel Thread Profiler 3.0 for Windows ist ein Performance Tuning Tool das speziell dafür entwickelt 
wurde, multithreaded Applikationen auf Basis von OpenMP auf Mehrprozessor-Systemen zu testen. 
Schwerpunkt liegt dabei auf dem Load Imbalancing und Synchronisation Impact. 

Intel Thread Profiler 

 
 

Load Imbalancing 

Das Tool zeigt die Ausnutzung der logi-
schen/physischen Cores eines Prozessors 
(hier Dual Core mit HT-Technologie und 4 
Threads). 

Synchronisation Impact 

Das Tool ermöglicht auch eine spezifische 
Analyse in Bezug auf den (negativen) Einfluss 
der Synchronisation auf die Performance. 

Grundfunktionalität 

Intel Thread Profiler Ja Nein 

Load Imbalancing   

Synchronisation Impact   

Das Tool ist grundsätzlich Kostenpflichtig (ca. CHF 450.-), kann aber als Trial Version für 30 Tage 
kostenlos getestet werden. 

Weiterführende Informationen: 

• Devx, Intel Threading Tools and OpenMP: [DEVXINTEL] 

  2006-11-20 



Diplomarbeit  Seite 64 

6.13. Zusammenfassung und Fazit 

Einem Betriebssystem sind in Bezug auf Prozesse und Threads zahlreiche Aufgaben zugeordnet. 
Neben der Erzeugung und dem Zuweisen von Adressraum muss das Betriebssystem in einer Ablauf-
planung permanent verfügbare CPU-Zeit auf die konkurrierenden Prozesse und Threads verteilen. 
Pro Zeiteinheit kann dabei nur ein Prozess auf einem Prozessor(Kern) ausgeführt werden. Für ein 
Singlecore-System (exkl. Intel-HT) führt das zu einer rein „logischen-Parallelität“ (pseudo-Parrallelität). 
Multicore Systeme hingegen können hier „echte“ Parallelität bieten und Prozesse gleichzeitig ablaufen 
lassen. Im Kontext der Skalierung von multithreaded Applikationen stellt sich somit die Frage, wie auf 
Level Betriebssystem die Verteilung von CPU-Zeit auf mehrere Prozesse/Threads optimiert bzw. be-
einflusst werden kann. 

Der Begriff Prozess ist eng verknüpft mit dem Begriff „Prozess-Kontext“, der den aktuellen Zustand 
eines Prozesses repräsentiert bzw. speichert. Ein Wechsel von einem laufenden auf einen lauffähigen 
Prozess bedeutet auch ein Kontextwechsel d.h. speichern des aktuellen Kontext und laden des Nach-
folgenden. Dieser Vorgang ist zeitraubend und wird oftmals als „nicht produktiver Overhead“ bezeich-
net. Threads sind „leichtgewichtige“ Prozesse die mit anderen Threads im gleichen Prozesskontext 
den Adressraum teilen (Peerthreads). Durch den „kleineren“ Thread-Prozesskontext sind Threads 
einfacher und schneller zu erzeugen, unterbrechen oder letztendlich zu entfernen. Der gemeinsame 
Adressraum bietet implizit eine einfachere Interprozess-Kommunikation. 

Windows XP implementiert ein Kernel-Level-Thread-Model. In dieser 1:1-Zuordnung laufen im glei-
chen Prozesskontext mehrere Kernel-Level-Threads die vom Kernel direkt verwaltet werden. Der Ker-
nel besitzt neben der Prozess-Tabelle auch eine Thread-Tabelle wodurch er in die Lage versetzt wird, 
Threads direkt zu verwalten bzw. auf verschiedene CPUs zu verteilen. Unter Windows sind „Fibers“ 
von Threads zu unterscheiden. Ein „Fiber“ kann als “Thread in Thread” bezeichnet werden und ist 
eine Kernel unabhängige User-Level Implementierung. Das Scheduling eines Fibers ist nonpreemtive 
d.h. die CPU muss selbständig an den Win32-Thread abgegeben werden. 

Die Java-Virtual-Machine (JVM) bildet die Laufzeitumgebung eines Java-Threads. Durch ihre Imple-
mentierung wird festgelegt, ob ein Java-Thread direkt auf einen Thread des Betriebssystem abgebil-
det werden kann. Erfolgt die Abbildung direkt (1:1) ist die Voraussetzung für eine individuelle Vertei-
lung auf mehrere CPU durch das OS gegeben. 

Ob ein Prozess Rechenzeit zugeteilt bekommt oder nicht, hängt vom Scheduler des Betriebssystems 
ab. Unter Windows 2000/XP erfolgt diese Zuweisung auf der Ebene von Threads und nicht auf Pro-
zessebene. Windows implementiert ein „priority-driven – preemtive scheduling”-System wo jener lauf-
fähige Thread mit der höchsten Basispriorität die Prozessorzeit erhält. Die Basispriorität ist also die 
ausschlaggebende Grösse um den Zuspruch durch den Scheduler zu erhalten. Die Basis-Priorität 
eines Threads ist eine Kombination aus der Priority-Class seines Prozesses und des eigenen Priority-
Levels. 

Die Priorität eines Prozesses kann bei der Erzeugung mitgegeben oder nachträglich mit der Methode 
SetPriorityClass geändert werden. Threads „erben“ per Default die Priorität ihres Prozesses die 
aber nachfolgend auch beeinflusst werden kann (SetThreadPriority). Der Begriff „Priority Boosts“ 
beschreibt die dynamische Anpassung der Basis-Priorität von Threads durch das Betriebssystem. Im 
Priority-Level 1...15. hat das Betriebssystem so die Möglichkeit nach spezifischen Optimierungsprinzi-
pien das Systemverhalten zu steuern. 

Java-Threads besitzen ebenfalls eine Priorität die mit der Methode setPriority(int newPriori-
ty) im Bereich von [1...5...10] (Min_ ...Norm_ ... Max_) geändert werden kann. Sie wird bei der Ver-
wendung von „Green-Threads“ (simulierte Threads innerhalb des VM-Prozess) von der VM dazu ver-
wendet Scheduling-Enscheidunge zu treffen. 

Soll ein Prozess einem Prozessor zugeordnet werden spricht man von Prozess-Affinität. Windows 
ordnet per Default Prozessor-Ressourcen willkürlich zu. Mit der Definition einer Affinitätsmaske kann 
aber auf Level Prozess und Thread die entsprechende Affinität gesetzt werden (SetProcessAffi-
nityMask | SetThreadAffinityMask). Diese unbedingte Zuweisung kann sich aber sehr nachtei-
lig auswirken weil andere Prozessoren für diese Prozesse oder Threads gesperrt sind. Die Verwen-
dung von SetThreadIdealProcessor setzt einen präferenzierten Prozessor und lässt ein Auswei-
chen auf andere Ressourcen zu. 

  2006-11-20 



Diplomarbeit  Seite 65 

Prozesse und Threads könne im OS über sogenannte Leistungsindikatoren (Performance-Counter) 
überwacht werden. In einem Profiling kann mit Hilfe dieser Indikatoren das Systemverhalten mit Pro-
zessen und Threads sichtbar gemacht und interpretiert werden. Das Windows OS bietet mit Tools wie 
“Task manager” oder “Performance manager” eigene Instrumente zur Messung solcher Indikatoren. 

6.14. Auswirkungen auf die Aufgabenstellung 

Nicht alle nachfolgend aufgeführten Einflussbereiche die aus der Detailanalyse des Betriebssystems 
resultieren können gleichermassen für die weitere Analyse oder Implementierung genutzt werden. Ziel 
ist es, Aspekte mit direktem Einfluss auf die Aufgabestellung in die nachfolgenden Projektphasen zu 
übernehmen bzw. einzuarbeiten. 

Tabelle 23 Aspekte mit direktem Einfluss auf die Arbeit 

Aspekt Beschreibung 

Designprinzip Die Prozesstheorie hat gezeigt, dass die Anwendung „leichtgewichtiger“ Threads 
zahlreiche Vorteile mit sich bringt. Aus dem gemeinsamen Adressraum resultieren 
wenig Overhead beim Kontextwechsel und eine vereinfachte Interprozess-
kommunikation. Trotzt Vorteilen sind Grössen wie Verwaltungsaufwand, Ressour-
cenbedarf oder Schedulingverhalten mit Threads zu berücksichtigen. 

WIN-32 Thread Kernel-Level-Threads von Windows werden vom Kernel verwaltet und können 
somit in einer Mehrprozessor-Architektur auch verteilt werden. Mit einer entspre-
chenden VM-Implementierung werden Java-Threads auf solche Native-Threads 
abgebildet. 

 

Tabelle 24 Aspekte mit indirektem Einfluss auf die Arbeit 

Technologie Beschreibung 

Scheduling Der Windows Scheduler implentiert auf Level Threads ein “priority-driven” schedul-
ing. Die entscheidende Grösse ist hierbei die Basispriorität des jeweiligen Kernel-
Threads. Soll das Schedulingverhalten beeinflusst werden, muss über die WinAPI 
die Priorität von Prozessen oder Threads beeinflusst werden. 

Da mit einer Java-Anwendung die WinAPI ausser Reichweite ist, kann die Priorität 
auf Level OS nicht direkt beeinflusst werden. Im Verlauf soll aber untersucht wer-
den, wie die VM Java-Thread-Prioritäten (1...5...10) auf Prioritäten des OS abbil-
det. 

Weiter besteht die Möglichkeit mit diversen System(Tools) die Priorität aktiver Pro-
zesse/Threads „manuell“ zu beeinflussen. Das Systemverhalten kann mit „manuel-
lem“ Ändern der Priorität untersucht werden. 

Affinität Windows erlaubt die Prozess- wie auch die Thread-Affinität, bei der ein Prozess 
oder einzelne Threads einem Prozessor zugeordnet werden können. Über die 
WinAPI kann eine Zuweisung von Prozess oder Thread durchgeführt werden. 

Auf Level VM oder Java-Applikation kann die Affinität nicht direkt beeinflusst wer-
den. Es besteht aber die Möglichkeit die Folgen einer Zuweisung mit (Sys-
tem)Tools zu provozieren bzw. untersuchen. 

  2006-11-20 



Diplomarbeit  Seite 66 

7. Applikationen 

7.1. Allgemeine Eigenschaften paralleler Programme 

 
Abbildung 23 Korrektheit von Programmen 

Zur Korrektheit eines Programms gehört einerseits die Sicherheit und andererseits die Lebendigkeit. 
Sicherheit bedeutet, dass keine Interferenzen in kritischen Bereichen sowie auch keine Verklemmun-
gen (Deadlock) auftreten. Die Lebendigkeit lässt sich allgemein damit umschreiben, dass weder Live-
locks noch so genannte Starvation auftreten. 

Ein Deadlock entsteht in einer Situation in der mehrere Prozesse auf die Freigabe einer Ressource 
warten die durch einen anderen Prozess blockiert ist. Sind die Ressourcen zirkulär angeordnet so 
entsteht eine Wartesituation aus der die involvierten Prozesse selber nicht mehr herauskommen. Sie-
he dazu auch [DEADLOCK]. 

Ein Livelock führt ebenfalls dazu, dass die Prozesse nicht mehr weiter arbeiten können. Allerdings 
warten sie dabei nicht wie beim Deadlock auf eine Ressource sondern verändern ihren Status dabei 
um weiter arbeiten zu können. Tun sie das so, dass sie bei jeder Veränderung weiterhin blockiert wer-
den nennt man dies Livelock Siehe dazu auch [LIVELOCK]. 

Unter Starvation versteht man den Zustand eines Prozesses in dem er auf Ressourcen wartet und 
diese nie bekommt. Dies kann beispielsweise passieren, wenn ein Worker-Pool als FILO Queue 
(First-In-Last-Out) realisiert wird und immer mehr Worker in den Pool gelegt werden als herausge-
nommen werden. Dann bleiben einige Worker im Pool liegen und werden ihre Aufgabe nie erledigen 
können. Siehe dazu auch [STARVATION]. 

Zur Lebendigkeit gehören weitere Attribute welche mit den Attributen Unconditionally Fair, Weak Fair 
und Strong Fair bezeichnet werden. Wie die Bezeichnung schon aussagt geht es dabei um die Fair-
ness während der Programmausführung. Ist ein Programm „Unconditionally Fair“ so sorgt das Pro-
gramm nicht manuell für Fairness aber kann beispielsweise durch den Scheduler zur Abgabe der Re-
chenzeit gezwungen werden. Arbeitet der Scheduler nach dem „Weak Fair“ Prinzip (was bei den 
meisten der Fall ist) so kann für den Prozess nicht garantiert werden, dass er genau an der ge-
wünschten Stelle unterbrochen wird. Bei „Strong Fair“ Scheduling würde dies sichergestellt. 

  2006-11-20 



Diplomarbeit  Seite 67 

7.2. Technologien zur Parallelisierung 

In diesem Kapitel werden allgemeine Technologien zur parallelen Verarbeitung kurz beschrieben. 

7.2.1. Prozesse 

Die einfachste Möglichkeit eine Aufgabe parallel zu verarbeiten ist die Aufteilung auf mehrere Prozes-
se. Diese Methode zieht aber einige Nachteile mit sich. In heutigen Multitasking-Betriebssystemen 
laufen verschiedenste Prozesse ab. Das Betriebssystem sorgt dafür, dass alle Prozesse Rechenzeit 
bekommen. Die Wechsel zwischen den Prozessen nennt man Kontextwechsel (engl. Context Switch). 
Siehe dazu auch [CONTEXTSW]. Solche Prozesswechsel sind aber aufwändig und kosten natürlich 
Zeit. Für Kontextwechsel ist generell der Scheduler des Betriebssystems zuständig. Dieser kann na-
türlich versuchen die Anzahl Kontextwechsel zu minimieren indem die Zeitscheiben für die einzelnen 
Prozesse vergrössert werden. Dies würde bedeuten, dass ein Prozess länger Rechenzeit bekommt. 
Andererseits bedeutet dies, dass ein wartender Prozess länger darauf warten muss um wieder Re-
chenzeit zu bekommen. Dies ist insbesondere bei zeitkritischen Anwendungen wie Multimedia kritisch. 

Ein weiteres Problem bei der Aufteilung in mehrere Prozesse ist die Kommunikation und Synchronisa-
tion. Die meisten Betriebssysteme stellen so genannte Inter-Prozess-Kommunikation (IPC, Inter Pro-
cess Communication) zur Verfügung. Diese ist aber abhängig vom Betriebssystem und teilweise sehr 
aufwändig. 

Hier muss insbesondere darauf geachtet werden, dass der Geschwindigkeitsgewinn aus der paralle-
len Verarbeitung nicht durch Synchronisierung, Prozess-Erzeugung, Prozess-Terminierung und Inter-
Prozess-Kommunikation zunichte gemacht wird. 

7.2.2. Threads 

Threads werden häufig auch als leichtgewichtige Prozesse oder LWP (englisch für Lightwight Proces-
ses) bezeichnet. Mit Threads wird versucht den Nachteilen der Multi-Prozess-Programmierung entge-
genzutreten. Die Erzeugung eines neuen Threads ist weniger aufwändig da für einen Thread nicht ein 
gesamter Prozess-Kontext erstellt werden muss. Ein Thread läuft innerhalb des erzeugenden Pro-
zess-Kontextes. Aus demselben Grund sind auch Kontextwechsel zwischen Threads weit weniger 
aufwändig. Wird ein Thread beendet so muss natürlich auch nur der Thread-Kontext entfernt werden 
und nicht gleich der ganze Prozess-Kontext. 

Da Threads ihren Adressraum mit Prozessen teilen vereinfacht sich auch die Kommunikation zwi-
schen ihnen (Inter-Thread-Kommunikation). Hier muss nicht auf Betriebssystem-Funktionen zur Inter-
Prozess-Kommunikation zurückgegriffen werden. Die Kommunikation kann über gemeinsame Varia-
beln im selben Adressraum geschehen. 

Andererseits stellt uns der gemeinsame Zugriff auf Prozessressourcen natürlich wieder vor weitere 
Probleme. Der Zugriff auf gemeinsame Speicherbereiche muss synchronisiert werden um sicherzu-
stellen, dass die Daten konsistent bleiben. Einer der Schlüsselpunkte zur effizienten Thread-
Programmierung liegt darin diesen Synchronisationsaufwand im Verhältnis zur parallelen Verarbeitung 
möglichst gering zu halten. 

  2006-11-20 



Diplomarbeit  Seite 68 

7.2.3. Verteilung 

Eine weitere Möglichkeit Aufgaben parallel abzuarbeiten besteht in der Verteilung auf mehrere Syste-
me. Dies entspricht der schon in Kapitel 4 angesprochenen horizontalen Skalierung und soll hier nicht 
näher betrachtet werden. 

Allerdings sind die Grenzen hier fliessend. Beispielsweise spricht man selbst bei grossen Rechnersys-
temen in einem Gehäuse von Knoten (engl. Nodes) wie bei einem Cluster wenn die Hardware intern 
entsprechend aufgebaut ist. Verwaltet ein System den Speicher nach dem NUMA/ccNUMA Prinzip 
(siehe dazu Kapitel 5.2.1) so verhält es sich im Grunde wie ein sehr schnell gekoppeltes verteiltes 
System. 

  2006-11-20 



Diplomarbeit  Seite 69 

7.3. Frameworks, Standards und Libraries 

7.3.1. POSIX-Threads 

Wenn man von POSIX Threads spricht, so ist allgemein die Plattformunabhängige Definition der PO-
SIX Thread Schnittstelle gemeint. Diese spezifiziert „nur“ die Schnittstelle für die Thread-Behandlung. 
Nicht aber deren Implementierung. Dies hat insbesondere den Vorteil, dass POSIX Threads auf vielen 
unterschiedlichen Betriebssystemen verfügbar sind. Diese Tatsache erlaubt dem Programmierer 
Threads einzusetzen ohne auf Plattformspezifische APIs zurückgreifen zu müssen. Da die Thread-
Behandlung innerhalb eines komplexen Programms sehr eng mit dem Programmcode verknüpft ist 
würde eine Plattformabhängige Programmierung in den meisten Anwendungen sehr viel Aufwand 
verursachen. POSIX Threads abstrahieren diese Komplexität. Natürlich muss die POSIX Thread Lib-
rary Plattformabhängig implementiert werden. Diese Adaptierung muss aber nur einmal gemacht wer-
den. Im Optimalfall bietet das Betriebssystem direkte Unterstützung für POSIX Threads. In diesem 
Fall müsste keine Abbildung der Thread-Behandlung auf Betriebssystemfunktionen durch die POSIX-
Thread Bibliothek stattfinden. 

Nachfolgend werden einige der wichtigsten Funktionen der POSIX Thread Schnittstele kurz erläutert. 
Die Beispiele stammen dabei aus dem sehr guten POSIX Thread Tutorial von Mark Hays (siehe auch 
[POSIXTUTOR]) Hierbei handelt es sich nicht um eine abschliessende Dokumentation sondern um 
einen Überblick über die POSIX Schnittstelle. 

Um einen Thread zu erzeugen wird die folgende Funktion verwendet: 
pthread_create(&tid, &attr, function, &parameters) 

Listing 11 POSIX Thread erzeugen 

Tabelle 25 pthread_create() Parameter 

Argument Beschreibung 

tid Pointer auf eine Datenstruktur vom Typ pthread_t. Wird allgemein als Thread ID 
(TID) bezeichnet und entspricht dem Thread-Handle um den Thread später kontrol-
lieren zu können. 

attr Thread-Attribute. Hierbei handelt es sich um Attribute welche die Eigenschaften des 
Threads direct beeinflussen. 

function Name der auszuführenden Funktion. Der Thread wird diese Funktion nach der Er-
zeugung aufrufen. 

parameters Pointer auf eine Datenstruktur, die als Parameter an die Funktion übergeben wird. 

Nach dem Start des Threads wird das Hauptprogramm unter Umständen noch weitere Aufgaben erle-
digen. Sehr häufig wird es dann aber auf die Beendigung des/der Threads warten. Dies kann mit fol-
gender Funktion getan werden: 

pthread_join(tid, &return) 

Listing 12 Warten auf Thread-Ende 

Tabelle 26 pthread_join() Parameter 

Argument Beschreibung 

tid Pointer auf eine Datenstruktur von Typ pthread_t. Dies entspricht dem Thread 
Handle wie bereits bei pthread_create(). 

return Pointer an dem die Rückgabewerte der Thread-Funktion abgelegt werden sollen 
(void Pointer). 

  2006-11-20 



Diplomarbeit  Seite 70 

Durch die Verwendung mehrerer Threads entsteht natürlich das Problem der gleichzeitigen Modifika-
tion von globalen, gemeinsamen Daten. Insbesondere erleichtern Threads ja gerade den Zugriff auf 
gemeinsame Daten. Als Beispiel sei die Situation genannt wo zwei Threads eine Variable auslesen, 1 
addieren und wieder speichern. Täten sie das streng sequenziell, dann würde die Variable am Ende 
der Modifikation um 2 grösser sein als am Anfang. Lesen aber beide (quasi-) gleichzeitig den aktuel-
len Wert aus und inkrementieren ihn unabhängig voneinander, dann „gewinnt“ schlussendlich derjeni-
ge, der die Variable als letztes speichert/überschreibt. Um dies zu verhindern bietet die POSIX Thread 
Schnittstelle so genannte Mutexe an. Mutex steht für „Mutual Exclusion“ und bezeichnet einen Me-
chanismus, bei dem nur ein Thread in einen kritischen Bereich eintreten kann. Befindet sich bereits 
ein Thread in diesem Bereich, so müssen weitere Threads warten bis dieser den geschützten Bereich 
verlassen hat. 

Mutex mit POSIX Threads: 
pthread_mutex_t lock; 
// code 
pthread_mutex_lock(&lock); 
// code 
pthread_mutex_unlock(&lock); 

Listing 13 POSIX Mutex 

Mit diesem Code ist sichergestellt, dass sic him Bereich zwischen pthread_mutex_lock() und 
pthread_mutex_unlock() nu rein einziger Thread aufhalten kann. Durch Mutexe lässt sich der 
Zugriff auf gemeinsame Ressourcen kontrollieren. Dabei können beliebig vielen Mutexe erstellt wer-
den. Allerdings ist darauf zu achten, dass jeder Datenzugriff synchronisiert wird. Ignoriert ein Thread 
den Mutex (den er ja manuell verwenden muss) so kann dies wieder zu denselben Problemen führen. 
In der Objektorientierten Programmierung hilft hierbei das Konzept der Datenkapselung indem der 
direkte Zugriff auf die Daten verhindert wird und über dafür bestimmte get und set Methoden realisiert 
wird. Diese können dann die Synchronisation an zentraler Stelle übernehmen. Ob eine Klasse intern 
synchronisiert ist und somit konsistente Daten garantiert wird oft mit dem Attribut „Thread safe“ ge-
kennzeichnet. Eine Klasse, die Thread safe ist muss den parallelen Zugriff regeln und in jedem Fall 
gültige Daten garantieren. 

Hierbei ist insbesondere auf die Gefahr von Deadlocks zu achten (siehe dazu auch Kapitel 7.1). 

Angenommen Thread A besitzt den Mutex-Lock für Datenfeld 1 und Thread B besitzt den Mutex-Lock 
für Datenfel 2. 

Nun versucht Thread B den Mutex-Lock für Datenfeld 1 auch noch zu bekommen ohne den Mutex-
Lock für Datenfeld 2 abzugeben. Jetzt muss Thread B auf die Lock-Freigabe von Datenfeld 1 warten. 

Wenn jetzt Thread A aus irgendeinem Grund den Lock für Datenfeld 1 nicht freigibt und/oder seiner-
seits versucht den Lock für Datenfeld 2 zu bekommen, dann befinden sich beide Threads in einem 
Deadlock-Zustand aus dem sie nicht mehr herauskommen. Es besteht eine Zirkuläre Abhängigkeit. 

Warten auf Bedingungen: 
pthread_mutex_locak(&mutex); 
while (!predicate) { 
 pthread_cond_wait(&condvar, &mutex); 
} 
pthread_mutex_unlock(&mutex); 

Listing 14 POSIX Mutex - warten auf Bedingungen 

Falls in diesem Code-Teil die Variable predicate den Wert false hat, dann wird der Thread mittels 
pthread_cond_wait() schlafen gelegt. Wichtig ist es dabei zu wissen, dass der Mutex-Lock beim 
warten abgegeben und erst beim aufwecken wieder zugewiesen wird. Um ihn wieder aufzuwecken 
kann folgendes Code-Fragment verwendet werden. 

pthread_mutex_lock(&mutex); 
predicate=1; 
pthread_cond_broadcast(&condvar); 
pthread_mutex_unlock(&mutex); 

Listing 15 POSIX Thread - condiditonal wait 

  2006-11-20 



Diplomarbeit  Seite 71 

Das Aufwecksignal wird über die Variable condvar gesendet. 

Weiterführende Informationen: 

• Mark Hays, POSIX Thread Tutorial: [POSIXTUTOR] 

  2006-11-20 



Diplomarbeit  Seite 72 

7.3.2. OpenMP 

Bei OpenMP handelt es sich wie bei POSIX auch um eine API Spezifikation. Allerdings auf einer ganz 
anderen Ebene. OpenMP definiert eine Schnittstelle für so genannte Compiler-Direktiven. Das Ziel 
dabei ist es, dass der Programmierer sich nicht selber um die Erzeugung, Synchronisierung und Ter-
minierung von Threads kümmern muss. All diese Aufgaben werden automatisch vom Compiler über-
nommen. Zu diesem Zweck definiert OpemMP spezielle Compiler-Direktiven. Diese konzentrieren 
sich insbesondere auf die Parallelisierung von Schleifen welche häufig in mehrere parallel laufende 
Schleifen aufgeteilt werden können. Dieser Verfahren wird auch Data partitioning genannt. 

Ein grosser Vorteil von OpenMP ist, dass die Compiler-Direktiven von Compilern die kein OpenMP 
unterstützen, einfach ignoriert werden. Dies erlaubt dem Programmierer eine portable Implementie-
rung. Nachfolgend eine Liste der Compiler, die bekanntermassen OpenMP unterstützen: 

Tabelle 27 Compiler mit OpenMP Unterstützung 

Compiler Beschreibung 

Microsoft Visual C++ Unterstützung erst ab Visual Studio 2005. Ausserdem unterstützt Visual 
Studio 2005 Express Edition kein OpenMP weil die benötigten Libraries 
fehlen. 

Intel Die aktuellen Intel Compiler unterstützen OpenMP und sind zu Evaluie-
rungszwecken kostenlos bei Intel erhältlich. Siehe dazu auch [INTELC]. 

GCC GCC wird erst ab Version 4.2 OpenMP unterstützen. Es dürfte aber nicht 
mehr lange dauern bis Version 4.2 freigegeben wird. Snapshots können 
bereits auf der offiziellen Homepage bezogen werden. Siehe dazu auch 
[GCC]. 

Einer der grossen Vorteile von OpenMP liegt darin, dass bestehender (sequenzieller) Code ohne ma-
nuelle Thread-Behandlung parallelisiert werden kann. Dies kann anhand eines kurzen Beispieles aus 
[2] verdeutlicht werden. 

Original Code: 
double w=1.0 / (double) n; 
double sum = 0, x; 
for (int i=0; i<=n; i++) { 
 x = w * ((double)i - 0.5); 
 sum += 4 / (1 + x * x ); 
} 
pi = w * sum; 
printf(“pi = %13lf\n”, pi); 

Listing 16 OpenMP, parallelisierbarer Code 

Dieser Code kann nun mit OpenMP Anweisungen parallelisiert werden: 
double w = 1.0 / (double) n; 
double sum = 0, x, f_x; 
#pragma omp parallel for private(x, f_x) shared(w, sum) 
for (int i=0; i<=n; i++) { 
 x = w * ((double)i - 0.5); 
 f_x = 4 / (1 + x * x ); 
#pragma omp critical 
 sum += f_x; 
} 
pi = w * sum; 

Listing 17 OpenMP, parallelisierter Code 

Auf einem 4-Prozessor System würde die for-Schleife jetzt standardmässig auf 4 Threads aufgeteilt 
und parallel bearbeitet. Die #pragma omp critical Anweisung ist notwendig weil alle Threads hier 

  2006-11-20 



Diplomarbeit  Seite 73 

synchronisiert werden müssen um die Konsistenz der Variable sum zu gewährleisten. OpenMP bietet 
hierzu auch alternativ die Pragma Anweisung atomic an. Hier wäre atomic effizienter, lässt sich 
aber nur auf einzelne Anweisungen und nicht auf Code-Blöcke anwenden. 

Master

Thread 0
x=w*…
f_x=4/x...

Thread 1
x=w*…
f_x=4/x...

Thread 2
x=w*…
f_x=4/x...

Thread n
x=w*…
f_x=4/x...

sum += f_x

sum += f_x

sum += f_x

sum += f_x

# pragma omp atomic

# pragma omp atomic

# pragma omp atomic

# pragma omp atomic

 
Abbildung 24 Parallele Verarbeitung der Beispiel-Schleife mit OpenMP 

Lässt man das Beispiel so laufen, dann werden auch die Gefahren der OpenMP Programmierung 
deutlich. Das parallel ablaufende Beispiel läuft hier mit zwei oder mehr Threads tatsächlich massiv 
langsamer ab. Dies liegt daran, dass die Synchronisation des kritischen Bereiches (Summierung) im 
Vergleich zur Berechnung viel zu aufwändig ist und mehr Rechenzeit in Anspruch nimmt als durch die 
parallele Verarbeitung gewonnen wird. 

Um solche Effekte zu minimieren bietet OpenMP weitere Direktiven. Beispielsweise kann die Summie-
rung durch OpenMP durchgeführt werden. Dies hat zur Folge, dass die Synchronisierung nur einmal 
(am Ende der Berechnungen) und nicht mehr bei jedem Schleifendurchlauf zu erfolgen hat: 

double w = 1.0 / (double) n; 
double sum = 0, x; 
#pragma omp parallel for private(x) shared(w) reduction (+:sum) 
for (int i=0; i<=n; i++) { 
 x = w * ((double)i - 0.5); 
 sum = 4 / (1 + x * x ); 
} 
pi = w * sum; 

Listing 18 OpenMP, reduction 

Hier arbeiten die parallelen Threads jeweils mit einer lokalen sum Variablen. Am Ende der Berech-
nungen wird diese von OpenMP durch Addierung „reduziert“. Während der gesamten Berechnungs-
dauer ist keine Synchronisation der Threads notwendig weshalb auch nahezu das volle Potential der 
Parallelität ausgenutzt werden kann. 

  2006-11-20 



Diplomarbeit  Seite 74 

Eine wichtige Eigenschaft von OpenMP ist, dass standardmässig genau so viele Threads erzeugt 
werden wie Prozessoren zur Verfügung stehen. Dies lässt sich aber nachträglich (auch zu Testzwe-
cken) über Umgebungsvariabeln beeinflussen. Wichtig ist dabei auch, dass die Threads über die ge-
samte Laufzeit des Programms bestehen bleiben. Dadurch wird der Aufwand die Threads laufend zu 
erzeugen und wieder zu entfernen umgangen was insgesamt der Effizienz zu Gute kommt. 

Weiterführende Informationen: 

• OpenMP, Homepage: [OPENMP] 

• Wikipedia, OpenMP: [OPENMPWP] 

• Sun, OpenMP Unterstützung: [OPENMPSUN] 

• GNU, GCC 4.2 mit OpenMP Unterstützung: [GCC] 

• Intel, Compilers: [INTELC] 

• Oliver Lau, c’t Ausgabe 15/2006, Seite 218ff: [2] 

  2006-11-20 



Diplomarbeit  Seite 75 

7.3.3. Thread Building Blocks (TBB) 

Die Inten Thread Building Blocks (TBB) sind vom Prinzip her verwandt mit OpenMP. Die Implementie-
rung geschieht hier allerdings in Form einer C++ Bibliothek. Auch TBB wird zur Parallelisierung von 
Schleifen verwendet. Hierzu ebenfalls ein kleines Beispiel: 

#include „tbb/blocked_range.h“ 
#include “tbb/parallel_for.h” 
void PrintArray(int[] &v, size_t n, size_t blocksize) { 
 Printer whattodo(v); 
 parallel_for(blocked_range<size_t>(0, n, blocksize), whattodo); 
} 

Listing 19 TBB, ein kleines Beispiel 

Bei size_t kann es sich hierbei um integer, long, Pointer oder Iteratoren handeln. Die parallele 
for Schleife ruft hier für die Elemente 0 bis n das Objekt whattodo auf. Dazu muss das Objekt den 
Funktionsoperator „()“ überladen. Dieser wird dann durch jeden Thread mit einem anderen Blockbe-
reich aufgerufen. Hier die Klasse Printer (Objekt: whattodo): 

class Printer { 
 int * const m_v; 
public: 
 Printer(int v[]) : m_v(v) {} 
 void operator() (const blocked_range<size_t>& r) const 
 { for (size_t i = r.begin(); i != r.end(); ++i) 
  cout << m_v[i]; 
 } 
}; 

Listing 20 TBB, Funktionsoperator überladen 

Analog zu OpenMP entsteht natürlich auch hier das Problem der Synchronisation beim Zugriff auf 
gemeinsame Variabeln. OpenMP bietet dazu die reduction Klausel. TBB bietet zu diesem Zweck 
die parallel_reduce Schleife: 

void SumUpArray(int v[], size_t n, size_t blocksize) { 
 Summarizer s(v); 
 parallel_reduce(blocked_range<size_t>(0, n, blocksize), s); 
 cout << s.sum(); 
} 

Listing 21 TBB, parallel_reduce 

Wie man sieht unterscheidet sich der Aufruf nur im übergebenen Objekt. Dieses ist wie folgt aufzu-
bauen: 

class Summarizer { 
 int * const m_v; 
 int m_sum; 
public: 
 Summarizer(int v[]) : m_v(v), m_sum(0) {} 
 void operator() (const blocked_range<size_t>& r) { 
  for (size_t i = r.begin(); i != r.end(); ++i) { 
   m_sum += m_v[i] 
  } 
 Summarizer(Summarizer& x, split) : m_v(x.m_v), m_sum(0) {} 
 void join(const Summarizer& other) { 
  m_sum += other.m_sum; 
 } 
 int sum(void) { 
  retunr m_sum; 
 } 

  2006-11-20 



Diplomarbeit  Seite 76 

}; 

Listing 22 TBB, Beispiel: Summarizer 

Hier wird von parallel_reduce der zweite Konstruktor (Splitting-Konstruktor) aufgerufen. Der zwei-
te Parameter split dient dabei nur zur Unterscheidung von einem Copy-Konstruktor. Das Summari-
zer Objekt wird also von parallel_reduce mehrfach erzeugt. Durch die Übergabe einer Referenz 
auf das originale Objekt kann die Member-Variable m_v übernommen werden (Wertebereich). Die 
Membervariable m_sum muss natürlich lokal beleiben. Am Schluss der Operation wird die Methode 
join() aufgerufen. Dort können die Werte dann aufsummiert werden. Praktischerweise könnte man 
die Methode join() noch erweitern um beispielsweise den Maximal- oder Minimalwert noch zu er-
halten. 

Die TBB bieten ausserdem noch erweiterte Werkzeuge, die teilweise etwas über die Möglichkeiten 
von OpenMP hinausgehen. Beispielsweise parallel_while, pipeline oder die zweidimensionale 
Segmentierung. Einen Überblick darüber vermittelt die Quelle [3] aus der auch die oben aufgeführten 
Codebeispiele stammen. Interessierte finden natürlich direkt bei Intel ([INTELTBB]) weitere Informati-
onen. 

Ein kleiner Wehrmutstropfen liegt darin, dass die TBB Bibliothek nicht frei verfügbar ist. Lediglich eine 
Linux-Version für Nichtkommerzielle Zwecke liegt zum Download auf der Intel Webseite. 

Weiterführende Informationen: 

• Oliver Lau, c’t Ausgabe 21/2006, Seite 234ff, Thread-Baukasten/TBB: [3] 

• Intel, Thread Building Blocks 1.0 for Windows, Linux and Mac OS: [INTELTBB] 

  2006-11-20 



Diplomarbeit  Seite 77 

7.3.4. MPI 

Das Message Passing Interface (MPI) ist zwar nicht direkt eine Technologie zur Parallelisierung eines 
Programmcodes kümmert sich aber um eines der wichtigsten Probleme der parallelen und verteilten 
Programmierung. Wir haben gesehen, dass die Kommunikation von Prozessen untereinander häufig 
ein grosses Problem darstellt. Durch die Threadbasierende Programmierung kann dieses Problem 
etwas entschärft werden da die Kommunikation über den gemeinsamen Prozesskontext laufen kann. 
Wir die Anwendung aber auf mehrere Prozesse verteilt oder gar auf mehreren Rechnern ausgeführt 
so sollten diese möglichst einfach und direkt miteinander kommunizieren können. 

Die MPI-Schnittstelle erlaubt es den Programmen untereinander direkte Nachrichten auszutauschen. 
Dies kann sowohl lokal über den Hauptspeicher als auch über Rechnergrenzen hinweg beispielsweise 
über TCP/IP geschehen. 

Da wir uns hier hauptsächlich mit der Thread-Programmierung beschäftigen und uns auf lokale Sys-
teme beschränken wird MPI für uns nicht relevant sein. Für grössere und verteilte Anwendungen kann 
es aber durchaus hilfreich sein. 

Weiterführende Informationen: 

• Wikipedia, Message Passing Interface: [MPI] 

• Alexander Greiml, Universität Trier, Message Passing Interface (MPI): [MPI-TRIER] 

  2006-11-20 



Diplomarbeit  Seite 78 

7.4. Zusammenfassung und Fazit 

Dieses Kapitel hat einen Überblick über die Programmierung von parallel ablaufenden Programmen 
gegeben. Insbesondere die dadurch entstehenden Probleme der Kommunikation und der Synchroni-
sierung sowie Methoden zu deren Lösung wurden vorgestellt. Die vorgestellten Techniken wie POSIX 
Threads, OpenMP, TBB und MPI werden für uns nur am Rande wichtig sein, da dies keine Techniken 
auf Java-Ebene darstellen. Diese Techniken sind aber sehr wohl für die Java Virtual Machine (siehe 
Kapitel 8) wichtig. Für Programmierer einer JVM können die vorgestellten Technologien durchaus 
wichtig sein. Wie viele davon bei der Programmierung einer Java-Applikation wichtig sein werden wird 
sich im Verlauf der Arbeit zeigen. 

7.5. Auswirkungen auf die Aufgabenstellung 

Dieses Kapitel bietet einen Überblick über Parallelisierungs-Techniken auf Applikations-Ebene. Einige 
der vorgestellten Technologien könnten für uns auf Java-Ebene wichtig werden: 

Tabelle 28 Technologien mit direktem Einfluss auf die Arbeit 

Technologie Beschreibung 

POSIX Threads Auf Java-Ebene werden zwar nicht direkt Posix-Threads verwaltet aber Java bietet 
eine ähnliche Schnittstelle über die Java-API. Ob die JVM die Thread-Verwaltung 
über die POSIX-Schnittstelle abwickelt oder direkte Betriebssystemspezifische 
Routinen verwendet werden wir möglicherweise noch erfahren. 

OpenMP Auch OpenMP ist prinzipiell auf C/C++ und Fortran limitiert (siehe Kapitel 7.3.2). 
Wir konnten aber das Projekt JOMP (siehe [PROCEXP]) finden welches zum Ziel 
hat dieselbe Funktionalität für Java-Anwendungen zur Verfügung zu stellen. Des-
halb könnte diese Technologie für unsere Arbeit relevant sein. 

 

Tabelle 29 Technologien mit indirektem Einfluss auf die Arbeit 

Technologie Beschreibung 

TBB Die Intel Thread Building Blocks besteht aus einer reinen C/C++ Bibliothek, des-
halb ist diese Technologie für uns mit Fokus auf Java-Implementierung nicht rele-
vant. Im entfernten Sinne könnten einige in der Java API vorhandenen Klassen 
ähnliche Funktionalitäten übernehmen. 

MPI Das Message Passing Interface ist für uns nicht weiter von Interesse, da wir nicht 
die vertikale Skalierung auf mehreren Systemen (Cluster) untersuchen sondern die 
Skalierung auf einem einzigen Host. Zwar kann MPI auch zur Inter-Prozess-
Kommunikation genutzt werden, angesichts moderner Thread-Unterstützung 
macht es aber eher wenig Sinn mehrere Prozesse zu verwenden. Zur Kommunika-
tion zwischen Threads (geteilter Adressraum) wird MPI nicht benötigt. 

  2006-11-20 



Diplomarbeit  Seite 79 

8. Java Virtual Machine (JVM) 
Für Java-Basierende Applikationen spielt die Java Virtual Machine (JVM) eine zentrale Rolle. Alle 
Java-Applikationen laufen dabei in der Virtuellen Maschine ab. Dies bedeutet natürlich, dass die Virtu-
elle Maschine eine weitere Ebene zwischen dem Betriebssystem und der eigentlichen Java-
Anwendung darstellt. Für Java-Anwendungen ist es daher auch nicht möglich einfach auf Funktionen 
des Betriebssystems zugreifen zu können. Diese müssen sich somit mit der von der Virtuellen Ma-
schine zur Verfügung gestellten API zufrieden geben. 

Die Java-VM dafür sorgen, dass die Applikation mit optimaler Geschwindigkeit ablaufen kann. Aus-
serdem bietet die VM gegenüber der Applikation eine Schnittstelle (API) um parallele Programmierung 
zu ermöglichen beziehungsweise diese möglichst einfach zu gestalten. 

In diesem Kapitel solle daher die Java API zur parallelen Programmierung betrachtet werden. Ausser-
dem wird untersucht in wie fern die API Optimierungen auf Betriebssystem und Hardware zulässt. Da 
anzunehmen ist, dass die Plattformunabhängige Java-API keine tief greifenden und Betriebssystem-
abhängigen Konfigurationen bietet soll auch die JVM selbst genauer betrachtet  werden. Diese selbst 
ist Plattform-abhängig und soll für eine optimale Ausführung der Anwendung sorgen. Es ist anzuneh-
men, dass die JVM entweder durch Konfiguration oder in Form speziell optimierter Varianten an Be-
triebssystem und Hardware angepasst werden kann. 

Die folgende Grafik zeigt die Architektur der Sun Java Plattform in der Version 5. 

 
Abbildung 25 Sun Java VM Architektur 

Wie gut zu erkennen ist stellt die eigentliche Virtuelle Maschine (Java Virtual Machine) eine Ebene 
zwischen dem Betriebssystem und der eigentlichen Java-Sprache dar. Dazwischen liegt die Java API. 
Diese bietet dem Programmierer einen vordefinierten Sprachumfang und damit eine Schnittstelle zur 
einfacheren Programmierung. Die API beinhaltet beispielsweise vordefinierte Containerklassen wie 
Vektoren und Maps. Diese müssen also vom Entwickler nicht mehr implementiert werden. 

Weiterführende Informationen: 

• Sun, Java Langugage Specification: [JLS] 

• Sun, Java Virtual Machine Specification: [JVMS] 

  2006-11-20 



Diplomarbeit  Seite 80 

• Sun, Java API Reference: [JAPIREF] 

8.1. Die Java API 

Bereits in der Java Language Specification (siehe auch [JLS]) ist der Umgang mit Threads und die 
Behandlung von Nebenläufigkeit exakt spezifiziert. Somit ist die parallele Programmierung im Gegen-
satz zu vielen anderen Sprachen ein integraler Bestandteil der Sprachdefinition. 

Wie bereits erwähnt stellt die Java API die Schnittstelle zwischen Anwendung und Java Virtual Machi-
ne (JVM) dar. Diese Schnittstelle beinhaltet einige wichtige Klassen, welche die parallele Programmie-
rung ermöglichen und vereinfachen. Diese Schnittstellen sollen im Folgenden kurz beschrieben wer-
den. Weiterführende Informationen zur Java API sind auf der Java Homepage ([JAPIREF]) zu finden. 

8.1.1. Threads 

Wie gesagt bietet Java eine in der Sprache selbst verankerte Thread-Unterstützung. Streng genom-
men gibt es innerhalb von Java gar keine Prozesse. Die Java Virtual Machine ist der einzige, sichtba-
re Prozess gegenüber dem Betriebssystem. Die statische main() Methode stellt dabei den Eintritts-
punkt des Programmes dar. Diese wird aber bereits von einem JVM-internen Thread mit der Bezeich-
nung „main“ aufgerufen. Somit  ist auch der Haupt-Ausführungsstrang einer Java-Applikation nichts 
weiter als ein Thread. 

Die zur Thread-Verwaltung und parallelen Verarbeitung verwendeten Mechanismen wie Monitore sind 
in [JLS] beschrieben. Der Thread Lebenszyklus sieht wie folgt aus: 

 
Abbildung 26 Thread Lebenszyklus, (Quelle: [1]) 

Jedes Objekt in Java besitzt einen Lock- und einen Wait-Pool. Dadurch sind die wichtigsten Synchro-
nisationsprobleme bereits ohne Zusatzaufwand lösbar: 

• Konkurrierenden Zugriff verhindern: Kann mittels Lock-Pool (Zeitgleich erhält nur ein Thread 
einen Lock) realisiert werden. 

• Warten auf ein Ereignis: Kann mittels Wait-Pool realisiert werden. 

Hierbei sind einige wichtige Bedingungen zu beachten: 

• Sowohl wait() als auch notify() bzw. notifyAll() dürfen nur aufgerufen werden, 
wenn der Thread im Besitz des Locks für dieses Objekt ist. 

  2006-11-20 



Diplomarbeit  Seite 81 

• Ein Thread, der wait() aufruft gibt implizit den Lock ab und kommt somit bei erhaltenem no-
tify() automatisch in den Lock-Pool um den Lock wieder neu zu erhalten. Ein mit noti-
fy() „aufgeweckter“ Thread läuft erst weiter, wenn er den Lock wieder bekommen hat. 

• Ein Thread der aufgrund einer I/O Operation, sleep() oder join() blockiert wird gibt den 
Lock nicht ab. Dies ist wichtig zu wissen weil dieser unter Umständen dann für längere Zeit 
blockiert bleibt. 

Mehr zur Synchronisierung in Kapitel 0. 

Es gibt prinzipiell zwei Möglichkeiten einen Thread unter Java zu erzeugen. Einerseits kann von der 
Klasse java.lang.Thread abgeleitet werden und andererseits kann eine beliebige Klasse die Run-
nable-Schnittstelle implementieren (java.lang.Runnable). Da Java keine Mehrfachvererbung un-
terstützt und Klassen manchmal schon von anderen Klassen abgeleitet sind bleibt häufig nur die zwei-
te Möglichkeit. In beiden Fällen muss aber nur die run() Methode implementiert werden. Diese wird 
beim Start des Threads ausgeführt. Wie in Abbildung 26 zu sehen ist endet ein Thread mit dem Ende 
der run() Methode. 

Hier ein Beispiel einer Thread-Klasse, die von java.lang.Thread abgeleitet ist: 
package ch.skybeam.examples; 
 
public class MyThread extends Thread { 
    // fields, methods... 
 
    @Override 
    public void run() { 
        super.run(); 
        // do some stuff 
    } 
} 

Listing 23 Java, Threaderzeugung durch Ableitung 

Ein konkreter Thread kann danach mittels folgendem Code (z.B. in der main() Methode) erzeugt 
werden: 

Thread t = new MyThread(); 
t.start(); 

Listing 24 Java, Thread starten (Thread Klasse) 

Analog dazu eine Klasse, welche die Runnable-Schnittstelle implementiert: 
package ch.skybeam.examples; 
 
public class MyRunnable implements Runnable { 
    // fields, methods.... 
 
    public void run() { 
        // do some stuff 
    } 
} 

Listing 25 Java, Thread mittels Runnable Interface 

Die Erzeugung des Threads geschieht analog dazu: 
Thread t = new Thread(new MyRunnable()); 
t.start(); 

Listing 26 Java, Thread starten (Runnable Interface) 

Hier wird lediglich der Basisklasse Thread das zuvor definierte Runnable-Objekt übergeben. Das er-
zeugte Thread-Objekt verhält sich danach gleich wie im Beispiel zuvor. 

Wichtig: Beim Start von Threads ist darauf zu achten nicht die run() Methode auszuführen sondern 
die start() Methode der Klasse java.lang.Thread. Wird die run() Methode ausgeführt, so 

  2006-11-20 



Diplomarbeit  Seite 82 

verhält sich der Aufruf wie ein Methodenaufruf und wird im Kontext des aufrufenden Threads ausge-
führt (z.B. im „main“ Thread). 

Es folgt eine Auflistung der wichtigsten Methoden der Thread Klasse (java.lang.Thread): 

Tabelle 30 Wichtige Methoden von java.lang.Thread 

Methode Beschreibung 

start() Diese Methode aktiviert den Thread. Das führt zum Aufruf der run() Methode in 
der Thread-Klasse bzw. der im Konstruktor angegebenen Runnable-Klasse. 

getPriority() 

setPriority()

Mit diesen Methoden kann die Thread-Priorität abgefragt bzw. beeinflusst wer-
den. 

isDaemon() 

setDaemon()

Erlaubt die Abfrage des Daemon-Status eines Threads. Standadmässig sind 
alle Java Threads so genannte User Threads. Die JVM beendet sich erst, wenn 
alle User-Threads beendet sind. Wenn die main() Methode beendet ist über-
prüft die JVM ob  noch User-Threads abgearbeitet werden und wartet falls nötig 
auf deren Terminierung. Daemon-Threads werden dabei ignoriert. Soll also ein 
Thread einfach bis zur Beendung der JVM weiterlaufen so empfiehlt sich die 
Definition als Daemon. Dieser wird dann bei der Terminierung der JVM auto-
matisch beendet. 

getState() Seit Java 1.5 ist es möglich den aktuellen Status eines Threads zu erfragen. 
Dies ist insbesondere zu Debug-Zwecken sinnvoll oder zur Überwachung des 
Systemstatus. 

interrupt() 

isInterrupted()

Den Abbruch eines Threads mittels der interrupt() Methode ist die bevorzugte 
Art der vorzeitigen Thread-Terminierung. Vorsicht: Wird interrupt() auf einem 
Thread aufgerufen, der sich im „blocked“ Zustand befindet so wird eine Inter-
ruptedException geworfen. Wird diese nicht abgefangen terminiert der Thread 
natürlich. Die Korrekte Art eines Interrupted-Handling wäre die aktive Prüfung 
von isInterrupted() durch den Thread und eine entsprechende Terminierung der 
run() Methode. 

join() Bewirkt, dass der aktuelle Thread auf die Terminierung des Threads auf dem 
join() aufgerufen wird wartet. 

yield() Mittels dieser Methode lässt sich die Rechenzeit freiwillig abgeben. Der aufru-
fende Thread wird automatisch wieder in den Status „ready“ versetzt. Dies er-
laubt die Abgabe von Rechenzeit zugunsten anderer Threads. 

Warnung: Eine Methode namens stop() existiert zwar aber sollte nicht mehr verwendet werden da 
diese Methode keine Möglichkeit zur sauberen Terminierung (Aufräumen von Datenstrukturen, Frei-
gabe/Schliessung von Dateien und Handlern, beenden von Transaktionen) vorsieht. 

Mehrere Threads können auch in einer so genannten Thread Gruppe zusammengefasst werden. Da-
zu wird  zunächst eine leere Gruppe erzeugt und bei der Erzeugung der Threads als Argument über-
geben: 

ThreadGroup tg = new ThreadGroup("Thread-Gruppe"); 
new Thread(tg, new MyRunnable()).start(); 

Listing 27 Java, Threadgruppen 

Nun können einige Operationen direkt auf der Gruppe anstatt auf den einzelnen Threads ausgeführt 
werden. Beispielsweise lässt sich durch 

tg.interrupt(); 

Listing 28 Java, Threadgruppen (Interrupt) 

das Interrupt-Signal an alle Threads in der Gruppe senden. Eine Methode um auf die Terminierung 
aller Threads in der Gruppe zu warten existiert allerdings nicht. Um dies zu erreichen muss also die 

  2006-11-20 



Diplomarbeit  Seite 83 

Liste der Threads aus der Gruppe herausgeholt werden um die join() Methode jedes einzelnen 
Threads aufzurufen. 

8.1.2. Collections 

Wo parallel verarbeitet wird finden praktisch immer auch Zugriffe auf gemeinsame Ressourcen oder 
gemeinsame Datenfelder statt. Java bietet bereits eine Reihe von so genannten Collections. Collecti-
ons sind Container-Klassen um Daten in einer bestimmten Struktur abzulegen. Speziell bei der paral-
lelen Programmierung ist es wichtig, dass solche Container Thread-Safe sind. Dies bedeutet, dass 
selbst bei parallelen Zugriffen auf die Daten kein undefinierter oder ungewollter Zustand eintreten 
kann. Die meisten der bis zu Java 1.4.x vorhandenen Collection-Klassen sind nicht synchronisiert und 
somit nicht Thread-Safe. Bei Java 5 kamen hier einige sehr wichtige neue Klassen hinzu. Die wich-
tigsten sollen hier kurz vorgestellt werden: 

Tabelle 31 Neue Concurrent-Collections in Java 5 (java.util.concurrent Package) 

Klasse Beschreibung 

ConcurrentHashMap Wurde als Ersatz für die Hashtable Klasse entwickelt und erlaubt massiven 
parallelen Zugriff. Lesende Zugriffe blockieren nie und für schreibende 
Zugriffe lässt sich die Locking-Strategie beeinflussen bzw. optimieren. 

CopyOnWriteArray* Diese Klassen erstellen bei jeder Modifikation eine Kopie des Arrays. Itera-
tionen auf dem Array können also auf dem unveränderten Array zu Ende 
geführt werden. Ist sehr gut für nur-lese Strukturen mit seltenen Änderun-
gen geeignet. 

Queue Queue Klassen implementieren eine FIFO (First In First Out) Queue. Ist die 
Queue voll, dann blockiert ein put() Aufruf nicht sondern liefert einen Fehler. 
Ist die Queue leer, dann blockiert auch take() nicht sondern liefert eine null-
Referenz. 

BlockingQueue Diese Klassen implementieren ebenfalls eine FIFO (First In First Out) 
Queue. Zusätzlich bliockieren hier die put() und take() Methoden bei voller 
bzw. leerer Liste bis ein Element herausgenommen bzw. entfernt wird. 

8.1.3. Weitere hilfreiche Klassen 

8.1.3.1. ReentrantLock 
Die Klasse java.util.concurrent.locks.ReentrantLock bietet einen erweiterten Locking-
Mechanismus im Vergleich zur Synchronisation mit dem synchronized Statement. Die Klasse bietet 
einige Methoden, die Funktionen offerieren, welche nicht von synchronized übernommen werden 
könne. Hier eine Liste der wichtigsten: 

Tabelle 32 Wichtige ReentrantLock Methoden 

Methode Funktion 

isLocked() Erlaubt die Abfrage, ob der Lock momentan bereits vergeben ist. 

lock() Versucht den Lock zu bekommen. Der Aufruf hat denselben Effekt wie 
das Einteten in einen synchronized Block. 

lockInterruptibly() Erlaubt den nachträglichen Abbruch während der Thread auf den Lock 
warten muss. Dies ist mit synchronized nicht möglich. 

tryLock() Versucht den Lock zu bekommen. Falls dieser bereits vergeben ist blo-
ckiert die Methode nicht sondern meldet lediglich, dass der Versuch er-
folglos war. 

  2006-11-20 



Diplomarbeit  Seite 84 

tryLock(timeout) Versucht den Lock zu bekommen, wartet aber nur maximal bis zum Ab-
lauf der Zeitüberschreitung und meldet dann einen erfolglosen Versuch 
zurück. Dies ist mit synchronized ebenfalls nicht möglich. 

Die Verwendung kann anhand des folgenden Codebeispiels verdeutlicht werden: 
boolean success = lock.tryLock(); 
if(success) { 
    try { 
        System.out.print(“Reading value: " + sync.getA()); 
    } finally { 
        lock.unlock(); 
    } 
} else { 
    System.out.print(" No lock acquired :-("); 
} 

Listing 29 Java, ReentrantLock (tryLock) 

Analog dazu das Lesen mit Timeout: 
boolean success = false; 
try { 
    success = lock.tryLock(500, TimeUnit.MILLISECONDS); 
} catch (InterruptedException e1) { 
    // interrupted during lock-try 
} 
if (success) { 
    try { 
        System.out.print("Reading value: " + sync.getA()); 
    } finally { 
        lock.unlock(); 
    } 
} else { 
    System.out.print(" No lock acquired :-("); 
} 

Listing 30 Java, ReentrantLock (tryLock mit Timeout) 

In beiden Fällen ist es wichtig, dass der gesamte Code zwischen der Lock-Anfrage und der Lock-
Freigabe in einem try Block steht und die Lock-Freigabe im zugehörigen finally Block. Dies stellt 
sicher, dass der Lock auf jeden Fall wieder freigegeben wird. Bei synchronized Blöcken ist dies 
nicht nötig, da bei einer Exception der Block automatisch verlassen und der Lock freigegeben wird. 
Bei der manuellen Lock-Behandlung wird ein vergessen gegangener Lock aber nicht automatisch 
wieder freigegeben und bleibt bestehen. 

Der Konstruktor der Klasse ReentrantLock bietet einen Parameter um die Fairness einzuschalten 
(boolean Parameter). Fairness garantiert, dass die Threads in der Reihenfolge ihrer Anfragen den 
Lock bekommen. Dies mag auf den ersten Blick verlockend klingen hat aber einen massiven Perfor-
mance-Einbruch zur Folge (siehe [4] S. 284). Der Geschwindigkeitsverlust (besonders bei vielen pa-
rallelen Anfragen) liegt in der zusätzlich nötigen Synchronisation der Threads und dem damit verbun-
denen Aufwand. Da die meisten Algorithmen nicht auf Fairness angewiesen sind sollte diese Option 
nur in begründeten Einzelfällen Verwendung finden. 

  2006-11-20 



Diplomarbeit  Seite 85 

8.1.3.2. Atomic* 
Java 5 bietet im java.util.concurrent.atomic Package neue Klassen für die atomare Behand-
lung der grundlegenden Datentypen. Diese Klassen arbeiten nach dem nicht-blockierenden CAS Prin-
zip (siehe Kapitel 8.2.4) und arbeiten daher sehr effizient bei niedriger bis mittlerer lock contention. 

Es folgt eine Liste der wichtigsten Methoden am Beispiel der AtomicInteger Klasse: 

Tabelle 33 Wichtige Methoden der AtomicInteger Klasse 

Methode Beschreibung 

addAndGet() Diese Methode addiert in einem Atomaren Vorgang den angegebenen 
Wert. 

compareAndSet() Lässt den Benutzer die CAS-Funktion direkt ausführen. Damit lassen 
sich CAS-Algorithmen implementieren (siehe Kapitel 8.2.4). 

decrementAndGet() 

incrementAndGet()

Entspricht der Integer-Operation „--i“, bzw. „++i“ wird aber atomar 
ausgeführt. 

getAndDecrement() 

getAndIncrement()

Entspricht der Integer-Operation „i--“ bzw. „i++“ wird aber atomar aus-
geführt. 

getAndAdd() Addiert den angegebenen Wert und gibt das Resultat zurück. 

getAndSet() Setzt den angegebenen wert und gibt den alten Wert zurück. 

  2006-11-20 



Diplomarbeit  Seite 86 

8.2. Synchronisierung 

In Java sind Elemente zur Synchronisation direkter Bestandteil des Sprachumfangs. Die Synchronisie-
rung ist die wohl heikelste Angelegenheit bei der parallelen Programmierung. Überall wo ein gemein-
samer Zugriff stattfindet müssen diese Zugriffe synchronisiert werden um konsistente Daten zu ge-
währleisten. Die einfachste Form der Synchronisation ist ein Mutex (siehe Kapitel 8.2.1). Der Begriff 
Mutex wird häufig als Synonym für Lock verwendet. Ein Mutex hat die Eigenschaft, dass nur eine ein-
zige Anfrage erfolgreich ist. Alle weiteren Anfragen den Mutex/Lock zu erhalten führen zur Blockierung 
des aufrufenden Threads bis der Mutex wieder freigegeben wird. 

Finden nur wenige/vereinzelte Zugriffe auf diese Methode statt, so fällt die Synchronisierung kaum ins 
Gewicht da der aufrufende Thread in der Regel sofort den Lock bekommen kann. Bei vielen parallelen 
Zugriffen führt dies natürlich zu einem Engpass (da nur ein Thread zeitgleich passieren darf). Der 
Grad der konkurrierenden Zugriffe wird ‚lock contention’ genannt. Eine hohe ‚lock contention’ bedeu-
tet, dass viele Threads gleichzeitig versuchen in den kritischen Bereich einzutreten. Da dies immer nur 
einem zur gleichen Zeit gelingen kann müssen alle anderen Threads warten. Dies kann zu ungewoll-
ter Blockierung von Applikationsteilen führen. Ist die ‚lock contention’ niedrig, so reduziert sich der 
Aufwand im Optimalfall auf das setzen des Locks (ein einziger Thread fordert den Lock an).  

Es ist also wünschenswert die lock contention so niedrig wie möglich zu halten. Dazu gibt es drei 
wirksame Wege dies zu erreichen (aus [4] S. 233): 

• Reduzierung der Dauer während der ein Lock gehalten wird. 

• Reduzierung der Anfragehäufigkeit eines Locks. 

• Exclusive Locking Techniken durch andere Koordinationsmechanismen mit besserer Konkur-
rierungsfähigkeit ersetzen. 

Der erste Punkt zielt darauf ab den Durchsatz zu erhöhen indem ein Lock möglichst schnell wieder 
abgegeben wird. Damit kann der nächste Thread schneller in den geschützten Bereich eintreten. 

Der zweite Punkt zielt auf Zwei Eigenschaften. Einerseits ist die Wahrscheinlichkeit eines Engpasses 
und gleichzeitigen Zugriffs höher, wenn mehr Anfragen auf denselben Lock stattfinden und anderer-
seits ist mit jeder Anfrage der Aufwand zur Prüfung des aktuellen Lock-Status verbunden. Im Falle 
eines bereits gesperrten Locks kommt noch der Aufwand der Blockierung und dem erneuten Versuch 
hinzu. 

Für beide Punkte werden in den Kapiteln 8.2.1.1 und 8.2.1.2 die Methoden zur Realisierung vorge-
stellt. Kapitel 8.3 enthält eine praktische Analyse verschiedener Locking-Strategien. 

Der dritte Punkt ist etwas komplexer zu realisieren aber es gibt Techniken um den gemeinsamen 
Zugriff auch ohne Locks und der damit verbundenen Blockierung zu synchronisieren. Mehr dazu im 
Kapitel 8.2.4. 

Weiterführende Informationen: 

• Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1: [4] 

  2006-11-20 



Diplomarbeit  Seite 87 

8.2.1. Mutex 

Die Bezeichnung Mutex ist eine Abkürzung für den englischen Ausdruck „Mutal Exclusion“ und be-
zeichnet den wechselseitigen Ausschluss im Zusammenhang mit gleichzeitigem Zugriff. Ein Mutex 
erlaubt immer nur einem einzigen Thread den Eintritt in einen geschützten Bereich. Alle nachfolgen-
den Anfragen führen zur Blockierung des anfragenden Threads. Erst wenn die Sperrung wieder auf-
gehoben wird (durch Freigabe des Mutex durch den besitzenden Thread) kann der nächste Thread in 
den Bereich eintreten. 

Folgendes Code-Fragment verdeutlicht die Funktion: 
public void sharedMethod() { 
    lock.acquire(); 
    // do modification on shared data 
    lock.release(); 
} 

Listing 31 Java, Mutex 

Dieses Konstrukt stellt sicher, das sich immer nur ein einziger Thread zeitgleich im kritischen Bereich 
aufhält. In Java werden solche Bereiche mit dem Schlüsselwort synchronized gekennzeichnet (sie-
he Kapitel 8.2.1.1 und 8.2.1.2). 

Weiterführende Informationen: 

• Wikipedia, Mutex: [MUTEX] 

8.2.1.1. Blocksynchronisation 
Java stellt für jedes Objekt einen Lock-Pool und einen Wait-Pool zur Verfügung (siehe auch Kapitel 
8.1.1). Diese Pools werden über Monitore verwaltet. Um einen Block mit exklusivem Zugriff zu definie-
ren wird zunächst ein Objekt benötigt welches den Lock-Pool zur Verfügung stellt. Dies kann ein be-
liebiges (auch ansonsten unverwendetes) Objekt sein: 

package ch.skybeam.examples; 
public class ObjectSync { 
    private Object lock = new Object(); 
     
    public void methodWithLock() throws InterruptedException { 
        // some code 
        synchronized(lock) { 
            // some more code, Thread holds lock of 'lock' object 
            lock.wait(); // here the lock is freed 
            // here the lock is gained again 
        } 
    } 
} 

Listing 32 Java, Blocksynchronisation 

In diesem Code wird ein leeres Objekt mit dem Namen lock erzeugt. Die Methode method-
WithLock() kann von verschiedenen Threads gleichzeitig aufgerufen werden. Sobald einer der 
Threads den synchronized Block erreicht versucht dieser den Lock auf das lock Objekt zu erhal-
ten. Derjenige Thread, der den Lock bekommt darf im Block weiterlaufen. Alle anderen Threads be-
kommen den Lock nicht und verbleiben im Lock-Pool. Sobald der Thread mit dem Lock den synch-
ronized Block verlässt wird der Lock wieder freigegeben. Damit kann ihn der nächste Thread erhal-
ten und in den Block eintreten. Die Modellierung entspricht dem gängigen Idiom der Mutex Synchroni-
sierung. 

Würde innerhalb des synchronized Blocks die Methode wait() des lock Objektes aufgerufen, so 
würde der Thread in den Wait-Pool fallen und der Lock abgegeben. Somit könnte der nächste Thread 
den Lock bekommen und in den Block eintreten. 

  2006-11-20 



Diplomarbeit  Seite 88 

Es können beliebig viele Threads im Lock- sowie im Wait-Pool eines Objektes liegen. Die Methode 
notify() des Lock-Objektes holt dabei ein Objekt aus dem Wait-Pool heraus. Die Methode noti-
fyAll() tut dasselbe, holt aber alle wartenden Threads aus dem Wait-Pool. Danach kann aber nur 
derjenige Thread direkt weiterlaufen, der anschliessend den Lock wieder bekommt. 

Hier muss dafür gesorgt werden, dass alle Threads das notify() Signal bekommen. Ansonsten 
droht Starvation (siehe Kapitel 7.1). 

Da jedes Objekt einen Wait- und einen Lock-Pool hat kann der oben stehende Code auch folgender-
massen geschrieben werden: 

package ch.skybeam.examples; 
public class ObjectSync { 
    public void methodWithLock() throws InterruptedException { 
        // some code 
        synchronized(this) { 
            // some more code, Thread holds lock of 'lock' object 
            lock.wait(); // here the lock is freed 
            // here the lock is gained again 
        } 
    } 
} 

Listing 33 Java, Blocksynchronisation mit 'this' 

In Diesem Fall wird kein separates Lock-Objekt erzeugt sondern auf der this Referenz synchroni-
siert. Dies bedeutet, dass die Threads den Lock- und Wait-Pool des ObjectSync Objektes verwen-
den. Im oben stehenden Code ist dies kein Nachteil. Wenn aber an mehreren Stellen immer auf das-
selbe Objekt (z.B. this) synchronisiert wird, so kann dies unter Umständen zu verschlechterter Per-
formance führen weil alle synchronized-Blöcke gleichzeitig gesperrt werden. 

Da die Klassenvariabeln auf die zugegriffen wird in Java auch häufig Objekte sind bietet sich die direk-
te Synchronisation mit dem Datenobjekten an: 

package ch.skybeam.examples; 
public class ObjectSync { 
    private Object object1 = new Object(); 
    private Object object2 = new Object(); 
 
    public void methodWithLock1() throws InterruptedException { 
        // some code 
        synchronized (this) { 
            // some more code, Thread holds lock of 'lock' object 
            object1.wait(); // here the lock is freed 
            // here the lock is gained again 
        } 
    } 
    public void methodWithLock2() throws InterruptedException { 
        // some code 
        synchronized (this) { 
            // some more code, Thread holds lock of 'lock' object 
            object2.wait(); // here the lock is freed 
            // here the lock is gained again 
        } 
    } 
} 

Listing 34 Java, Locking über Klassenvariabeln 

Dieser Code erlaubt den gleichzeitigen Zugriff auf methodWithLock1() und methodWithLock2() 
durch unterschiedliche Threads ohne dazu zu führen, dass diese sich gegenseitig blockieren. 

  2006-11-20 



Diplomarbeit  Seite 89 

8.2.1.2. Methodensynchronisation 
In Java können auch ganze Methoden anstatt nur einzelne Blöcke synchronisiert werden. Dabei han-
delt es sich wie wir gleich sehen werden um den gleichen Mechanismus. Hier ein kleines Code-
Beispiel: 

package ch.skybeam.examples; 
public class MethodSync { 
    public synchronized void methodWithLock1() { 
        // some code 
    } 
 
    public synchronized void methodWithLock2() { 
        // some code 
    } 
} 

Listing 35 Java, Methodensynchronisation 

Wie gut zu erkennen ist wird das Schlüsselwort synchronized in der Methodendeklaration verwen-
det. Dies bewirkt, dass die gesamte Methode synchronisiert wird. Auffällig ist dabei die Tatsache, dass 
kein Synchronisations-Objekt angegeben wird. Bei der Methodensynchronisation verwendet Java 
implizit den Lock-Pool der this Referenz. Im Beispiel wäre dies die Instanz der Klasse MethodSync. 
Da es bei statischen Objekten keine this Referenz gibt wird in diesem Fall auf das dazugehörende 
class Objekt synchronisiert. 

Der oben stehende Code könnte also auch folgendermassen geschrieben werden: 
package ch.skybeam.examples; 
public class MethodSync { 
    public void methodWithLock1() { 
        synchronized (this) { 
            // some code 
        } 
    } 
 
    public void methodWithLock2() { 
        synchronized (this) { 
            // some code 
        } 
    } 
} 

Listing 36 Java, Methoden und Blocksynchronisation 

Der hauptsächliche Nachteil aus der Methodensynchronisation besteht in der Tatsache, dass alle 
Locks auf dasselbe Objekt stattfinden. Somit werden mit dem Eintritt eines Threads in eine synchroni-
sierte Methode automatisch alle anderen synchronisierten Methoden für die anderen Threads ge-
sperrt. Derjenige Thread, welcher den Lock besitzt, kann aber diesen mehrmals bekommen (siehe 
dazu auch Kapitel 8.2.1.3. 

Aus diesem Grund sollte die Methodensynchronisation nur eingesetzt werden, wenn entweder der 
gleichzeitige Zugriff auf alle Datenfelder gesperrt werden muss oder nur ein einziges Datenfeld exis-
tiert. Ansonsten ist die Objektsynchronisation vorzuziehen da dadurch unter Umständen ein viel klei-
nerer Code-Block gesperrt werden kann. 

  2006-11-20 



Diplomarbeit  Seite 90 

8.2.1.3. Weitere wichtige Hinweise 
Java führt intern einen Zähler auf Locks und eine Referenz auf den Thread, der den Lock aktuell be-
sitzt. Ein Objekt gilt bei der Erzeugung als ungesperrt (engl. unlocked). Erhält ein Thread den Lock so 
wird seine Referenz im Objekt vermerkt und der Lock-Zähler um 1 erhöht. Das Objekt gilt nun als ge-
sperrt. (engl. locked) Gibt der Thread den Lock ab, so wird der Zähler um 1 erniedrigt. Erreicht der 
Zähler 0, dann wird der Lock gelöscht und das Objekt gilt wieder als ungesperrt. Dabei kann ein 
Thread den Lock mehrmals erhalten. Dann wird einfach der Zähler erhöht. Besitzt ein Thread den 
Lock bereits so wird jeder weitere Lock auf dasselbe Objekt sofort erteilt (da ja niemand anders diesen 
aktuell besitzen kann) und der Zähler erhöht. 

Locking ist allgemein „teuer“ und kostet gleich in zweierlei Hinsicht Zeit und somit Performance. Einer-
seits ist der Ein- und Austritt in synchronisierte Bereiche aufwändig zu regeln und andererseits müs-
sen andere Threads warten während einer sich im synchronisierten Bereich befindet. Deshalb sollte 
nur dort synchronisiert werden wo dies auch wirklich nötig ist und die Synchronisations-Blöcke sollten 
möglichst klein gehalten werden. Beispielsweise macht es wenig Sinn die Methodensynchronisation 
für sehr grosse Methoden zu verwenden wenn diese aufwändigen Berechnungen durchführen aber 
nur am Ende der Methode auf ein zu schützendes Datenfeld zugreifen. Wird ein solches Datenfeld 
aber am Anfang der Methode gelesen und darf bis zum Ende der Berechnungen nicht modifiziert wer-
den, dann muss es leider die gesamte Berechnungsdauer über gesperrt bleiben. Man könnte jetzt in 
Versuchung geraten jeweils nur ganz kurze Strecken zu synchronisieren. Dies wirkt sich aber 
manchmal auch negativ aus, da häufige Ein- und Austritte aus synchronisierten Bereichen sich auch 
auf die Performance auswirken. Für einige Beispiele siehe Kapitel 8.3. 

8.2.2. Unterbrechbare Locks 

Die gezeigte Lock-Behandlung mit synchronized Blöcken ist recht statisch und auch unflexibel. Ein 
Lock wird zu Beginn des synchronized Blockes angefragt und gehalten bis zum Ende des Blockes. 
Bei einem unerwarteten Programmabbruch (Exception) wird der Block verlassen und der Lock auto-
matisch wieder freigegeben. In Manchen Fällen möchte man aber den Lock abhängig von einer Be-
dingung oder gar in einer aufgerufenen Methode freigeben. Es gibt auch Situationen bei denen der 
Lock angefragt werden soll ohne ewig darauf zu warten. Die Synchronisierung mit synchronized 
bietet Keine Möglichkeit der Definition einer Zeitüberschreitung bei der Lock-Anforderung. Ausserdem 
bietet synchronized keine Möglichkeit einen wartenden Thread zu unterbrechen. 

Um diese Flexibilität zu bieten enthält die Java-API ab Version 5 die ReentrantLock Klasse (siehe 
Kapitel 8.1.3.1). Diese erlauben den Abbruch eines Threads, der auf einen Lock wartet. Ausserdem ist 
es damit möglich einen Zeitüberschreitung bei der Lock-Anfrage zu definieren sowie auch die Anfrage 
automatisch abbrechen zu lassen, wenn der Lock nicht sofort erteilt werden kann. 

Weiterführende Informationen: 

• Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1: [4] 

  2006-11-20 



Diplomarbeit  Seite 91 

8.2.3. Lock Granularität 

Unter dem Begriff der Granularität wird verstanden wie fein gegliedert die Locks verwendet werden. 
Im Extremfall könnte in der gesamten Applikation ein einziges Lock-Objekt verwendet werden. Dies 
hätte aber den Nachteil, dass bei jedem synchronisierten Zugriff der alleinige Lock benötigt wird und 
gleichzeitig auch alle anderen kritischen Stellen gesperrt würden. Der andere Extremfall wäre, dass 
jedes Datenfeld durch seinen eigenen Lock geschützt würde. Dies hätte aber zum Nachteil, dass für 
viele Operationen mehrere Locks notwendig wären was die Wahrscheinlichkeit für Deadlocks erhöht. 
Ausserdem würde solch extrem fein Granuliertes Locking zu viel Overhead bei Lock-Anfragen und 
Lock-Freigaben führen. 

Die optimale Granularität liegt irgendwo dazwischen und ist von Anwendungsfall zu Anwendungsfall 
unterschiedlich. Es gibt aber einige Techniken mit denen man die Granularität verfeinern kann falls 
dies nötig ist. Mehr dazu in den folgenden Abschnitten. 

Weiterführende Informationen: 

• Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1: [4] 

8.2.3.1. Lock Splitting 
Lock Splitting ist häufig die einfachste Art die Lock-Granularität zu verfeinern. Hierbei wird für zwei 
Objekte die dasselbe Lock-Objekt verwenden ein eigenes Lock-Objekt erzeugt. Durch die Aufteilung 
von einem auf zwei Locks kann im Optimalfall die lock contention für beide Objekte halbiert werden. 
Das Resultat sind weniger blockierende Zugriffe und einen dadurch gesteigerten Durchsatz. 

Natürlich funktioniert Lock Splitting nur, wenn eine Operation nicht den Lock auf beide Objekte benö-
tigt, ansonsten müsste dies Operation nach dem Split beide Locks anfordern. Wie bereits erwähnt 
kann Lock Splitting das Risiko für Deadlocks erhöhen. 

8.2.3.2. Lock Striping und Lock Partitioning 
Wie erwähnt stösst Lock Splitting an die Grenzen wenn entweder mehrere Objekte in eine Operation 
involviert sind oder ein einzelnes Datenfeld bereits durch seinen eigenen Lock geschützt ist. Bei-
spielsweise kann auf den ersten Blick ein Zugriff auf ein Array nicht weiter unterteilt werden und muss 
durch ein einzelnes Lock-Objekt geschützt sein. 

Einen Ausweg bietet Lock-Striping. Hierbei wird das Objekt selbst noch in weitere Lock-Bereiche un-
terteilt. Beispielsweise können Arrays in manchen Fällen in gleichgrosse Blöcke aufgeteilt werden. Im 
Extremfall erlaubt dies ein Locking auf Element-Ebene (wenn für jedes Element ein eigener Lock zur 
Verfügung steht. 

Meistens ist Lock-Striping aber schwierig umzusetzen. Insbesondere verlangen eventuell einige Ope-
rationen wie Hash-Berechnungen den Lock auf alle Elemente. Diese Operationen würden dann sehr 
„teuer“ in der Ausführung und würden möglicherweise den Programmfluss empfindlich stören. 

Der Betriff Lock-Partitioning wird häufig synonym verwendet und bezeichnet ebenfalls die Aufteilung 
eines Lock-Bereiches in mehrere Scheiben/Blöcke. Bei zweidimensionalen Datenstrukturen wird Lock-
Partitioning auch häufig für die Aufteilung in Blöcke verwendet. 

  2006-11-20 



Diplomarbeit  Seite 92 

8.2.4. Compare and Swap / Compare and Set (CAS) 

Alle bis jetzt kennen gelernten Methoden zur Synchronisierung basieren auf dem Prinzip des Aus-
schlusses und der Sperrung eines gewissen Bereiches durch einen Lock. Es gibt aber auch Methoden 
zur Modifikation gemeinsamer Daten ohne diese zu sperren. Dazu benötigt man so genannte atomare 
Funktionen. Atomare Funktionen haben die Eigenschaft, dass sie in einer Operation ohne Unterbre-
chung durchgeführt werden. Konkret heisst das, dass ein Thread, der eine Atomare Operation aus-
führt während dieser nicht unterbrochen werden kann. Somit ist auch keine Modifikation des Wertes 
während der Operation möglich. 

Um eine solche Operation möglichst effizient umsetzen zu können benötigt man Hardwareunterstüt-
zung. Eine dieser Operationen ist die Compare-and-Swap Funktion. Sie wird sowohl von der IA32 wie 
auch von der Sparc-Architektur unterstützt. Die Funktion besitzt folgenden Syntax: compa-
reAndSwap(V, A, B). Hierbei ist V die Adresse des gespeicherten Wertes, A der erwartete Wert 
und B der neue Wert. Die Funktion vergleicht nun den Wert A mit dem tatsächlich gespeicherten Wert 
an der Adresse V. Sind die Werte V und A identisch, so wird V durch B ersetzt. Sind die Werte nicht 
identisch, dann wird nichts ausgeführt. Im Erfolgsfall gibt die Funktion den neuen Wert zurück, im Feh-
lerfall den alten. 

In leicht abgewandelter Form mit den Namen Compare-and-Set findet das Konzept auch Anwendung 
in Java. Java verwendet intern dieselben Methoden aber erst mit Java 5 wurden die Methoden über 
die API zugänglich gemacht (siehe auch Kapitel 8.1.3.2). 

CAS-Algorithmen sind nicht blockierend und eliminieren daher auch die Gefahr von Lock-Basierenden 
Deadlocks. Ausserdem entfällt die Synchronisation des Zugriffes. Ein typischer CAS-Algorithmus sieht 
wie folgt aus: 

1. Lesen eines Originalwertes aus dem Speicher. 

2. Berechnung des neuen Wertes basierend auf dem gelesenen Wert. 

3. Zurückschreiben des neuen Wertes mittels CAS. Dabei können folgende Fälle eintreten: 

o Der Originalwert wurde nicht verändert und der neue Wert somit geschrieben. Der Al-
gorithmus ist somit beendet. 

o Der Wert wurde zwischenzeitlich durch einen anderen Thread verändert. In diesem 
Fall wird wieder bei Schritt 1 weitergemacht. 

Durch diesen Algorithmus sind konsistente Daten garantiert. Der Nachteil besteht in der Tatsache, 
dass bei stark konkurrierendem Zugriff der Algorithmus natürlich häufiger durchlaufen werden muss. 
Je länger der Algorithmus (Schritt 2) ist, desto wahrscheinlicher ist es, dass der Wert in der Zwischen-
zeit verändert wurde. 

Die Vorteile überwiegen aber in den meisten Fällen. Insbesondere bei niedriger oder mittlerer Last 
(was einer typischen Applikationsauslastung entspricht) sind CAS-Algorithmen meist deutlich effizien-
ter als Locks. In [4] S. 328 hat sich gezeigt, dass nur bei extremer Last ein ReentrantLock minimal 
schneller war als ein AtomicInteger (der auf CAS basiert, siehe dazu Kapitel 8.1.3.2). Bei niedriger 
und mittlerer lock contention war ein AtomicInteger deutlich schneller (ungefähr Faktor 2) und lag 
damit im Mittelfeld zwischen unsynchronisiertem und mit Lock gesichertem Zugriff. 

Ein Riesiger Vorteil bei CAS-Algorithmen ist wie gesagt die Minimierung des Deadlock-Risikos. Selbst 
bei extremer Belastung ist mit CAS-Algorithmen sichergestellt, dass bei jedem Durchgang ein Thread 
weiterkommt. 

Nachteilig wirkt sich insbesondere die schwierige Handhabung und Entwicklung von CAS-Algorithmen 
aus. Besonders beim Zugriff auf mehr als nur ein Datenelement muss die Konsistenz aller Datenfelder 
sichergestellt werden. 

Weiterführende Informationen: 

• Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1: [4] 

  2006-11-20 



Diplomarbeit  Seite 93 

8.3. Implementierung in Java 

In diesem Kapitel werden anhand eines praktischen Beispieles einige Vor- und Nachteile der Syn-
chronisierung sowie einige Fallstricke für Programmierer beleuchtet. Die Beispiele konzentrieren sich 
auf eine Analyse der Performance und sollen ein Gefühl für die Wichtigkeit korrekter Synchronisierung 
vermitteln. 

8.3.1. Methodensynchronisation 

package ch.skybeam.examples; 
public class MethodSync { 
    private Object A; 
    private Object B; 
 
    public synchronized void methodWithLock1() { 
        // some code accessing A only 
    } 
 
    public synchronized void methodWithLock2() { 
        // some code accessing B only 
    } 
} 

Listing 37 Java, Methodensynchronisation (grobes Locking) 

Dieser Code würde beim Aufruf von methodWithLock1() implizit das Objekt MethodSync für einen 
Thread sperren. Somit wären auch Zugriffe auf methodWithLock2() gesperrt obwohl diese nicht auf 
dieselben Datenfelder zugreifen. 

Besser wäre: 
package ch.skybeam.examples; 
public class MethodSync { 
    private Object A; 
    private Object B; 
 
    public void methodWithLock1() { 
        synchronized(A) { 
            // some code accessing A only 
        } 
    } 
 
    public void methodWithLock2() { 
        synchronized(B) { 
            // some code accessing B only 
        } 
    } 
} 

Listing 38 Java, verfeinertes Locking) 

Bei diesem Beispiel werden die Methoden unabhängig voneinander aufgerufen. Somit würden sich 
zwei Threads, welche eine Referenz auf dasselbe Objekt haben nicht blockieren sofern sie nicht die-
selbe Methode aufrufen. 

  2006-11-20 



Diplomarbeit  Seite 94 

8.3.2. Überlange Synchronisierung 

package ch.skybeam.examples; 
public class MethodSync { 
    private int A; 
    public synchronized void methodWithLock1() { 
        // lots of slow code 
        // even more slow code 
         
        // incrementing shared counter 
        A++; 
    } 
} 

Listing 39 Java, überlange Synchronisierung 

Hier wird das Objekt (this Referenz) für die gesamte Berechnungsdauer gesperrt. Dies kann unter 
Umständen sehr lange dauern. Aufgrund der Methodensynchronisation könnte auch keine weitere 
synchronized Methode dieser Klasse durch einen anderen Thread aufgerufen werden. Dies kann je 
nach Design der Anwendung zur Blockierung anderer Applikationsteile führen. 

Besser wäre hier: 
package ch.skybeam.examples; 
public class MethodSync { 
    private int A; 
    public void methodWithLock1() { 
        // lots of slow code 
        // even more slow code 
         
        // incrementing shared counter 
        synchronized(this) { 
            A++; 
        } 
    } 
} 

Listing 40 Java, Synchronisiertung verkürzen 

Hierbei wird nur der Zugriff auf die gemeinsame Variable A synchronisiert. Zu beachten ist auch, dass 
die Methode methodWithLock1() hier nicht mehr synchronisiert ist. 

Das Funktioniert natürlich nicht, wenn die Variable A in der Berechnung verwendet würde und wäh-
rend der gesamten Berechnung nicht verändert werden darf: 

package ch.skybeam.examples; 
public class MethodSync { 
    private int A; 
    public synchronized void methodWithLock1() { 
        int tmp = A; 
        // lots of slow code 
        // even more slow code 
        int result = ...; 
         
        // incrementing shared counter 
        A = result; 
    } 
} 

Listing 41 Java, Synchronisierung verkürzen 2 

Hier könnte allenfalls eine Synchronisierung auf ein anderes Objekt als die this Referenz geprüft 
werden um nicht gleich auch alle anderen synchronized Methoden dieses Objektes zu sperren. 

  2006-11-20 



Diplomarbeit  Seite 95 

8.3.3. Extrem häufiges Locking/Unlocking 

Folgende Klasse bietet einen sicheren (synchronisierten) Zugriff auf einen Integer-Wert: 
package ch.skybeam.examples; 
public class MethodSync { 
    private int A = 0; 
 
    public synchronized int getA() { 
        return A; 
    } 
 
    public synchronized void setA(int newA) { 
        this.A = newA; 
    } 
} 

Listing 42 Java, häufiges Locking/Unlocking 

Hier macht die Methodensynchronisation sogar Sinn, da nur auf ein Datenfeld zugegriffen wird und 
dieses über dasselbe Objekt (this) gesperrt werden kann. 

Nun wird über den folgenden Code auf das Element zugegriffen: 
MethodSync perfTest = new MethodSync(); 
long startTime = System.nanoTime(); 
 
for(int i=0; i<100000000; i++) { 
    perfTest.setA(perfTest.getA()+1); 
} 
 
long timeSpent = System.nanoTime() - startTime; 
System.out.println("Value of perfTest: " + perfTest.getA()); 
System.out.println("Time spent: " + timeSpent/1000000 + "ms"); 

Listing 43 Java, Loking in einer Schleife 

Wird dieser Code ausgeführt, so wird bei jedem Schleifendurchgang zwei Mal der Lock auf das perf-
Test Objekt angefordert. Sowohl setA() als auch getA() sind synchronisiert und verlangen daher 
den Lock. Hier geschieht beides 100 Millionen Mal. 

Die Ausgabe sieht auf meinem System wie folgt aus: 
Value of perfTest: 100000000 
Time spent: 2559ms 

Listing 44 Ausgabe 

Versuchen wir mal folgenden Code für den Objektzugriff: 
MethodSync perfTest = new MethodSync(); 
long startTime = System.nanoTime(); 
synchronized (perfTest) { 
    for(int i=0; i<100000000; i++) { 
        perfTest.setA(perfTest.getA()+1); 
    } 
} 
long timeSpent = System.nanoTime() - startTime; 
System.out.println("Value of perfTest: " + perfTest.getA()); 
System.out.println("Time spent: " + timeSpent/1000000 + "ms"); 

Listing 45 Java, Synchronisierung ausserhalb der Schleife 

Hier wird der Lock für das perfTest Objekt schon vor der Schleife angefordert. Es ist also anzuneh-
men, dass der Aufwand des Lockings gegen Null geht. Erstaunlicherweise sieht die Ausgabe wie folgt 
aus: 

  2006-11-20 



Diplomarbeit  Seite 96 

Value of perfTest: 100000000 
Time spent: 2386ms 

Also keine ausserhalb der Messgenauigkeit liegende Veränderung. Durch das Ergebnis ist man ge-
neigt zu glauben, dass Locking offenbar doch nicht so viel Zeit in Anspruch nimmt. Doch Vorsicht: Wir 
arbeiten hier nur mit einem Thread. Java muss den Lock eines Objektes erst wirklich abgeben und 
neu anfordern wenn ein Kontextwechsel stattfindet. Offenbar wird hier von der Java VM optimiert. Um 
das zu beweisen modifizieren wir den Zugriff leicht und erzeugen einen dummy-Thread. Dessen ein-
zige Aufgabe ist es hie und da mal auf das Objekt zuzugreifen und Java dadurch zu zwingen den Lock 
abzugeben: 

MethodSync perfTest = new MethodSync(); 
Thread dummy = new DummyThread(perfTest); 
dummy.start(); 
long startTime = System.nanoTime(); 
// synchronized (perfTest) { 
    for(int i=0; i<100000000; i++) { 
        perfTest.setA(perfTest.getA()+1); 
    } 
// } 
long timeSpent = System.nanoTime() - startTime; 
System.out.println("Value of perfTest: " + perfTest.getA()); 
System.out.println("Time spent: " + timeSpent/1000000 + "ms"); 

Listing 46 Java, Locking in einer Schleife 

Wie zu sehen ist wurde die Synchronisierung vor der Schleife hier auskommentiert. Dafür wird ein 
Thread erzeugt. Dessen Code sieht folgendermassen aus: 

package ch.skybeam.examples; 
public class DummyThread extends Thread { 
    private MethodSync sync; 
 
    public DummyThread(MethodSync s) { 
        this.sync = s; 
        this.setDaemon(true); 
    } 
 
    public void run() { 
        int count = 0; 
        while (true) { 
            System.out.print("Thread tick " + ++count); 
            System.out.print(" reads value: " + sync.getA()); 
            System.out.println(""); 
            try { 
                Thread.sleep(500); 
            } catch (InterruptedException e) { 
                e.printStackTrace(); 
            } 
        } 
    } 

Listing 47 Java, Dummy-Thread zur Simulation von 'lock contention' 

Wie gut zu erkennen ist bekommt dieser Thread eine Referenz auf das synchronisierte Objekt. An-
sonsten tut der Thread nichts ausser 500ms warten um dann einmal lesend auf das Objekt zuzugrei-
fen. Da dieses vorher ungefähr 2.5 Sekunden lief sollte dies nur ungefähr 5 Mal passieren. Den zu-
sätzlichen Aufwand durch den Kontextwechsel selbst und den Lesezugriff (nur ca. 5 Mal) vernachläs-
sigen wir hier. Der Thread wird im Übrigen als Daemon konfiguriert. Damit beendet sich die Endlos-
schlaufe automatisch wenn das Programm zu Ende ist. Ohne diese Konfiguration würde sich das Pro-
gramm am Ende nicht beenden. 

Das Ergebnis überrascht dann aber mit erstaunlich langer Laufzeit. Hier die Ausgabe (gekürzt): 
Thread tick 1 reads value: 584218 
Thread tick 2 reads value: 21971701 

  2006-11-20 



Diplomarbeit  Seite 97 

Thread tick 3 reads value: 44552450 
Thread tick 4 reads value: 45991802 
[…] 
Thread tick 39 reads value: 98295964 
Thread tick 40 reads value: 99761596 
Value of perfTest: 100000000 
Time spent: 19862ms 

Listing 48 Ausgabe 

Das Programm braucht also plötzlich etwa 8 Mal länger als erwartet. Was ist passiert? Am zusätzli-
chen Aufwand für den Thread liegt es nicht. Wir kommentieren mal eine der Ausgabezeilen aus: 

// System.out.print(" reads value: " + sync.getA()); 

Listing 49 Java, Lock-verursachende Zeile entfernen 

Und schon sieht das Ergebnis wieder wie vorher aus: 
Thread tick 1 
Thread tick 2 
Thread tick 3 
Thread tick 4 
Thread tick 5 
Value of perfTest: 100000000 
Time spent: 2330ms 

Listing 50 Ausgabe 

Wir haben also vorhin die VM wirklich dazu gezwungen den Lock häufiger abzugeben und dadurch 
entstand die längere Laufzeit. Das Ergebnis verschlechtert sich noch weiter, wenn nicht alle 500ms 
sondern in kürzeren Abständen zugegriffen wird. Doch selbst bei 40 konkurrierenden Zugriffen wie 
oben entstand ein Performance-Einbruch von Faktor 8. Es ist anzunehmen, dass die VM so intelligent 
ist den Lock so lange zu behalten wie der Thread mit der for Schleife im Status „running“ ist. 

Was kann man dagegen tun? 

Eine Versuche wäre es wert den Lock während der gesamten for-Schleife zu behalten indem man 
ihn manuell (durch synchronized) anfordert: 

MethodSync perfTest = new MethodSync(); 
Thread dummy = new DummyThread(perfTest); 
dummy.start(); 
long startTime = System.nanoTime(); 
synchronized (perfTest) { 
    for(int i=0; i<100000000; i++) { 
        perfTest.setA(perfTest.getA()+1); 
    } 
} 
long timeSpent = System.nanoTime() - startTime; 
System.out.println("Value of perfTest: " + perfTest.getA()); 
System.out.println("Time spent: " + timeSpent/1000000 + "ms"); 

Listing 51 Java, Synchronisation ausserhalb der Schleife 

Leider führt dies auch nicht zum erwünschten Ergebnis: 
Threat tick 1 reads value: 100000000 
Value of perfTest: 100000000 
Time spent: 19740ms 

Listing 52 Ausgabe 

Der einzig sichtbare Effekt ist, dass der Thread über den Gesamten Schleifen-Vorgang angehalten 
wird weil er nie den Lock für das perfTest Objekt erhält. Das hält die JVM aber nicht davon ab hie 
und da einen Kontextwechsel vorzunehmen und zu prüfen, ob der Lock nun zu haben sei (was natür-
lich Zeit kostet). 

  2006-11-20 



Diplomarbeit  Seite 98 

Dieser Code wäre aber insgesamt sicherer, weil es auch möglich wäre, dass zwischen den Metho-
denaufrufen perfTest.getA() und perfTest.setA() ein Kontextwechsel stattfindet und der nun 
ablaufende Thread dazwischen A aus der klasse MethodSync verändert. In diesem Fall würde das 
anschliessende perfTest.setA() den Wert schlicht wieder ersetzen. Durch die Synchronisierung 
wird dies verhindert da während der gesamten Verarbeitung der Lock an perfTest gehalten wird. 

Eine Möglichkeit zur Performance-Steigerung wäre hier unter Umständen der unsynchronisierte 
Zugriff durch den Thread. Dies beinhaltet aber weitere Gefahren. Siehe dazu den nächsten Abschnitt. 

  2006-11-20 



Diplomarbeit  Seite 99 

8.3.4. Teilweise unsynchronisierter Zugriff 

Angenommen unser Thread aus der vorherigen Aufgabe ist nicht auf die Synchronisierung angewie-
sen sondern will lediglich einen gültigen Wert erhalten (egal ob dieser gerade verändert wird). Dazu 
implementieren wir eine weitere Methode in der Klasse MethodSync: 

package ch.skybeam.examples; 
public class MethodSync { 
    private int A = 0; 
     
    public synchronized int getA() { 
            return A; 
    } 
 
    public synchronized void setA(int newA) { 
            this.A = newA; 
    } 
     
    public int getAsyncA() { 
        return A; 
    } 
} 

Listing 53 Java, teilweise unsynchronisierter Zugriff 

Die Methode getAsyncA() gibt den aktuellen Wert von A zurück ohne einen Lock zu verwenden. 

Dazu passend wird der Thread-Code aktualisiert: 
package ch.skybeam.examples; 
public class DummyThread extends Thread { 
    private MethodSync sync; 
 
    public DummyThread(MethodSync s) { 
        this.sync = s; 
        this.setDaemon(true); 
    } 
 
    public void run() { 
        int count = 0; 
        while (true) { 
            System.out.print("Thread tick " + ++count); 
            System.out.print(" reads value: " + sync.getAsyncA()); 
            System.out.println(""); 
            try { 
                Thread.sleep(100); 
            } catch (InterruptedException e) { 
                e.printStackTrace(); 
            } 
        } 
    } 
} 

Listing 54 Java, Dummy Thread liesst ohne Locking 

Das Hauptprogramm bleibt unverändert: 
MethodSync perfTest = new MethodSync(); 
Thread dummy = new DummyThread(perfTest); 
dummy.start(); 
long startTime = System.nanoTime(); 
synchronized(perfTest) { 
    for(int i=0; i<100000000; i++) { 

  2006-11-20 



Diplomarbeit  Seite 100 

        perfTest.setA(perfTest.getA()+1); 
    } 
} 
long timeSpent = System.nanoTime() - startTime; 
System.out.println("Value of perfTest: " + perfTest.getA()); 
System.out.println("Time spent: " + timeSpent/1000000 + "ms"); 

Listing 55 Java, Unverändertes Hauptprogramm 

Die Ausgabe sieht wie folgt aus (gekürzt): 
Thread tick 1 reads value: 1373453 
Thread tick 2 reads value: 6793724 
[…] 
Thread tick 19 reads value: 96867749 
Value of perfTest: 100000000 
Time spent: 2337ms 

Listing 56 Ausgabe 

Es sieht also so aus als würde der konkurrierende Zugriff nicht mehr bremsend ins Gewicht fallen und 
das obwohl der Thread jetzt alle 100ms eine Abfrage macht und nicht mehr nur alle 500ms. 

Hier ist aber Vorsicht geboten. In diesem Beispiel sind wir davon ausgegangen, dass die neue Metho-
de getAsyncA() zwar nicht synchronisiert ist aber trotzdem immer einen gültigen Wert liefert. Dies 
trifft nicht immer zu. In der VM Spezifikation steht nicht, dass 64-bit Werte atomar aktualisiert werden 
müssen. Für 32-bit Werte trifft dies zu, da alle heutigen Prozessoren atomare 32-bit Operatoren ver-
wenden. Bei der Verwendung von 64-bi Datentypen (long, double) kann es vorkommen, dass die 
ersten 32-bit der Variable vom neuen und die zweiten 32-bit der Variable vom alten Wert stammen 
was möglicherweise einem total ungültigen Wert entspricht. Um dies zu verhindern bietet Java das 
Schlüsselwort volatile. Also volatile gekennzeichnete Datentypen werden quasi Atomar aktua-
lisiert und nicht in lokalen Caches gehalten. Somit wird sichergestellt, dass bei jedem Lesezugriff ein 
gültiger und aktueller (nicht im Cache vorhandener) Wert geschrieben wird. Leider kostet die natürlich 
auch wieder etwas Performance (aber nicht so viel wie die Synchronisierung): 

package ch.skybeam.examples; 
public class MethodSync { 
    private volatile int A = 0; 
     
    public synchronized int getA() { 
            return A; 
    } 
 
    public synchronized void setA(int newA) { 
            this.A = newA; 
    } 
     
    public int getAsyncA() { 
        return A; 
    } 
} 

Listing 57 Java, volatile Schlüsselwort 

Die Ausgabe sieht dann wie folgt aus: 
Thread tick 1 reads value: 1175145 
[…] 
Thread tick 19 reads value: 96067839 
Value of perfTest: 100000000 
Time spent: 2351ms 

Listing 58 Ausgabe 

Das Beispiel zeigt uns eindrucksvoll, dass die Synchronisierung mit Bedacht eingesetzt werden muss. 
Es sollte generell nur da synchronisiert werden wo es auch wirklich nötig ist. In unserem Beispiel ist es 
nicht zwingend notwendig, dass der parallel laufende Thread synchronisiert Zugreifen muss. 

  2006-11-20 



Diplomarbeit  Seite 101 

Allerdings ist es in diesem Beispiel auch nicht nötig den Zugriff auf das MethodSync Objekt zu syn-
chronisieren da nur unser „main“ Thread schreiben darauf zugreift. Deshalb wäre hier sogar ein un-
synchronisierter Zugriff denkbar (siehe nächster Abschnitt). 

  2006-11-20 



Diplomarbeit  Seite 102 

8.3.5. Vollständig unsynchronisierter Zugriff 

Im Beispiel von oben wurde der Zugriff aus dem Thread unsynchronisiert behandelt. Allerdings ist hier 
eigentlich gar keine Synchronisation mehr notwendig weil sowieso nur ein einziger Thread (der „main“ 
Thread) auf das Objekt zugreift. Somit entfernen wir die Synchronisation mal komplett: 

package ch.skybeam.examples; 
public class MethodSync { 
    private volatile int A = 0; 
     
    public int getA() { 
            return A; 
    } 
 
    public void setA(int newA) { 
            this.A = newA; 
    } 
} 

Listing 59 Java, unsynchronisierter Zugriff 

Der Thread kann nun ebenfalls wieder die nun unsynchronisierte Methode getA() verwenden. 
package ch.skybeam.examples; 
public class DummyThread extends Thread { 
    private MethodSync sync; 
 
    public DummyThread(MethodSync s) { 
        this.sync = s; 
        this.setDaemon(true); 
    } 
 
    public void run() { 
        int count = 0; 
        while (true) { 
            System.out.print("Thread tick " + ++count); 
            System.out.print(" reads value: " + sync.getA()); 
            System.out.println(""); 
            try { 
                Thread.sleep(100); 
            } catch (InterruptedException e) { 
                e.printStackTrace(); 
            } 
        } 
    } 
} 

Listing 60 Java, Dummy Thread verwendet unsynchronisierte Methoden 

Die Ausführungs-Methode sieht nun wie folgt aus: 
MethodSync perfTest = new MethodSync(); 
Thread dummy = new DummyThread(perfTest); 
dummy.start(); 
long startTime = System.nanoTime(); 
    for(int i=0; i<100000000; i++) { 
        perfTest.setA(perfTest.getA()+1); 
    } 
long timeSpent = System.nanoTime() - startTime; 
System.out.println("Value of perfTest: " + perfTest.getA()); 
System.out.println("Time spent: " + timeSpent/1000000 + "ms"); 

Listing 61 Java, Haupt-Thread 

  2006-11-20 



Diplomarbeit  Seite 103 

Die Ausgabe bescheinigt uns einen gesunkenen Overhead: 
Thread tick 1 reads value: 10275874 
Thread tick 2 reads value: 38403126 
Thread tick 3 reads value: 68075974 
Thread tick 4 reads value: 91267779 
Value of perfTest: 100000000 
Time spent: 439ms 

Listing 62 Ausgabe 

Der Nachteil dieser Methode liegt jetzt darin, dass keine Methode des Objektes perfTest synchroni-
siert ist. In unserem Code ist dies aber gar nicht notwendig, da gar niemand Zugriff auf diese Referenz 
erhalten kann. Nur der Thread bekommt die Referenz mitgegeben, dessen Code kenne ich aber und 
kann somit sicherstellen, dass keine konkurrierende Modifikation entstehen kann. 

Beachtlich ist hierbei, dass durch die Entfernung der Synchronisation nochmals eine um Faktor 5 hö-
here Geschwindigkeit erzielt werden konnte. 

Angenommen es gäbe mehrere Codestellen (beispielsweise noch eine innerhalb des Threads), die 
schreibend auf das perfTest Objekt zugreifen müssen, dann könnten alle Stellen durch eine manu-
elle Objektsynchronisation Thread-Safe gemacht werden. Beispielsweise in unserem Hauptprogramm: 

MethodSync perfTest = new MethodSync(); 
Thread dummy = new DummyThread(perfTest); 
dummy.start(); 
long startTime = System.nanoTime(); 
synchronized(perfTest) { 
    for(int i=0; i<100000000; i++) { 
        perfTest.setA(perfTest.getA()+1); 
    } 
} 
long timeSpent = System.nanoTime() - startTime; 
System.out.println("Value of perfTest: " + perfTest.getA()); 
System.out.println("Time spent: " + timeSpent/1000000 + "ms"); 

Listing 63 Java, manuelle Synchronisation aller relevanten Stellen 

Der lesende Zugriff im Thread-Code braucht nicht unbedingt synchronisiert zu werden. Insbesondere 
haben wir die Variable schon mit volatile gekennzeichnet. Deswegen wir auf jeden Fall ein gültiger 
Wert ausgelesen.  

Die Ausgabe sieht nun wie folgt aus: 
Thread tick 1 reads value: 6815157 
Thread tick 2 reads value: 32033000 
Thread tick 3 reads value: 57297691 
Thread tick 4 reads value: 82176413 
Value of perfTest: 100000000 
Time spent: 492ms 
Thread tick 5 reads value: 100000000 

Listing 64 Ausgabe 

Und ist somit nur unwesentlich langsamer. 

Wie oben erwähnt wird der lesende Zugriff innerhalb des Threads nicht synchronisiert. Tun wir dies 
Trotzdem, dann fällt auf, dass der Thread nur ein einziges Mal durch die Schleife läuft und entweder 0 
oder 100000000 ausgibt. Dies liegt daran, dass die gesamte Schleife über der Lock für das perfTest 
Objekt gehalten wird und der Thread somit gar nie den Lock bekommen könnte. Ein Kompromiss 
würde daher die Synchronisation im innern der for Schleife darstellen. Dies würde dem Thread pro 
Schleifendurchgang einmal die Möglichkeit geben den Lock zu bekommen: 

MethodSync perfTest = new MethodSync(); 
Thread dummy = new DummyThread(perfTest); 
dummy.start(); 
long startTime = System.nanoTime(); 
for(int i=0; i<100000000; i++) { 

  2006-11-20 



Diplomarbeit  Seite 104 

    synchronized(perfTest) { 
        perfTest.setA(perfTest.getA()+1); 
    } 
} 
long timeSpent = System.nanoTime() - startTime; 
System.out.println("Value of perfTest: " + perfTest.getA()); 
System.out.println("Time spent: " + timeSpent/1000000 + "ms"); 

Listing 65 Java, Lock abgeben 

Der Thread kann folgendermassen angepasst werden: 
package ch.skybeam.examples; 
public class DummyThread extends Thread { 
    private MethodSync sync; 
 
    public DummyThread(MethodSync s) { 
        this.sync = s; 
        this.setDaemon(true); 
    } 
 
    public void run() { 
        int count = 0; 
        while (true) { 
            System.out.print("Thread tick " + ++count); 
            synchronized(sync) { 
                System.out.print(" reads value: " + sync.getA()); 
            } 
            System.out.println(""); 
            try { 
                Thread.sleep(100); 
            } catch (InterruptedException e) { 
                e.printStackTrace(); 
            } 
        } 
    } 
} 

Listing 66 Java, synchronisierter Java Thread 

Somit muss der Thread für den lesenden Zugriff jetzt auch den Lock bekommen. Leider hat diese 
Änderung bereits deutliche Auswirkungen auf die Performance: 

Thread tick 1 reads value: 2351280 
Thread tick 2 reads value: 14515341 
Thread tick 3 reads value: 26834097 
Thread tick 4 reads value: 38733872 
Thread tick 5 reads value: 51882091 
Thread tick 6 reads value: 65153897 
Thread tick 7 reads value: 78421122 
Thread tick 8 reads value: 90772255 
Value of perfTest: 100000000 
Time spent: 1006ms 
Thread tick 9 reads value: 100000000 

Listing 67 Ausgabe 

Der Grund liegt hier in der höheren Anzahl von Lock-Wechseln. Der main Thread gibt den Lock maxi-
mal einmal pro Schleifendurchgang ab was dem Thread ermöglicht diesen zu bekommen. 

Abschliessend kann gesagt werden, dass Synchronisierung nur da eingesetzt werden soll wo es wirk-
lich nötig ist. In unserem Beispiel verlässt unser perfTest Objekt unseren eigenen Code nie und 
kann auch nicht von aussen modifiziert werden. Somit können wir schon über den Code sicherstellen, 
dass kein konkurrierender Zugriff stattfindet und die Synchronisation der Datenfelder kann entfallen. 

  2006-11-20 



Diplomarbeit  Seite 105 

Wird das Objekt allerdings veröffentlicht so kann nicht mehr sichergestellt werden, dass kein Fremd-
Code konkurrierend darauf zugreift. 

  2006-11-20 



Diplomarbeit  Seite 106 

8.4. JVM Optimierung 

Die Java-VM stell das Bindeglied zwischen der Programmiersprache Java und dem Betriebssystem 
dar. Da Java Programme plattformunabhängig sind laufen diese auf jeder Plattform auf der eine Java 
VM verfügbar ist. Diese wiederum muss natürlich die Funktionalitäten der Sprache Java auf die vom 
Betriebssystem zur Verfügung gestellten Funktionalitäten abbilden. Da unterschiedliche Betriebssys-
teme und unterschiedliche Hardware-Architekturen sich teilweise stark unterscheiden oder gar gegen-
teilige Konzepte verfolgen ist dies eine nicht-triviale Aufgabe. 

Als Beispiel sei eine JVM Implementierung auf einem Betriebssystem ohne Kernel-Level Threads 
genannt. Der Java-Programmierer muss in seinem Programm trotzdem den vollen Sprachumfang 
inklusive Threads nutzen können. Es ist nun die Aufgabe der JVM die vom Programmierer genutzte 
Funktionalität möglichst effizient an die zur Verfügung gestellte Hardware und das Betriebssystem 
anzupassen. Wenn das Betriebssystem keine Threads unterstützt kann die JVM diese Aufgabe über-
nehmen und die Threads quasi in Software emulieren. Dazu implementiert die JVM einen Scheduler 
und teilt die zur Verfügung stehende Rechenzeit im Zeitscheiben-Verfahren (oder mittels einer ande-
ren Scheduling-Strategie) auf die Threads auf. Dies ist natürlich sehr ineffizient da die JVM hier nur 
diejenige Zeit an die Threads verteilen kann, die dem Prozess der virtuellen Maschine vom Betriebs-
system zugewiesen wird. Ausserdem ist eine Verteilung auf mehrere Prozessoren somit unmöglich. 

Das Beispiel zeigt deutlich, dass die Performance einer Java-Applikation von mehr abhängt als der 
effizienten Programmierung der Java-Routinen. Vielmehr wird ein effizientes Zusammenspiel von 
Java-Applikation, Java Virtual Machine (JVM), Betriebssystem und Hardware benötigt. Ein Entwickler 
einer JVM ist natürlich darauf bedacht die Möglichkeiten einer Plattform möglichst effizient auszu-
schöpfen. Die Optimierung der JVM ist eine Aufgabe, die selbst Sun Microsystems (als Schöpfer von 
Java) noch nicht abschliessend gelöst hat. Seit Java 1.0 in den frühen 90er Jahren vorgestellt wurde 
hat Java in Sachen Performance einen gewaltigen Sprung nach vorne gemacht. Trotzdem haftet Java 
noch das Image an extrem langsam und Ressourcenhungrig zu sein. 

Dieses Kapitel gibt einen Überblick über einige der wichtigsten Optimierungen der Java VM und wo 
man eventuell noch selber etwas „drehen“ kann. 

8.4.1. Just In Time (JIT) Compiler 

Java ist prinzipiell eine interpretierte Sprache. Der Sourcecode wird durch den Java-Compiler in den 
so genannten Bytecode überführt. Dabei handelt es sich im Sinne der Plattformunabhängigkeit nicht 
um Hardwareabhängigen Binärcode sondern um eine Art Zwischenstufe. Die Java-Runtime interpre-
tiert dann diesen Bytecode um das Programm auszuführen. 

Um dies zu beschleunigen wird häufig genutzter Code zur Laufzeit im Hintergrund Kompiliert. Bei 
erneuten Aufrufen derselben Methode/Klasse wird dann auf den Hardwarenahen, kompilierten Code 
zurückgegriffen. 

Diese Methode bietet sogar Vorteile gegenüber statisch kompiliertem Code wie C/C++. Je nach Ver-
wendung der Klassen kann die kompilierte Variante mit Optimierungen re-kompiliert werden um eine 
bessere Leistung zu erzielen.  

Die Sun HotSpot VM erlaubt die Ausgabe des Kompilierungs-Status während der Ausführung durch 
die Angabe folgender Kommandozeilenoption beim Start: 

-XX:+PrintCompilation 

Listing 68 Java, JIT PrintCompilation 

Durch die Angabe der Folgenden Option kann der JIT Compiler deaktiviert werden. In diesem Fall 
läuft die VM dann im Interpreted-Mode: 

-Xint 

Listing 69 Java, JIT deaktivieren 

  2006-11-20 



Diplomarbeit  Seite 107 

8.4.2. Thread-Modelle 

Wie bereits erwähnt ist die JVM zuständig für die Verwaltung der Threads und deren Abbildung auf 
Betriebssystemebene. Für Solaris ist bei Sun Microsystems eine Dokumentation des Thread-Modelles 
in der Dokumentation zu finden (siehe [HOTSPOTTHR]). Leider ist dieselbe Information für Windows 
nicht verfügbar. Die Dokumentation zeigt auch, dass hier viele Versuche zur Optimierung gemacht 
wurden. Unter Solaris 8 gibt es in Verbindung mit der Java HotSpot Runtime in der Version 1.4 ganze 
4 Methoden der Thread-Abbildung: 

• Many-to-Many, thread based synchronisation 

• Many-to-Many, LWP based synchronisation 

• One-to-One via Bound threads 

• One-to-One via Alternate Threads library 

Offensichtlich hat sich die letzte Variante durchgesetzt. Unter Solaris 9 ist nämlich nur noch die „One-
to-One via alternate Threads library“ Methode verfügbar. 

8.4.3. Garbage Collection 

Beim Programmieren mit Java muss sich der Entwickler nicht selber um die Allokation und die Freiga-
be von Speicher kümmern. Dies wird vollumfänglich vom Garbage Collector (GC) übernommen. Ver-
einfacht gesagt überprüft Java zur Laufzeit in unregelmässigen Abständen (abhängig beispielsweise 
vom freien Speicher, der aktuellen Systemlast usw.) welche Objekte entfernt werden können um 
Speicher freizugeben. Hierbei arbeitet Java mit einem Referenzzähler. Objekte, die nirgends mehr 
referenziert sind können auch nicht mehr verwendet werden und können somit entfernt werden. Bis 
zur Version 1.3.1 unterstützte Java keine parallele Garbage Collection. Dies führte zu massiven Per-
formance-Einbrüchen während die Garbage Collection durchgeführt wird. 

Um die Performance zu verbessern wurden Methoden wie die Segmentierung des Speichers einge-
führt. Da die meisten Objekte nur eine kurze Lebensdauer haben  werden diese in einem für „junge“ 
Objekte reservierten Speicherbereich abgelegt (genannt „Eden“). Dort findet auch eine häufigere Gar-
bage Collection statt. Überleben die Objekte lange genug kommen diese in den „Tenured“ Bereich. Im 
„Permanenten“ Bereich werden allgemeine Datenstrukturen, Klassen- und Methodenbeschreibungen 
abgelegt. 

In Java 5 kann zwischen verschiedenen Garbage Collectoren gewählt werden. Welcher der beste von 
ihnen ist hängt von Verschiedenen Faktoren ab und kann häufig nur durch erweiterte Tests bestimmt 
werden. 

Die folgende Option aktiviert beispielsweise einen inkrementellen GC. Dieser erledigt den Grossteil 
seiner Arbeit ohne die Applikation zu beeinflussen (parallel): 

-Xincgc 
Oder (selber Effekt): 
-XX:+UseConcMarkSweepGC 

Listing 70 Java, Incremental Garbage Collection 

Um Mehr Informationen über die Vorgänge innerhalb der JVM zu erhalten können folgende Optionen 
verwendet werden: 

-XX:+PrintGCDetails 
-XX:+PrintGCTimeStamps 

Listing 71 Java, Debug Garbage Collection 

Der folgende Parameter definiert die gewünschte Garbage Collection Laufzeit im Verhältnis zur An-
wendungs-Laufzeit: 

-XX:GCTimeRatio=<nnn> 

Listing 72 Java, Garbage Collection Ratio 

  2006-11-20 



Diplomarbeit  Seite 108 

Wobei die Angabe prozentual erfolgt nach der Formel (1/(1+<nnn>)). Für nnn=19 resultiert also eine 
Zuweisung von 5% für die Garbage Collection. Standardmässig ist 1% eingestellt. 

Nur am Rande mit der Garbage Collection verbunden sind die Einstellungen für die Heap-Grösse. 
Standardmässig gelten eine Minimalgrösse von 3.5MB und eine Maximalgrösse von 64MB für den 
Heap. Insbesondere die Maximalgrösse reicht bei Server-Anwendungen schnell nicht mehr aus und 
sollte erweitert werden. Ein Grösserer Wert bedeutet hier nicht, dass die VM mehr Speicher belegen 
wird aber dass sie das kann falls nötig: 

-Xms 
-Xmx 
Biespielsweise: 
-Xms64M 
-Xmx512M 

Listing 73 Java, Heap Grösse 

Das Beispiel würde die Minimalgrösse auf 64MB und die Maximalgrösse auf 512MB begrenzen. 

Zwei weitere Parameter beeinflussen die Allozierung bzw. De-Allozierung von Speicher durch die VM: 
-XX:MinHeapFreeRatio=40 
-XX:MaxHeapFreeRatio=70 

Listing 74 Java, Heap Grössenverhältnis 

Die VM versucht mit diesen Zahlen den Anteil des freien Speichers zwischen 40% und 70% zu halten. 
Dies bedeutet, dass bei steigendem Speicherbedarf der Anwendung der Anteil unter 40% sinkt und 
dadurch neuer Speicher alloziert wird. Umgekehrt wird der Heap wieder verkleinert wenn der Anteil 
freien Speichers über 70% wächst. Diese Grössenänderungen sind natürlich auch aufwändig. Insbe-
sondere bei grossen Anwendungen reicht die Initialgrösse von 3.5MB nicht und es muss häufig nach-
alloziert werden. Um dies zu vermindern ist es ratsam bei Anwendungen mit hohem Speicherbedarf 
den -Xms Parameter zu verwenden und möglicherweise gleich mit -Xmx ein höheres Oberlimit zu 
setzen. 

Im Zusammenhang mit der Garbage Collection spielt auch ein weiterer Aspekt eine wichtige Rolle: Die 
Hardware-Architektur. Auf NUMA/ccNUMA Systemen ist es von (eventuell entscheidendem) Vorteil 
wenn die Objekte im lokalen Speicher des ausführenden Prozessors liegen (siehe Kapitel 5.2.1). Java 
bietet zumindest im Moment auf API-Ebene keine Möglichkeit auf die Speicherverwaltung Einfluss zu 
nehmen. Dies würde angesichts der Plattformunabhängigkeit auch kaum Sinn machen. Aus unserer 
Sicht muss längerfristig die Java VM selber dafür sorgen, dass die Objekte im lokalen Speicher des 
Prozessors liegen. Betriebssysteme wie MS Windows bieten dazu bereits diverse Affinitäts-Optionen 
um Threads an Prozessoren oder Prozessor-Gruppen zu binden. Wir gehen davon aus, dass wahr-
scheinlich der Garbage Collector auf lange Sicht die Aufgabe der Speicher-Relozierung übernehmen 
wird. Dazu bräuchte der Garbage Collector nicht mal mehr viele zusätzliche Informationen. Im Mo-
ment wertet dieser aus ob ein Objekt einen Referenzzähler ungleich null hat um zu entscheiden, ob 
das Objekt noch benötigt wird. Wüsste der GC jetzt welcher Thread hauptsächlich auf das Objekt 
zugreift so könnte er dieses in den Lokalen Speicher desjenigen Prozessors verschieben auf dem 
dieser Thread ausgeführt wird. 

In die Selbe Richtung geht das Dokument von Mustafa M. Tikir mit dem Titel „NUMA-Aware Java 
Heaps for Server Applications“. Offenbar wurden hier bereits Messungen und Modifikationen in die-
sem Bereich gemacht. Der Vorschlag aus dem Dokument ist es den Heap nicht nur in junge und alte 
Objekte aufzuteilen sondern diese wiederum in mehrere Prozessor-Lokale Bereiche. Da die meisten 
Objekte bereits jung wieder sterben macht dort eine Verschiebung kaum Sinn. Viel mehr Sinn macht 
es diese gleich im Richtigen Heap-Bereich zu erzeugen (lokal zum erzeugenden Thread). Überlebt 
das Objekt den „Eden“ Zyklus und kommt in den Tenued-Bereich so kann der Garbage Collector von 
Zeit zu Zeit prüfen ob das Objekt noch im lokalen Speicher des hauptsächlich zugreifenden Threads 
liegt und dieses bei Bedarf verschieben. Da die Objekte dann schon länger existieren werden sie nicht 
mehr so häufig Verschoben was einer nur unwesentlich erhöhten Belastung der internen Bus-
Systeme entspricht. Auf einem 32-CPU NUMA-System reduzierte sich die Ausführungszeit beim 
SPECjbb2000 um bis zu 40% was den Aufwand sicher rechtfertigen würde. 

Weiterführende Informationen: 

• Sun, HotSpot Garbage Colleciton Tuning with the 5.0 Java Virtual Machine: [HOTSPOTGC] 

  2006-11-20 



Diplomarbeit  Seite 109 

• Mustafa M. Tikir, NUMA-Aware Java Heaps for Server Applications: [JAVANUMA] 

8.4.4. Weitere Parameter 

Die aktuelle Java HotSpot Virtual Machine unterstützt eine Reihe weiterer Parameter um die Ge-
schwindigkeit zu optimieren. Eine Liste der offiziell dokumentierten Parameter ist unter 
[HOTSPOTOPT]. 

Sun hat einige Optionen unter den folgenden Parametern zusammengefasst: 
-client 
-server 

Listing 75 Java, Client/Server VM Parameter 

Die Optionen lassen eine Optimierung auf Server oder Client Anwendungen zu und beeinflussen eini-
ge der oben bereits genannten Parameter. Die Client-VM ist auf einen schnellen Programmstart und 
wenig Speicherverbrauch hin ausgelegt. Die Server-VM dagegen ist auf maximalen Durchsatz hin 
optimiert. Meistens macht es keinen Sinn diese Option manuell zu setzen da für Desktop-
Betriebssysteme meist nur Client-Applikationen gestartet werden und auf Servern nur Server-
Anwendungen laufen. 

Hinweis: Unter Windows beinhaltet nur das JDK Package die Server-VM. Die JRE Variante beinhaltet 
lediglich die Client-Version. Zu erkennen sind die Versionen daran, dass im <JRE_HOME>/bin/ je-
weils ein Unterverzeichnis ‚client’ bzw. ‚server’ liegt. Darin ist dann die jeweils angepasste 
jvm.dll zu finden. 

8.4.5. Reordering 

Die Java Spezifikation erlaubt explizit die Umsortierung von Programmcode wenn dadurch das Er-
gebnis nicht beeinflusst wird. Dies kann zu möglicherweise unerwünschten Effekten führen wenn man 
sich dessen nicht bewusst ist. Beispielsweise könnte Java den folgenden Code auch umsortieren: 

int a = x + 8; 
int b = 10 * y; 
int c = a + b ; 

Listing 76 Java, Reordering 1 

Der Code könnte also auch folgendermassen abgearbeitet werden: 
int b = 10 * y; 
int a = x + 8; 
int c = a + b ; 

Listing 77 Java, Reordering 2 

Da das Ergebnis von c nicht von der Reihenfolge der einzelnen Instruktionen abhängt ist diese Um-
sortierung erlaubt. 

Bei der Ausführung dürfen also auch keine Annahmen getroffen werden in welcher Reihenfolge der 
Code abgearbeitet wird. Beispielsweise wenn ein Thread auf Daten eines Objektes zugreift und davon 
ausgeht, dass ein anderer Thread entweder nichts gemacht hat oder die Änderungen in einer be-
stimmten Reihenfolge vornimmt. Wie oben zu sehen ist könnte die Reihenfolge der Modifikationen 
auch umsortiert werden. 

Weiterführende Informationen: 

• Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1: [4] S. 340. 

8.4.6. Lock elosion, Lock coarsening 

Zwei weitere Beispiele von Optimierung können anhand des folgenden Beispieles erklärt werden: 

  2006-11-20 



Diplomarbeit  Seite 110 

public String getStoogeNames() { 
    List<String> stooges = new Vector<String>(); 
    stooges.add("Moe"); 
    stooges.add("Larry"); 
    stooges.add("Curly"); 
    return stooges.toString(); 
} 

Listing 78 Java, Lock elosion, Lock coarsening 

Dieser simple Code beinhaltet (zu) viel Synchronisation. Führt die JVM diesen Code genau so aus wie 
der hier aufgelistet ist, dann wird 4 Mal der Lock für das ‚stooges’ Objekt angefragt und wieder frei-
gegeben. Der Grund liegt in der Synchronisierung des Vektor Objektes. Sowohl die add() als auch 
die toString() Methoden sind synchronisiert. Eine Intelligente JVM könnte hier eine Optimierung 
vornehmen und den Lock nur einmal zuweisen, die vier Instruktionen ausführen und dann den Lock 
wieder abgeben. Dieses Verfahren wird ‚lock elosion’ genannt. Die IBM JVM beherrscht dieses Ver-
fahren und die Sun HotSpot JVM soll es in Version 7 ebenfalls können. 

Eine weitere Möglichkeit zur Optimierung liegt hier darin das Locking komplett wegzulassen. Da es 
sich hier um eine Methodenvariable handelt und diese nie veröffentlicht wird kann gar niemand anders 
auf das stooges Objekt zugreifen. Somit wird auch nur ein Thread gleichzeitig auf diese Objektin-
stanz zugreifen und eine Synchronisation kann somit entfallen. 

In diesem speziellen Fall wäre sogar noch eine weitere Optimierung möglich. Die Methode getStoo-
geNames() wird immer denselben Rückgabewert haben. Somit wäre es möglich die Methoden bei 
einem erneuten Aufruf gar nicht mehr abzuarbeiten sondern direkt denselben String zurückzugeben. 

Weiterführende Informationen: 

• Brian Goetz, Java Concurrency in Practice, ISBN 0-321-34960-1: [4] S. 233. 

  2006-11-20 



Diplomarbeit  Seite 111 

8.5. Zusammenfassung und Fazit 

Dieses Kapitel hat einen Überblick über die Architektur von Java. Dies beinhaltet sowohl die Abstrak-
tion der Hardware als auch des Betriebssystems. Daher können sich Java-Entwickler auch nur auf die 
von der Java API zur Verfügung gestellte Funktionalität beschränken. Direktre Zugriffe auf Betriebs-
system-Funktionalität oder gar auf die Hardware ist nicht direkt möglich. Dies würde auch die Platt-
formunabhängigkeit unterlaufen. 

Somit liegt es insbesondere an der JVM die Java-Anwendungen möglichst effizient auf der vorhande-
nen Hardware ablaufen zu lassen. Ob dabei beispielsweise Threads nur innerhalb der VM existieren 
oder nach aussen an das Betriebssystem weitergereicht werden (mittels nativer Unterstützung oder 
Bibliotheken wie POSIX-Threads) ist dabei nicht von der Applikation beeinflussbar. Vielmehr geht es 
hier darum die richtige JVM auszuwählen und diese richtig zu konfigurieren. Einerseits an die Anforde-
rungen der Applikation und andererseits an die Möglichkeiten und Eigenschaften des Betriebssys-
tems. 

Für den Applikationsentwickler gilt es natürlich trotzdem möglichst effizient zu programmieren. Insbe-
sondere bei der Synchronisierung ist dies wie gezeigt eine sehr komplexe Aufgabe. Es ist zu vermu-
ten, dass bei Systemen mit mehr Prozessoren/Kernen/parallelen Threads der Synchronisierungsauf-
wand steigt (Stichwort ‚lock contention’). 

8.6. Auswirkungen auf die Aufgabenstellung 

Gemäss der Aufgabenstellung analysieren wir die Skalierbarkeit auf Multi-Prozessor und Multi-Core 
Maschinen auf Java-Ebene. Die dazu verwendete Java-API wurde in diesem Kapitel vorgestellt. Diese 
scheint keine tiefer greifende Kontrolle der Threads auf Betriebssystem- oder Hardware-Ebene zu 
bieten. Beispielsweise bietet die API von java.lang.Thread keine Möglichkeit die Thread-Affinität 
zu setzen. Somit bleibt uns allenfalls der Umweg diese über externe Programme zu beeinflussen (so-
weit möglich). Möglicherweise ist dies zur effizienten Skalierung aber gar nicht notwendig und kann 
komplett der JVM überlassen werden. Der weitere Verlauf dieser Arbeit wird zeigen in wie fern Java-
Applikationen auf der geforderten Hard- und Software skalierbar ist und gegebenenfalls optimiert wer-
den kann. 

Tabelle 34 Technologien mit direktem Einfluss auf die Arbeit 

Technologie Beschreibung 

Java Threading Es ist zu zeigen in wie fern Java-Threads auf der geforderten Hard- und Software-
Kombination skalierbar ist. Beispielsweise ob eine ausgesuchte JVM überhaupt 
Threads auf Betriebssystem-Ebene erzeugt oder diese nur „emuliert“ (Stichwort 
‚green Threads’). 

JOMP Das JOMP (siehe [PROCEXP]) Projekt bietet eine OpenMP Schnittstelle für Java 
um eine semi-automatische Parallelisierung zu erreichen. Diese Technologie soll 
auf ihr Potential hin untersucht werden. 

 

Tabelle 35 Technologien mit indirektem Einfluss auf die Arbeit 

Technologie Beschreibung 

JVM Optimie-
rung 

JVMs bieten üblicherweise einige Konfigurationsparameter (siehe Kapitel 8.4). 
Diese könnten die Performance natürlich auch beeinflussen. Es ist aber nicht das 
Ziel dieser Arbeit die Auswirkungen jedes Parameters auf die Skalierung einer 
spezifischen Applikation zu untersuchen. Solche Messungen gehören in den Be-
reich des Feintunings bei der Konfiguration einer Anwendung für den produktiven 
Einsatz. 

  2006-11-20 



Diplomarbeit  Seite 112 

9. Glossar 
In diesem Kaptitel werden die wichtigsten Begriffe kurz zusammengefasst um einen schnellen Über-
blick über die Thematik zu ermöglichen. 

Tabelle 36 Glossar 

Begriff Beschreibung 

Affinität Bezeichnet die Zuordnung eines Prozesses/Threads zu physikalischen Recheneinhei-
ten. Durch die Definition einer Affinitätsmaske kann gesteuert werden auf welchen 
Recheneinheiten die Anwendung ausgeführt werden kann. 

Siehe Kapitel 6.8. 

API API (Application Programming Interface) defniert eine Schnittstelle zwischen verschie-
denen Software Systemen. Eine API definiert typischerweise eine Reihe von Metho-
den, Parametern, Datentypen und Datenfeldern. 

Siehe z.B. POSIX Threads API, Kapitel 7.3.1. 

AMD Advanced Micro Devices; Hersteller von Mikroprozessoren. 

Siehe Kapitel 5.6.3. 

ASMP Asymmetric Multi Processing (ASMP) bezeichnet die Verarbeitung mit parallel arbei-
tenden Einheiten wobei einzelne Einheiten Spezialaufgaben zugewiesen sind. Somit 
sind nicht alle Einheiten gleichberechtigt. 

Siehe Kapitel 5.2. 

Cache-
Coherence 

Bezeichnet die Synchronisierung des Caches bei Systemen mit mehreren Prozessoren 
und verteilten Caches. 

Siehe Kapitel 5.2.1. 

CAS Compare and Swap bzw. Compare and Set bezeichnet eine atomare (meist hardware-
unterstützte) Operation in der ein gespeicherter Wert mit dem vermuteten Wert vergli-
chen wird. Stimmt dieser überein, so wird ein neuer Wert gesetzt. Ansonsten wird 
nichts getan. CAS Funktionen erlauben Lock-freie Algorithmen. 

Siehe Kapitel 8.2.4. 

CISC Complex Instruction Set Computing: Bezeichnet Prozessoren mit einem grossen Be-
fehlssatz. Dieser beinhaltet häufig auch komplexe Operationen, die somit mit einem 
Befehl abgearbeitet werden können. Vergleiche auch mit RISC. 

Siehe Kapitel 5.4. 

CMP Chip Multi Processing (CMP) bezeichnet einen Chip, der in der Lage ist mehrere Pro-
zesse gleichzeitig abzuarbeiten. Dies passiert aber auf einem Chip und nicht auf meh-
reren Prozessoren. 

Siehe Kapitel 5.2. 

CMT Chip Multi Threading (CMT) ist eine Technologie bei der ein Prozessor bei jedem 
Taktzyklus n Instruktionen (je eine pro n-Threads) einlesen kann. 

Siehe Kapitel 5.3. 

Collections Ein insbesondere mit der Programmiersprache Java geläufiger Begriff für eine Samm-
lung von Daten(objekten) in einer Datenstruktur. Die einfachste Form einer Collection 
ist ein Array. 

Siehe Kapitel 8.1.2. 

  2006-11-20 



Diplomarbeit  Seite 113 

Begriff Beschreibung 

Context-
Switch 

Wechsel zwischen mehreren Prozessen oder Threads. 

Siehe Kapitel 7.2.1. 

CPU Abkürzung für Central Processing Unit. Wird synonym für die deutsche Bezeichnung 
Hauptrpozessor bzw. Prozessor verwendet. 

Deadlock Ein Zustand in dem Prozesse in einer zyklischen Abhängigkeit stehen und gegenseitig 
auf Ressourcen warten, die nur von einem anderen Prozess freigegeben werden kön-
nen. 

Siehe Kapitel 7.1. 

Garbage 
Collection 
(GC) 

Bezeichnet den Prozess der Speicherverwaltung bzw. Speicher-Räumung durch die 
Entfernung ungenutzter Objekte. Dies ist nötig, da in Java beispielsweise der Speicher 
nicht in durch Destruktoren freigegeben werden kann. 

Siehe Kapitel 8.4.3. 

Hyper-
Threading 

Eine von Intel bei einigen Pentium 4 Modellen eingeführte Technologie zur verbesser-
ten Auslastung der internen Pipeline. HyperThreading stellt gegenüber dem Betriebs-
system einen zweiten (virtuellen) Prozessor zur Verfügung. Dieser ist aber physikalisch 
gar nicht vorhanden. Instruktionen an diesen Prozessor können die Auslastung der 
internen Rechen-Einheiten des Pentium 4 verbessern. 

IPC Inter-Prozess-Kommunikation: Die Kommunikation zwischen zwei Prozessen in ge-
trenntem Kontext. 

Siehe Kapitel 7.2.1. 

Java Eine von Sun Microsystems forcierte Programmtechnologie. Java-Programme werden 
nicht wie klassische C/C++ Programme in Plattformabhängige Binaries kompiliert son-
dern in den so genannten Bytecode. Dieser wird dann von der Java Virtual Machine 
interpretiert und zur Laufzeit optimiert. Java-Programme können somit auf jeder Platt-
form ausgeführt werden, für die eine Java Virtual Machine existiert. 

Siehe Kapitel 8. 

JIT Wird meistens in Verbindung mit JIT-Compilern (Just In Time) verwendet. Dabei ist die 
Eigenschaft gemeint, dass der Code (bei Java der Bytecode) zur Laufzeit der Pro-
grammes kompiliert und optimiert wird. 

Siehe Kapitel 8.4.1. 

JOMP Java-basierende Implementierung von OpenMP-Ähnlichen Direktiven zur Parallelisie-
rung. 

Zu OpenMP siehe Kapitel 7.3.2. 

JVM Die Java Virtual Machine ist ein Interpreter für Java Bytecode. Die JVM ist dabei das 
Bindeglied zwischen Betriebssystem und den plattformunabhängigen Java Anwen-
dungen. 

Siehe Kapitel 8. 

Kernel Zentrale Teil eines Betriebssystems, der die wesentlichsten Funktionen realisiert und 
sich zur Laufzeit permanent im Arbeitsspeicher befindet 

KLT Kernel Level Thread, Threads die auf Betriebssystemebene implementiert werden. 
Sind dem OS bekannt und können auf verschiedene CPUs verteilt werden 

Kontext Thread- oder Prozesskontext repräsentiert den Zustand eines Threads oder Prozesses 
und ist im Thread Control Block TCB oder Process Control Block PCB gespeichert  

  2006-11-20 



Diplomarbeit  Seite 114 

Begriff Beschreibung 

Livelock Ein Zustand in dem zwei oder mehr Prozesse ihren Status dauernd verändern um 
weiterzukommen aber trotzdem immer blockiert werden. 

Siehe Kapitel 7.1. 

Lock elosi-
on, Lock 
coarsening 

Bezeichnet zwei Techniken um unnötig häufiges Locking/Unlocking zu vermeiden. 
Dabei werden mehrere Locking-Anfragen hintereinander zusammengefasst. Wird ein 
Lock gar nicht benötigt und dieser automatisch wegrationalisiert, dann nennt man das 
Lock coarsening. 

Siehe Kapitel 8.4.6. 

Lock Gra-
nularität 

Definiert wie feinkörnig Locks auf Datenstrukturen vergeben sind. Dies kann sehr grob 
(ein Lock für alle Daten) oder sehr feinkörnig (bis mehrere unterschiedliche Locks pro 
Datenstruktur) sein. 

Siehe Kapitel 8.2.3. 

Lock Split-
ting 

Bezeichnet allgemein die Möglichkeit einen Lock für mehrere Objekte in mehrere 
Locks (für jedes Objekt einen) aufzuteilen. 

Siehe Kapitel 8.2.3.1. 

Lock Stri-
ping 

Bezeichnet die weitere Aufteilung eines Objektes durch mehrere Locks (z.B. Array-
Sektionen). 

Siehe Kapitel 8.2.3.2. 

MPI Das Message Passing Interface (MPI) wird zum Nachrichtenaustausch (Inter-Process-
Communication, IPC) verwendet. Dabei kann MPI transparent sowohl auf einem loka-
len Rechner als auch verteilt im Netzwerk verwendet werden. 

Siehe Kapitel 7.3.4. 

Mutex 

Lock 

Mutual Exclusion (Mutex) ist ein Programmkonstrukt welches sicherstellt, dass nur ein 
einziger Prozess sich innerhalb eines geschützten Bereiches aufhalten kann. 

Siehe Kapitel 8.2 und 8.2.1. 

NetBurst Eine von Intel eingeführte Architektur-Bezeichnung die im Wesentlichen eine lange 
Pipeline und dadurch eine hohe Taktrate beinhaltet. Die Architektur wurde für Penti-
um 4 Prozessoren entwickelt und verwendet, wird aber nicht mehr weiter verfolgt. 

Siehe Kapitel 5.5 und 5.6.1. 

NUMA Non-Uniform Memory Access (NUMA) bezeichnet eine Architektur in der jede Verar-
beitungseinheit lokalen Speicher besitzt und durch Kommunikation mit den anderen 
Verarbeitungseinheiten auch deren Speicher ansprechen kann. 

Siehe Kapitel 5.2.1. 

OpenMP Eine Spezifikation der API zur Parallelisierung von Programmen. OpenMP definiert 
Compiler-Direktiven damit ein Compiler den bestehenden Code parallelisieren kann. 

Siehe Kapitel 7.3.2

Package Ein bei der Programmiersprache Java geläufiger Begriff für die hierarchische Sortie-
rung von Klassen. Ähnlich den Namensräumen (engl. Namespace) bei C++. Bei der 
Bezeichnung java.util.Vector handelt es sich um den voll qualifizierten Bezeichner für 
die Klasse Vector im Package java.util. 

Siehe Kapitel 8. 

Pipelining Bezeichnet die Abarbeitung einer Instruktion in vereinfachten Teilschritten. Dadurch 
kann die folgende Instruktion bereits eingelesen werden sobald die vorhergehende die 

  2006-11-20 



Diplomarbeit  Seite 115 

Begriff Beschreibung 
nächste Stufe erreicht hat. 

Siehe Kapitel 5.5. 

POSIX 
Threads 

POSIX definiert eine Schnittstelle zwischen Applikation und Betriebssystem. Die 
Schnittstelle ist plattformunabhängig definiert und erlaubt somit die portable Program-
mierung. POSIX Threads bezeichnet die Behandlung von Threads mit POSIX-
Schnittstellen. 

Siehe Kapitel 7.3.1. 

Reordering Bezeichnet eine Technik der Code-Optimierung. Hierbei darf der Compiler/Interpreter 
Anweisungen umsortieren um ein optimiertes Laufzeitverhalten zu erziehen. Dabei 
muss aber garantiert bleiben, dass das Endergebnis nicht verfälscht wird. 

Siehe Kapitel 8.4.5. 

RISC Reduced Instruction Set Computing: Bezeichnet Prozessoren mit einem kleinen Be-
fehlssatz. Komplexe Befehle werden im Gegensatz zu CISC Prozessoren in mehreren 
Schritten ausgeführt. Befehle wie „Wert an Speicherstelle XY inkrementieren“ werden 
zu „Wert laden, wert Inkrementieren, Wert zurückschreiben“. 

Siehe Kapitel 5.4. 

Scheduling Bezeichnet die Tätigkeit des Betriebssystems beim Preemptiven Multitasking die Pro-
zessorzeit nach einem bestimmten Algorithmus den einzelnen Ausführungseinheiten 
zuzuweisen (auf Ebene Thread oder Prozess). 

Siehe Kapitel 6.7. 

Skalar Ein Prozessor in Skalarem Design verarbeitet immer nur eine Instruktion gleichzeitig. 

Siehe Kapitel 5.4. 

SMP Symmetric Multi Processing (SMP) bezeichnet die Verarbeitung mit parallel arbeiten-
den Einheiten wobei jede Einheit gleichberechtigt behandelt wird. 

Siehe Kapitel 5.2. 

Starvation Starvation ist ein Zustand in dem ein Prozess auf Ressourcen oder Daten wartet und 
diese nie bekommt. Der Prozess kann somit nie eine Arbeit anfangen oder erledigen. 

Siehe Kapitel 7.1. 

Superskalar Ein Prozssor in superskalarem Design versucht mittels Dispatcher alle Recheneinhei-
ten gleichzeitig auszulasten. 

Siehe Kapitel 5.4. 

Super-
Threading 

Super-Threading ist eine Technologie bei der ein Prozessor bei jedem Taktzyklus eine 
Instruktion eines Threads einlesen kann. 

Siehe Kapitel 5.3. 

Synchroni-
isierung 

Allgemeine Bezeichnung für die Überwachung von konkurrierenden Zugriffen. 

Siehe Kapitel 8.2. 

TBB Intel Thread Building Blocks. Eine C++ Bibliothek die Methoden zur parallelen Verar-
beitung bereitstellt (Schleifenparalleisierung). 

Siehe Kapitel 7.3.3. 

TDP Termal Design Power. Bezeichnet die typische Leistungsabgabe von elektronischen 
Bauteilen. Bei der TDP handelt es sich um einen wichtigen Wert zur Dimensionierung 
von Kühllösungen. 

  2006-11-20 



Diplomarbeit  Seite 116 

Begriff Beschreibung 

Siehe auch Kapitel 5.5 und 5.6.1. 

Thread Ein leichtgewichtiger Prozess. Ein Thread teilt den Adressraum mit dem Prozess zu 
dem er gehört. Dadurch werden einerseits die Kommunikation und andererseits der 
Kontextwechsel beschleunigt. 

Siehe Kapitel 7.2.2 und 8.1.1. 

Thread-
Safety 

Thread-Safety ist ein Attribut, welches bei der parallelen Programmierung verwendet 
wird um zu spezifizieren, dass der parallele Zugriff auf ein Objekt selbst dann sicher 
ist, wenn mehrere Zugriffe gleichzeitig stattfinden. Sicherheit bedeutet in diesem Zu-
sammenhang, dass keine unerwarteten Ereigenisse oder Zustände eintreten können. 

Siehe Kapitel 8. 

UMA Uniform Memory Access (UMA) bezeichnet eine Architektur in der alle Verarbeitungs-
einheiten über ein gemeinsames Bussystem auf den Speicher zugreifen. 

Siehe Kapitel 5.2.1. 

  2006-11-20 



Diplomarbeit  Seite 117 

10. Verzeichnisse 

10.1. Tabellenverzeichnis 

Tabelle 1 Referenzierte Dokumente........................................................................................................ 8 
Tabelle 2 Abkürzungen............................................................................................................................ 8 
Tabelle 3 Links ...................................................................................................................................... 10 
Tabelle 4 Abarbeitung einer Pipeline .................................................................................................... 24 
Tabelle 5 Technologien mit direktem Einfluss auf die Arbeit ................................................................ 30 
Tabelle 6 Technologien mit indirektem Einfluss auf die Arbeit.............................................................. 31 
Tabelle 7 Threadzustände in Windows ................................................................................................. 44 
Tabelle 8 Priority Class.......................................................................................................................... 47 
Tabelle 9 Priority Level .......................................................................................................................... 48 
Tabelle 10 Auszug aus der Thread-Priority Tabelle.............................................................................. 49 
Tabelle 11 Prozessattribut dwCreationFlag .......................................................................................... 51 
Tabelle 12 Werte von dwCreationFlag .................................................................................................. 51 
Tabelle 13 Thread Prioritäten................................................................................................................ 55 
Tabelle 14 Thread Prioritäten abfragen................................................................................................. 55 
Tabelle 15 Java Scheduler .................................................................................................................... 55 
Tabelle 16 Windows API zur Prozessverwaltung (Auszug) .................................................................. 56 
Tabelle 17 Windows API zur Thread Verwaltung (Auszug) .................................................................. 56 
Tabelle 18 Windows Performance Counter für Prozesse (Auszug)...................................................... 57 
Tabelle 19 Windows Performance Counter für Threads ....................................................................... 57 
Tabelle 20 Funktionalitäten Windows Task Manager ........................................................................... 60 
Tabelle 21 Funktionalitäten Process Explorer....................................................................................... 61 
Tabelle 22 Funktionalitäten Performance Monitor ................................................................................ 63 
Tabelle 23 Aspekte mit direktem Einfluss auf die Arbeit ....................................................................... 65 
Tabelle 24 Aspekte mit indirektem Einfluss auf die Arbeit .................................................................... 65 
Tabelle 25 pthread_create() Parameter ................................................................................................ 69 
Tabelle 26 pthread_join() Parameter..................................................................................................... 69 
Tabelle 27 Compiler mit OpenMP Unterstützung.................................................................................. 72 
Tabelle 28 Technologien mit direktem Einfluss auf die Arbeit .............................................................. 78 
Tabelle 29 Technologien mit indirektem Einfluss auf die Arbeit............................................................ 78 
Tabelle 30 Wichtige Methoden von java.lang.Thread ........................................................................... 82 
Tabelle 31 Neue Concurrent-Collections in Java 5 (java.util.concurrent Package) .............................. 83 
Tabelle 32 Wichtige ReentrantLock Methoden ..................................................................................... 83 
Tabelle 33 Wichtige Methoden der AtomicInteger Klasse .................................................................... 85 
Tabelle 34 Technologien mit direktem Einfluss auf die Arbeit ............................................................ 111 
Tabelle 35 Technologien mit indirektem Einfluss auf die Arbeit.......................................................... 111 

  2006-11-20 



Diplomarbeit  Seite 118 

Tabelle 36 Glossar .............................................................................................................................. 112 

10.2. Abbildungsverzeichnis 

Abbildung 1 Grundprinzip paralleler Verarbeitung ................................................................................ 14 
Abbildung 2 Skalierung als System....................................................................................................... 15 
Abbildung 3 Hardware Architekturen..................................................................................................... 17 
Abbildung 4 SMP, ASMP, CMP ............................................................................................................ 18 
Abbildung 5 Super-Threading, CMT...................................................................................................... 20 
Abbildung 6 Verarbeitung gemäss Super-Threading ............................................................................ 20 
Abbildung 7 Verarbeitung gemäss CMT ............................................................................................... 21 
Abbildung 8 Skalar, Superskalar ........................................................................................................... 22 
Abbildung 9 Pipeline.............................................................................................................................. 24 
Abbildung 10 Intel Pentium 4 ................................................................................................................ 26 
Abbildung 11 Intel Core 2...................................................................................................................... 27 
Abbildung 12 AMD Opteron................................................................................................................... 28 
Abbildung 13 UltraSparc T1 .................................................................................................................. 29 
Abbildung 14 Interne Struktur Windows NT/2000/XP ........................................................................... 34 
Abbildung 15 Process Control Block ..................................................................................................... 35 
Abbildung 16 PCB ................................................................................................................................. 36 
Abbildung 17 Schwer- und leichgewichtige Prozesse........................................................................... 37 
Abbildung 18 User- und Kernel-Mode ................................................................................................... 38 
Abbildung 19 Multithreaded Process..................................................................................................... 39 
Abbildung 20 Kernel-Level-Thread........................................................................................................ 40 
Abbildung 21 User-Level-Thread .......................................................................................................... 41 
Abbildung 22 Hybride Threads.............................................................................................................. 42 
Abbildung 23 Korrektheit von Programmen .......................................................................................... 66 
Abbildung 24 Parallele Verarbeitung der Beispiel-Schleife mit OpenMP.............................................. 73 
Abbildung 25 Sun Java VM Architektur................................................................................................. 79 
Abbildung 26 Thread Lebenszyklus, (Quelle: [1]) ................................................................................. 80 

10.3. Code Listings 

Listing 1 Pipelining Assembler-Code Beispiel ....................................................................................... 24 
Listing 2 SetPriorityClass....................................................................................................................... 48 
Listing 3 GetPriorityClass ...................................................................................................................... 48 
Listing 4 SetThreadPriority .................................................................................................................... 49 
Listing 5 GetThreadPriority.................................................................................................................... 49 
Listing 6 CreateProcess ........................................................................................................................ 51 
Listing 7 CreateThread.......................................................................................................................... 52 

  2006-11-20 



Diplomarbeit  Seite 119 

Listing 8 SetThreadAffinityMask............................................................................................................ 53 
Listing 9 SetProcessAffinityMask .......................................................................................................... 53 
Listing 10 SetThreadIdealProcessor ..................................................................................................... 54 
Listing 11 POSIX Thread erzeugen....................................................................................................... 69 
Listing 12 Warten auf Thread-Ende ...................................................................................................... 69 
Listing 13 POSIX Mutex ........................................................................................................................ 70 
Listing 14 POSIX Mutex - warten auf Bedingungen.............................................................................. 70 
Listing 15 POSIX Thread - condiditonal wait......................................................................................... 70 
Listing 16 OpenMP, parallelisierbarer Code.......................................................................................... 72 
Listing 17 OpenMP, parallelisierter Code.............................................................................................. 72 
Listing 18 OpenMP, reduction ............................................................................................................... 73 
Listing 19 TBB, ein kleines Beispiel ...................................................................................................... 75 
Listing 20 TBB, Funktionsoperator überladen....................................................................................... 75 
Listing 21 TBB, parallel_reduce ............................................................................................................ 75 
Listing 22 TBB, Beispiel: Summarizer ................................................................................................... 76 
Listing 23 Java, Threaderzeugung durch Ableitung.............................................................................. 81 
Listing 24 Java, Thread starten (Thread Klasse) .................................................................................. 81 
Listing 25 Java, Thread mittels Runnable Interface .............................................................................. 81 
Listing 26 Java, Thread starten (Runnable Interface) ........................................................................... 81 
Listing 27 Java, Threadgruppen............................................................................................................ 82 
Listing 28 Java, Threadgruppen (Interrupt) ........................................................................................... 82 
Listing 29 Java, ReentrantLock (tryLock) .............................................................................................. 84 
Listing 30 Java, ReentrantLock (tryLock mit Timeout) .......................................................................... 84 
Listing 31 Java, Mutex........................................................................................................................... 87 
Listing 32 Java, Blocksynchronisation................................................................................................... 87 
Listing 33 Java, Blocksynchronisation mit 'this'..................................................................................... 88 
Listing 34 Java, Locking über Klassenvariabeln ................................................................................... 88 
Listing 35 Java, Methodensynchronisation ........................................................................................... 89 
Listing 36 Java, Methoden und Blocksynchronisation .......................................................................... 89 
Listing 37 Java, Methodensynchronisation (grobes Locking) ............................................................... 93 
Listing 38 Java, verfeinertes Locking) ................................................................................................... 93 
Listing 39 Java, überlange Synchronisierung........................................................................................ 94 
Listing 40 Java, Synchronisiertung verkürzen....................................................................................... 94 
Listing 41 Java, Synchronisierung verkürzen 2..................................................................................... 94 
Listing 42 Java, häufiges Locking/Unlocking......................................................................................... 95 
Listing 43 Java, Loking in einer Schleife ............................................................................................... 95 
Listing 44 Ausgabe ................................................................................................................................ 95 
Listing 45 Java, Synchronisierung ausserhalb der Schleife.................................................................. 95 
Listing 46 Java, Locking in einer Schleife ............................................................................................. 96 
Listing 47 Java, Dummy-Thread zur Simulation von 'lock contention' .................................................. 96 
  2006-11-20 



Diplomarbeit  Seite 120 

Listing 48 Ausgabe ................................................................................................................................ 97 
Listing 49 Java, Lock-verursachende Zeile entfernen........................................................................... 97 
Listing 50 Ausgabe ................................................................................................................................ 97 
Listing 51 Java, Synchronisation ausserhalb der Schleife .................................................................... 97 
Listing 52 Ausgabe ................................................................................................................................ 97 
Listing 53 Java, teilweise unsynchronisierter Zugriff ............................................................................. 99 
Listing 54 Java, Dummy Thread liesst ohne Locking............................................................................ 99 
Listing 55 Java, Unverändertes Hauptprogramm................................................................................ 100 
Listing 56 Ausgabe .............................................................................................................................. 100 
Listing 57 Java, volatile Schlüsselwort ................................................................................................ 100 
Listing 58 Ausgabe .............................................................................................................................. 100 
Listing 59 Java, unsynchronisierter Zugriff.......................................................................................... 102 
Listing 60 Java, Dummy Thread verwendet unsynchronisierte Methoden ......................................... 102 
Listing 61 Java, Haupt-Thread ............................................................................................................ 102 
Listing 62 Ausgabe .............................................................................................................................. 103 
Listing 63 Java, manuelle Synchronisation aller relevanten Stellen ................................................... 103 
Listing 64 Ausgabe .............................................................................................................................. 103 
Listing 65 Java, Lock abgeben............................................................................................................ 104 
Listing 66 Java, synchronisierter Java Thread.................................................................................... 104 
Listing 67 Ausgabe .............................................................................................................................. 104 
Listing 68 Java, JIT PrintCompilation .................................................................................................. 106 
Listing 69 Java, JIT deaktivieren ......................................................................................................... 106 
Listing 70 Java, Incremental Garbage Collection................................................................................ 107 
Listing 71 Java, Debug Garbage Collection ........................................................................................ 107 
Listing 72 Java, Garbage Collection Ratio .......................................................................................... 107 
Listing 73 Java, Heap Grösse ............................................................................................................. 108 
Listing 74 Java, Heap Grössenverhältnis............................................................................................ 108 
Listing 75 Java, Client/Server VM Parameter ..................................................................................... 109 
Listing 76 Java, Reordering 1.............................................................................................................. 109 
Listing 77 Java, Reordering 2.............................................................................................................. 109 
Listing 78 Java, Lock elosion, Lock coarsening .................................................................................. 110 
 

  2006-11-20 



Diplomarbeit  Seite 121 

10.4. Index 

Abkürzungen.................... 8 

Adressraum.............. 32, 38 

Affinität ................... 52, 112 

AMD......................... 28, 112 

API...............56, 69, 79, 112 

Applikationen................. 15 

ASMP ...................... 18, 112 

asymmetrisch ................ 14 

Athlon 64 ........................ 28 

Atomic............................. 85 

Betriebssystem.............. 32 

Betriebssysteme............ 15 

Bottleneck ...................... 16 

Branch ............................ 25 

Cache Kohärenz ............ 19 

CAS ......................... 92, 112 

ccNUMA............19, 28, 108 

CISC ........................ 22, 112 

CMP......................... 18, 112 

CMT...................20, 29, 112 

Collections ............. 83, 112 

Compare and Set ........... 92 

Compare and Swap ....... 92 

Context Switch............... 67 

Context-Switch ...... 36, 113 

CoolThreads................... 29 

Core................................. 27 

Core 2.............................. 27 

CPU ............................... 113 

Daemon........................... 44 

Data partitioning ............ 72 

DDR-RAM........................ 26 

Deadlock...........66, 70, 113 

Definitionen...................... 8 

Direktiven ....................... 72 

Eden.............................. 107 

Effizienz .......................... 74 

EIST................................. 27 

Garbage Collection .... 107, 
113 

GC ......................... 107, 113 

GPL ................................. 29 

HAL ................................. 34 

Hardware .................. 15, 16 

Heap.............................. 108 

HTT.................................. 26 

Hyper-Threading.... 20, 113 

HyperTransport.............. 28 

Intel ........................... 26, 27 

Interprozesskommunikati
on................................ 32 

Interrupt.......................... 32 

IPC........................... 67, 113 

Java............................... 113 

JIT ................... 30, 106, 113 

JOMP ............................ 113 

JVM ............. 45, 55, 79, 113 

Kernel ..................... 34, 113 

Kernel-Level-Threads.... 41 

KLT.......................... 41, 113 

Kommunikation ............. 67 

Konsolidierung .............. 14 

Kontext ......................... 113 

Kontextwechsel ............. 67 

Korrektheit ..................... 66 

Lebendigkeit .................. 66 

Links ............................... 10 

Livelock .................. 66, 114 

Lock .............................. 114 

coarsening......... 109, 114 

elosion............... 109, 114 

Granularität ......... 91, 114 

Partitioning .................. 91 

Splitting ............... 91, 114 

Striping ................ 91, 114 

lock contention.............. 86 

LWP................... 42, 67, 107 

Macro-OP ................. 27, 30 

Micro-OP .................. 22, 30 

MMX ................................ 22 

Mooresches Gesetz....... 14 

MPI .......................... 77, 114 

Mutex .......... 70, 86, 87, 114 

NetBurst ................. 26, 114 

Niagara ........................... 29 

NUMA.............. 19, 108, 114 

OpenMP............ 72, 75, 114 

Opteron........................... 28 

Optimierung ................. 106 

Package........................ 114 

Parallelisierung.............. 14 

PC.............................. 36, 38 

PCB..................... 35, 40, 41 

Pentium 4 ....................... 26 

physikalische Grenzen . 14 

Pipeline........................... 24 

Pipelining ..................... 114 

POSIX...................... 69, 115 

Privilegierungsstufen.... 37 

Profiling.......................... 58 

Programm-Counter . 36, 38 

Prozesse......................... 67 

Prozesserzeugung ........ 32 

Prozess-ID...................... 36 

Prozesskontext.............. 35 

Prozessmodell ............... 43 

Prozess-Status-Register36 

Prozesssynchronisation32 

Prozessterminierung..... 32 

Prozesswechsel............. 32 

PS.................................... 36 

  2006-11-20 



Diplomarbeit  Seite 122 

Quantum......................... 44 

RD-RAM .......................... 26 

ReentrantLock ............... 83 

Referenzen ....................... 8 

Reordering ...........109, 115 

Ressourcen .................... 13 

RISC ........................ 22, 115 

Schaltgeschwindigkeiten
.................................... 14 

Scheduler ....................... 67 

Scheduling ............. 32, 115 

FIFO ............................ 46 

Priority ......................... 47 

Round Robin ............... 46 

Schichtenarchitektur..... 34 

SD-RAM .......................... 26 

Sicherheit ....................... 66 

SIMD................................ 22 

Skalar ...................... 22, 115 

Skalierbarkeit 

Hardware..................... 16 

Skalierung ...................... 13 

horizontal..................... 13 

System ........................ 15 

vertikal ......................... 13 

SMP......................... 18, 115 

SP.................................... 36 

SPARC ............................ 29 

SpeedStep...................... 27 

Sprungbefehle ............... 25 

SSE ................................. 22 

Stack ............................... 38 

Stack-Pointer ................. 36 

Starvation ............... 66, 115 

Starving .......................... 46 

Strukturgrössen............. 14 

Sun.................................. 29 

Superskalar ............ 22, 115 

Super-Threading20, 29, 
115 

Synchroniisierung....... 115 

Synchronisation ...... 14, 67 

Synchronisierung.......... 86 

TBB ......................... 75, 115 

TCB ................................. 41 

TDP ......................... 25, 115 

Tenured ........................ 107 

Thread..................... 67, 116 

Safety ........................ 116 

Threadkontext................ 39 

Thread-Modelle............ 107 

Threads 

Green .......................... 45 

Threads 

Native .......................... 45 

Threadzustände............. 44 

Timesclice ...................... 44 

Trap................................. 32 

UltraSparc ...................... 29 

UMA ............ 19, 28, 29, 116 

Userspace ...................... 34 

Verlustleistung .............. 14 

Verteilung....................... 68 
 

  2006-11-20 


	1. Management Summary 
	2. Inhaltsverzeichnis 
	3. Dokumentinformationen 
	3.1. Referenzierte Dokumente 
	3.2. Definitionen und Abkürzungen 
	3.3.  Links 
	4. Einleitung 
	4.1. Der Begriff der Skalierung 
	4.2.  Warum überhaupt Parallelisierung? 
	4.3. Skalierung als System 

	5. Hardware 
	5.1. Skalierbarkeit der Hardware 
	5.2.  SMP / ASMP / CMP 
	5.2.1.  UMA/NUMA 

	5.3.  Super-Threading, CMT 
	5.4.  Skalar, Superskalar 
	5.5.  Pipeline 
	5.6.  Konkrete Prozessor-Designs 
	5.6.1. Intel Pentium 4
	5.6.2. Intel Core/Core 2
	5.6.3.  AMD Opteron / Athlon 64
	5.6.4.  Sun UltraSparc T1 (Niagara)

	5.7.  Zusammenfassung und Fazit 
	5.8. Auswirkungen auf die Aufgabenstellung 

	6. Betriebssysteme 
	6.1. Einleitung 
	6.2.  Windows XP 
	6.2.1.  Interne Struktur 

	6.3. Das Prozess Modell 
	6.3.1. Begriff des Prozesses 
	6.3.2. Der Prozesskontext 
	6.3.3. Context-Switch 
	6.3.4. Klassifizierung von Prozessen 
	6.3.5. Privilegierungsstufen im OS 

	6.4. Das Thread-Modell 
	6.4.1. Der Threadkontext 
	6.4.2. Klassifizierung von Threads 

	6.5.  Prozessmodell Windows 
	6.5.1. Objekttypen 
	6.5.2. Abbildung von Threads 
	6.5.3. Threadzustände 

	6.6. Das Prozessmodell Java 
	6.6.1. Klassifizierung 
	6.6.2. Erzeugung 
	6.6.3. Kontrolle 
	6.6.4. Laufzeitumgebung eines Thread 
	6.6.5. Abbildung auf OS-Threads 

	6.7.  Prozessverwaltung durch Scheduling 
	6.7.1.1. Scheduling-Strategien 
	6.7.1.2. Scheduling-Algorithmen 


	6.8. Prozessverwaltung Windows 
	6.8.1. Priority Class 
	6.8.2. Priority Level 
	6.8.3. Base Priority 
	6.8.4. Priority Boosts 
	6.8.5. Prozesse erzeugen 
	6.8.6. Threads erzeugen 
	6.8.7. Affinität von Prozessen 
	6.8.8. Affinität unter Windows XP 
	6.8.9. Skalierbarkeit durch Affinität 

	6.9.  Prozessverwaltung Java 
	6.10.  Windows API 
	6.11.  Prozesse überwachen 
	6.12. Profiling Prozesse 
	6.12.1.  Windows TaskManager 
	6.12.2. Process Explorer 
	6.12.3.  Performance Monitor 
	6.12.4. Intel Thread Profiler 

	6.13. Zusammenfassung und Fazit 
	6.14. Auswirkungen auf die Aufgabenstellung 

	7. Applikationen 
	7.1. Allgemeine Eigenschaften paralleler Programme 
	7.2.  Technologien zur Parallelisierung 
	7.2.1. Prozesse 
	7.2.2. Threads 
	7.2.3.  Verteilung 

	7.3.  Frameworks, Standards und Libraries 
	7.3.1. POSIX-Threads 
	7.3.2.  OpenMP 
	7.3.3.  Thread Building Blocks (TBB) 
	7.3.4.  MPI 

	7.4.  Zusammenfassung und Fazit 
	7.5. Auswirkungen auf die Aufgabenstellung 

	8. Java Virtual Machine (JVM) 
	8.1. Die Java API 
	8.1.1. Threads 
	8.1.2. Collections 
	8.1.3. Weitere hilfreiche Klassen 
	8.1.3.1. ReentrantLock 
	8.1.3.2.  Atomic* 


	8.2.  Synchronisierung 
	8.2.1.  Mutex 
	8.2.1.1. Blocksynchronisation 
	8.2.1.2.  Methodensynchronisation 
	8.2.1.3.  Weitere wichtige Hinweise 

	8.2.2. Unterbrechbare Locks 
	8.2.3.  Lock Granularität 
	8.2.3.1. Lock Splitting 
	8.2.3.2. Lock Striping und Lock Partitioning 

	8.2.4.  Compare and Swap / Compare and Set (CAS) 

	8.3.  Implementierung in Java 
	8.3.1. Methodensynchronisation 
	8.3.2.  Überlange Synchronisierung 
	8.3.3.  Extrem häufiges Locking/Unlocking 
	8.3.4.  Teilweise unsynchronisierter Zugriff 
	8.3.5.  Vollständig unsynchronisierter Zugriff 

	8.4.  JVM Optimierung 
	8.4.1. Just In Time (JIT) Compiler 
	8.4.2.  Thread-Modelle 
	8.4.3. Garbage Collection 
	8.4.4. Weitere Parameter 
	8.4.5. Reordering 
	8.4.6. Lock elosion, Lock coarsening 

	8.5.  Zusammenfassung und Fazit 
	8.6. Auswirkungen auf die Aufgabenstellung 

	9. Glossar 
	10. Verzeichnisse 
	10.1. Tabellenverzeichnis 
	Abbildungsverzeichnis 
	Code Listings 
	10.4.  Index 



